We propose a novel scheme to numerically solve scalar conservation laws on networks without the necessity to solve Riemann problems at the junction. The scheme is derived using the relaxation system introduced in [Jin and Xin, Comm. Pure. Appl. Math. 48 (1995), 235-276] and taking the relaxation limit also at the nodes of the network. The scheme is mass conservative and yields well defined and easy-to-compute coupling conditions even for general networks. We discuss higher order extension of the scheme and applications to traffic flow and two-phase flow. In the former we compare with results obtained in literature.
Citation: Michael Herty, Niklas Kolbe, Siegfried Müller. Central schemes for networked scalar conservation laws[J]. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012
We propose a novel scheme to numerically solve scalar conservation laws on networks without the necessity to solve Riemann problems at the junction. The scheme is derived using the relaxation system introduced in [Jin and Xin, Comm. Pure. Appl. Math. 48 (1995), 235-276] and taking the relaxation limit also at the nodes of the network. The scheme is mass conservative and yields well defined and easy-to-compute coupling conditions even for general networks. We discuss higher order extension of the scheme and applications to traffic flow and two-phase flow. In the former we compare with results obtained in literature.
[1] | M. K. Banda, A. Haeck, M. Herty, Numerical discretization of coupling conditions by high-order schemes, J. Sci. Comput., 69 (2016), 122–145. https://doi.org/10.1007/s10915-016-0185-x doi: 10.1007/s10915-016-0185-x |
[2] | M. K. Banda, M. Herty, A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295–314. https://doi.org/10.3934/nhm.2006.1.295 doi: 10.3934/nhm.2006.1.295 |
[3] | M. K. Banda, M. Herty, J. M. T. Ngnotchouye, On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections, J. Comput. Appl. Math., 276 (2015), 81–97. https://doi.org/10.1016/j.cam.2014.08.021 doi: 10.1016/j.cam.2014.08.021 |
[4] | J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), 65–98. https://doi.org/10.1137/141000671 doi: 10.1137/141000671 |
[5] | R. Borsche, A. Klar, Kinetic layers and coupling conditions for scalar equations on networks, Nonlinearity, 31 (2018), 3512–3541. https://doi.org/10.1088/1361-6544/aabc91 doi: 10.1088/1361-6544/aabc91 |
[6] | R. Borsche, Numerical schemes for networks of hyperbolic conservation laws, Appl. Numer. Math., 108 (2016), 157–170. https://doi.org/10.1016/j.apnum.2016.01.006 doi: 10.1016/j.apnum.2016.01.006 |
[7] | R. Borsche, J. Kall, ADER schemes and high order coupling on networks of hyperbolic conservation laws, J. Comput. Phys., 273 (2014), 658–670. https://doi.org/10.1016/j.jcp.2014.05.042 doi: 10.1016/j.jcp.2014.05.042 |
[8] | B. Boutin, C. Chalons, P. A. Raviart, Existence result for the coupling problem of two scalar conservation laws with Riemann initial data, Math. Models Methods Appl. Sci., 20 (2010), 1859–1898. https://doi.org/10.1142/S0218202510004817. doi: 10.1142/S0218202510004817 |
[9] | A. Bressan, S. Čanić, M. Garavello, M. Herty, B. Piccoli, Flows on networks: recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47–111. https://doi.org/10.4171/EMSS/2 doi: 10.4171/EMSS/2 |
[10] | G. Bretti, R. Natalini, B. Piccoli, Fast algorithms for the approximation of a traffic flow model on networks, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 427–448. https://doi.org/10.3934/dcdsb.2006.6.427 doi: 10.3934/dcdsb.2006.6.427 |
[11] | J. Brouwer, I. Gasser, M. Herty, Gas pipeline models revisited: model hierarchies, nonisothermal models, and simulations of networks, Multiscale Model. Simul., 9 (2011), 601–623. https://doi.org/10.1137/100813580 doi: 10.1137/100813580 |
[12] | S. Buckley, M. Leverett, Mechanism of Fluid Displacement in Sands, Transact. AIME, 146 (1942), 107–116. |
[13] | S. Canic, B. Piccoli, J. M. Qiu, T. Ren, Runge-Kutta discontinuous Galerkin method for traffic flow model on networks, J. Sci. Comput., 63 (2015), 233–255. https://doi.org/10.1007/s10915-014-9896-z. doi: 10.1007/s10915-014-9896-z |
[14] | S. Chapman, T. G. Cowling, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases, New York: Cambridge University Press, 1990. |
[15] | G. Q. Chen, C. D. Levermore, T. P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), 787–830. |
[16] | R. M. Colombo, M. Herty, V. Sachers, On $2\times2$ conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605–622. https://doi.org/10.1137/070690298 doi: 10.1137/070690298 |
[17] | R. M. Colombo, M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456–1471. https://doi.org/10.1137/060665841. doi: 10.1137/060665841 |
[18] | M. Crandall, A. Majda, The method of fractional steps for conservation laws, Numer. Math., 34 (1980), 285–314. |
[19] | C. D'Apice, S. Göttlich, M. Herty, B. Piccoli, Modeling, simulation, and optimization of supply chains, Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 2010. |
[20] | F. Dubois, P. Le Floch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differ. Equations, 71 (1988), 93–122. |
[21] | H. Egger, A robust conservative mixed finite element method for isentropic compressible flow on pipe networks, SIAM J. Sci. Comput., 40 (2018), A108–A129. https://doi.org/10.1137/16M1094373 doi: 10.1137/16M1094373 |
[22] | H. Egger, N. Philippi, On the transport limit of singularly perturbed convection-diffusion problems on networks, Math. Methods Appl. Sci., 44 (2021), 5005–5020. https://doi.org/10.1002/mma.7084 doi: 10.1002/mma.7084 |
[23] | L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani, Multiscale modelling of the circulatory system: A preliminary analysis, Comput Visual Sci, 2 (1999), 75–83. |
[24] | M. Garavello, K. Han, B. Piccoli, Models for vehicular traffic on networks, Springfield: American Institute of Mathematical Sciences (AIMS), 2016. |
[25] | M. Garavello, B. Piccoli, Traffic Flow on Networks: Conservation Law Models, Springfield: American Institute of Mathematical Sciences (AIMS), 2006. |
[26] | E. Godlewski, P. A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. I. The scalar case, Numer. Math., 97 (2004), 81–130. https://doi.org/10.1007/s00211-002-0438-5 doi: 10.1007/s00211-002-0438-5 |
[27] | E. Godlewski, P. A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, New York: Springer New York, 1996. |
[28] | S. Göttlich, M. Herty, S. Moutari, J. Weissen, Second-Order Traffic Flow Models on Networks, SIAM J. Appl. Math., 81 (2021), 258–281. https://doi.org/10.1137/20M1339908 doi: 10.1137/20M1339908 |
[29] | M. Gugat, M. Herty, S. Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, Netw. Heterog. Media, 12 (2017), 371–380. https://doi.org/10.3934/nhm.2017016 doi: 10.3934/nhm.2017016 |
[30] | M. Hantke, S. Müller, Closure conditions for a one temperature non-equilibrium multi-component model of baer-nunziato type, ESAIM: ProcS, 66 (2019), 42–60. https://doi.org/10.1051/proc/201966003 doi: 10.1051/proc/201966003 |
[31] | M. Hantke, S. Müller, Analysis and simulation of a new multi-component two-phase flow model with phase transitions and chemical reactions, Quart. Appl. Math., 76 (2018), 253–287. https://doi.org/10.14760/OWP-2017-08 doi: 10.14760/OWP-2017-08 |
[32] | M. Herty, M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595–616. https://doi.org/10.1137/05062617X doi: 10.1137/05062617X |
[33] | M. Herty, S. Müller, N. Gerhard, G. Xiang, B. Wang, Fluid-structure coupling of linear elastic model with compressible flow models: Coupling of linear elastic model with compressible flow models, Int. J. Numer. Meth. Fluids, 86 (2018), 365–391. https://doi.org/10.1002/fld.4422 doi: 10.1002/fld.4422 |
[34] | H. Holden, N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999–1017. https://doi.org/10.1137/S0036141093243289 doi: 10.1137/S0036141093243289 |
[35] | Y. Holle, M. Herty, M. Westdickenberg, New coupling conditions for isentropic flow on networks, Netw. Heterog. Media, 15 (2020), 605–631. https://doi.org/10.3934/nhm.2020016 doi: 10.3934/nhm.2020016 |
[36] | J. Hu, S. Jin, Q. Li, Asymptotic-Preserving Schemes for Multiscale Hyperbolic and Kinetic Equations, in Handbook of Numerical Analysis, 18 (2017), 103–129. https://doi.org/10.1016/bs.hna.2016.09.001 |
[37] | S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review, Lecture Notes for Summer School on Methods and Models of Kinetic Theory (M & MKT), (2010), 177–216. |
[38] | S. Jin, Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Commun. Pure Appl. Math., 48 (1995), 235–276. |
[39] | M. K. Banda, M. Herty, A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295–314. https://doi.org/10.3934/nhm.2006.1.295 doi: 10.3934/nhm.2006.1.295 |
[40] | K. H. Karlsen, C. Klingenberg, N. H. Risebro, A Relaxation Scheme for Conservation Laws with a Discontinuous Coefficient, Math. Comp., 73 (2003), 1235–1260. https://doi.org/10.1090/S0025-5718-03-01625-9 doi: 10.1090/S0025-5718-03-01625-9 |
[41] | K. H. Karlsen, J. D. Towers, Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition, J. Hyper. Differential Equations, 14 (2017), 671–701. https://doi.org/10.1142/S0219891617500229 doi: 10.1142/S0219891617500229 |
[42] | O. Kolb, J. Lang, P. Bales, An implicit box scheme for subsonic compressible flow with dissipative source term, Numer. Algorithms, 53 (2010), 293–307. https://doi.org/10.1007/s11075-009-9287-y doi: 10.1007/s11075-009-9287-y |
[43] | N. Kolbe, Implementation of central schemes for networks of scalar conservation laws, GitHub repository, Available from: https://github.com/nklb/CentralNetworkScheme, 2022. |
[44] | M. Kramar Fijavž, D. Mugnolo, E. Sikolya, Variational and semigroup methods for waves and diffusion in networks, Appl. Math. Optim., 55 (2007), 219–240. https://doi.org/10.1007/s00245-006-0887-9 doi: 10.1007/s00245-006-0887-9 |
[45] | A. Kurganov, S. Noelle, G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23 (2001), 707–740. |
[46] | R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge: Cambridge University Press, 2002. |
[47] | M. J. Lighthill, G. B. Whitham, On kinematic waves Ⅱ. A theory of traffic flow on long crowded roads, Proc. R. Soc. Lond. A, 229 (1955), 317–345. |
[48] | T. P. Liu, Hyperbolic conservation laws with relaxation, Commun. Math. Phys., 108 (1987), 153–175. |
[49] | Y. Mantri, M. Herty, S. Noelle, Well-balanced scheme for gas-flow in pipeline networks, Netw. Heterog. Media, 14 (2019), 659–676. https://doi.org/10.3934/nhm.2019026 doi: 10.3934/nhm.2019026 |
[50] | P. Mindt, J. Lang, P. Domschke, Entropy-preserving coupling of hierarchical gas models, SIAM J. Math. Anal., 51 (2019), 4754–4775. https://doi.org/10.1137/19M1240034. doi: 10.1137/19M1240034 |
[51] | L. O. Müller, P. J. Blanco, A high order approximation of hyperbolic conservation laws in networks: application to one-dimensional blood flow, J. Comput. Phys., 300 (2015), 423–437. https://doi.org/10.1016/j.jcp.2015.07.056 doi: 10.1016/j.jcp.2015.07.056 |
[52] | S. Müller, A. Voss, The Riemann Problem for the Euler Equations with Nonconvex and Nonsmooth Equation of State: Construction of Wave Curves, SIAM J. Sci. Comput., 28 (2006), 651–681. https://doi.org/10.1137/040619909 doi: 10.1137/040619909 |
[53] | P. I. Richards, Shock Waves on the Highway, Oper. Res., 4 (1956), 42–51. |
[54] | S. Tan, C. W. Shu, Inverse Lax-Wendroff procedure for numerical boundary conditions of hyperbolic equations: survey and new developments, Advances in applied mathematics, modeling, and computational science, Boston: Springer, 2013, 41–63. |
[55] | J. D. Towers, An explicit finite volume algorithm for vanishing viscosity solutions on a network, Netw. Heterog. Media, 17 (2022), 1–13. https://doi.org/10.3934/nhm.2021021 doi: 10.3934/nhm.2021021 |
[56] | B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, J. Comput. Phys., 32 (1979), 101–136. |
[57] | X. Wu, J. Chan, Entropy stable discontinuous Galerkin methods for nonlinear conservation laws on networks and multi-dimensional domains, J. Sci. Comput., 87 (2021), 1–34. https://doi.org/10.1007/s10915-021-01464-5 doi: 10.1007/s10915-021-01464-5 |