Research article Special Issues

Synchronization of nonautonomous neural networks with Caputo derivative and time delay

  • Received: 09 November 2022 Revised: 12 December 2022 Accepted: 18 December 2022 Published: 23 December 2022
  • The synchronization problem of delayed nonautonomous neural networks with Caputo derivative is studied in this article. Firstly, new neural networks are proposed by introducing variable parameters into known models, and the analytical formula of the synchronous controller is given according to the new neural networks. Secondly, from the drive-response systems corresponding to the above delayed neural networks, their error system is obtained. Thirdly, by constructing the Lyapunov function and utilizing the Razumikhin-type stability theorem, the asymptotic stability of zero solution for the error system is verified, and some sufficient conditions are achieved to ensure the global asymptotic synchronization of studied neural networks. Finally, some numerical simulations are given to show the availability and feasibility of our obtained results.

    Citation: Lili Jia, Changyou Wang, Zongxin Lei. Synchronization of nonautonomous neural networks with Caputo derivative and time delay[J]. Networks and Heterogeneous Media, 2023, 18(1): 341-358. doi: 10.3934/nhm.2023013

    Related Papers:

  • The synchronization problem of delayed nonautonomous neural networks with Caputo derivative is studied in this article. Firstly, new neural networks are proposed by introducing variable parameters into known models, and the analytical formula of the synchronous controller is given according to the new neural networks. Secondly, from the drive-response systems corresponding to the above delayed neural networks, their error system is obtained. Thirdly, by constructing the Lyapunov function and utilizing the Razumikhin-type stability theorem, the asymptotic stability of zero solution for the error system is verified, and some sufficient conditions are achieved to ensure the global asymptotic synchronization of studied neural networks. Finally, some numerical simulations are given to show the availability and feasibility of our obtained results.



    加载中


    [1] Q. Song, Synchronization analysis of coupled connected neural networks with mixed time delays, Neurocomputing., 72 (2009), 3907–3914. https://doi.org/10.1016/j.neucom.2009.04.009 doi: 10.1016/j.neucom.2009.04.009
    [2] H. Bao, J. H. Park, J. Cao, Adaptive synchronization of fractional-order memristor-based neural networks with time delay, Nonlinear. Dynam., 82 (2015), 1343–1354. https://doi.org/10.1007/s11071-015-2242-7 doi: 10.1007/s11071-015-2242-7
    [3] G. Velmurugan, R. Rakkiyappan, J. Cao, Finite-time synchronization of fractional-order memristor-based neural networks with time delays, Neural. Networks., 73 (2016), 36–46. https://doi.org/10.1016/j.neunet.2015.09.012 doi: 10.1016/j.neunet.2015.09.012
    [4] Y. Gu, Y. Yu, H. Wang, Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty, J. Franklin. I., 353 (2016), 3657–3684. https://doi.org/10.1016/j.jfranklin.2016.06.029 doi: 10.1016/j.jfranklin.2016.06.029
    [5] I. Stamova, G. Stamov, Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers, Neural. Networks., 96 (2017), 22–32. https://doi.org/10.1016/j.neunet.2017.08.009 doi: 10.1016/j.neunet.2017.08.009
    [6] H. P. Hu, J. K. Wang, F. L. Xie, Dynamics analysis of a new fractional-order hopfield neural network with delay and its generalized projective synchronization, Entropy-Switz., 21 (2019), 1. https://doi.org/10.3390/e21010001 doi: 10.3390/e21010001
    [7] W. Zhang, J. Cao, R. Wu, A. Alsaedi, F. E. Alsaadi, Projective synchronization of fractional-order delayed neural networks based on the comparison principle, Adv. Differ. Equ-NY., 2018 (2018), 73. https://doi.org/10.1186/s13662-018-1530-1 doi: 10.1186/s13662-018-1530-1
    [8] J. Yu, C. Hu, H. Jiang, X. Fan, Projective synchronization for fractional neural networks, Neural.Networks., 49 (2014), 87–95. https://doi.org/10.1016/j.neunet.2013.10.002 doi: 10.1016/j.neunet.2013.10.002
    [9] H. B. Bao, J. D. Cao, Projective synchronization of fractional-order memristor-based neural networks, Neural. Networks., 63 (2015), 1–9. https://doi.org/10.1016/j.neunet.2014.10.007 doi: 10.1016/j.neunet.2014.10.007
    [10] T. Hu, X. Zhang, S. Zhong, Global asymptotic synchronization of nonidentical fractional-order neural networks, Neurocomputing., 313 (2018), 39–46. https://doi.org/10.1016/j.neucom.2018.05.098 doi: 10.1016/j.neucom.2018.05.098
    [11] H. Wang, Y. Yu, G. Wen, S. Zhang, Stability analysis of fractional-order neural networks with time delay, Neural. Process. Lett., 42 (2015), 479–500. https://doi.org/10.1007/s11063-014-9368-3 doi: 10.1007/s11063-014-9368-3
    [12] X. Peng, H. Wu, K. Song, J. Shi, Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays, Neural. Networks., 94 (2017), 46–54. https://doi.org/10.1016/j.neunet.2017.06.011 doi: 10.1016/j.neunet.2017.06.011
    [13] L. Zhang, Y. Yang, F. Wang, Synchronization analysis of fractional-order neural networks with time-varying delays via discontinuous neuron activations, Neurocomputing., 275 (2018), 40–49. https://doi.org/10.1016/j.neucom.2017.04.056 doi: 10.1016/j.neucom.2017.04.056
    [14] Y. Wang, Y. Cao, Z. Guo, T. Huang, S. Wen, Event-based sliding-mode synchronization of delayed memristive neural networks via continuous/periodic sampling algorithm, Appl. Math. Comput., 383 (2020), 125379. https://doi.org/10.1016/j.amc.2020.125379 doi: 10.1016/j.amc.2020.125379
    [15] C. Wang, Q. Yang, T. Jiang, N. Li, Synchronization analysis of a class of neural networks with multiple time delays, J. Math-UK., 2021 (2021), 5573619. https://doi.org/10.1155/2021/5573619 doi: 10.1155/2021/5573619
    [16] M. Hui, N. Yao, H. H. C. Iu, R. Yao, L. Bai, Adaptive synchronization of fractional-order complex-valued neural networks with time-varying delays, IEEE. Access., 10 (2022), 45677–45688. https://doi.org/10.1109/ACCESS.2022.3170091 doi: 10.1109/ACCESS.2022.3170091
    [17] R. Ye, C. Wang, A. Shu, H. Zhang, Quasi-synchronization and quasi-uniform synchronization of Caputo fractional variable-parameter neural networks with probabilistic time-varying delay, Symmetry., 14 (2022), 1035. https://doi.org/10.3390/sym14051035 doi: 10.3390/sym14051035
    [18] L. H. Zhao, S. Wen, M. Xu, K. Shi, S. Zhu, T. Huang, PID control for output synchronization of multiple output coupled complex networks, IEEE. T. Netw. Sci. Eng., 9 (2022) 1553–1566. https://doi.org/10.1109/TNSE.2022.3147786 doi: 10.1109/TNSE.2022.3147786
    [19] L. H. Zhao, S. Wen, C. Li, K. Shi, T. Huang, A recent survey on control for synchronization and passivity of complex networks, IEEE. T. Netw. Sci. Eng., 9 (2022) 4235–4254. https://doi.org/10.1109/TNSE.2022.3196786 doi: 10.1109/TNSE.2022.3196786
    [20] X. Yang, C. Li, T. Huang, Q. Song, J. Huang, Synchronization of fractional-order memristor-based complex-valued neural networks with uncertain parameters and time delays, Chaos. Soliton. Fract., 110 (2018), 105–123. https://doi.org/10.1016/j.chaos.2018.03.016 doi: 10.1016/j.chaos.2018.03.016
    [21] C. Wang, Q. Yang, Y. Zhuo, R. Li, Synchronization analysis of a fractional-order non-autonomous neural network with time delay, Physica. A., 549 (2020), 124176. https://doi.org/10.1016/j.physa.2020.124176 doi: 10.1016/j.physa.2020.124176
    [22] I. Pldlubny, Fractional Differential Equations, New York: Academic Press, 1999.
    [23] A.A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, New York: Elsevier Science Ltd, 2006.
    [24] M. A. Duarte-Mermoud, N. Aguila-Camacho, J. A. Gallegos, R. Castro-Linares, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear. Sci., 22 (2015), 650–659. https://doi.org/10.1016/j.cnsns.2014.10.008
    [25] B. Chen, J. Chen, Razumikhin-type stability theorems for functional fractional-order differential systems and applications, Appl. Math. Comput., 254 (2015) 63–69. https://doi.org/10.1016/j.amc.2014.12.010 doi: 10.1016/j.amc.2014.12.010
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1193) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog