Research article Special Issues

The numerical solutions for the nonhomogeneous Burgers' equation with the generalized Hopf-Cole transformation

  • Received: 25 August 2022 Revised: 10 November 2022 Accepted: 01 December 2022 Published: 26 December 2022
  • In this paper, with the help of the generalized Hopf-Cole transformation, we first convert the nonhomogeneous Burgers' equation into an equivalent heat equation with the derivative boundary conditions, in which Neumann boundary conditions and Robin boundary conditions can be viewed as its special cases. For easy derivation and numerical analysis, the reduction order method is used to convert the problem into an equivalent first-order coupled system. Next, we establish a box scheme for this first-order system. By the technical energy analysis method, we obtain the prior estimate of the numerical solution for the box scheme. Furthermore, the solvability and convergence are obtained directly from the prior estimate. The extensive numerical examples are carried out, which verify the developed box scheme can achieve global second-order accuracy for both homogeneous and nonhomogeneous Burgers' equations.

    Citation: Tong Yan. The numerical solutions for the nonhomogeneous Burgers' equation with the generalized Hopf-Cole transformation[J]. Networks and Heterogeneous Media, 2023, 18(1): 359-379. doi: 10.3934/nhm.2023014

    Related Papers:

  • In this paper, with the help of the generalized Hopf-Cole transformation, we first convert the nonhomogeneous Burgers' equation into an equivalent heat equation with the derivative boundary conditions, in which Neumann boundary conditions and Robin boundary conditions can be viewed as its special cases. For easy derivation and numerical analysis, the reduction order method is used to convert the problem into an equivalent first-order coupled system. Next, we establish a box scheme for this first-order system. By the technical energy analysis method, we obtain the prior estimate of the numerical solution for the box scheme. Furthermore, the solvability and convergence are obtained directly from the prior estimate. The extensive numerical examples are carried out, which verify the developed box scheme can achieve global second-order accuracy for both homogeneous and nonhomogeneous Burgers' equations.



    加载中


    [1] H. Bateman, Some recent researches on the motion of fluids, Mon. Wea. Rev., 43 (1915), 163–170. https://doi.org/10.1175/1520-0493(1915)43%3C163:SRROTM%3E2.0.CO; 2 doi: 10.1175/1520-0493(1915)43%3C163:SRROTM%3E2.0.CO;2
    [2] J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1 (1948), 171–199.
    [3] E. Hopf, The partial differential equation $U_t + UU_x = \mu U_xx$, Comm. Pure Appl. Math., 3 (1950), 201–230. https://doi.org/10.1002/cpa.3160030302 doi: 10.1002/cpa.3160030302
    [4] J. D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math., 9 (1951), 225–236. https://doi.org/10.1090/qam/42889 doi: 10.1090/qam/42889
    [5] W. H. Luo, T. Z. Huang, X. M. Gu, Y. Liu, Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations, Appl. Math. Lett., 68 (2017), 13–19. https://doi.org/10.1016/j.aml.2016.12.011 doi: 10.1016/j.aml.2016.12.011
    [6] P. M. Jordan, On the application of the Cole–Hopf transformation to hyperbolic equations based on second-sound models, Math. Comput. Simul., 81 (2010), 18–25. https://doi.org/10.1016/j.matcom.2010.06.011 doi: 10.1016/j.matcom.2010.06.011
    [7] Q. Zhang, X. Wang, Z. Sun, The pointwise estimates of a conservative difference scheme for Burgers' equation, Numer Methods Partial Differ Equ, 36 (2020), 1611–1628. https://doi.org/10.1002/num.22494 doi: 10.1002/num.22494
    [8] Q. Zhang, Y. Qin, X. Wang, Z. Sun, The study of exact and numerical solutions of the generalized viscous Burgers' equation, Appl. Math. Lett., 112 (2021), 106719. https://doi.org/10.1002/num.22494 doi: 10.1002/num.22494
    [9] X. Wang, Q. Zhang, Z. Sun, The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers' equation, Adv. Comput. Math., 47 (2021), 1–42.
    [10] H. Sun, Z. Z Sun, On two linearized difference schemes for Burgers' equation, Int. J. Comput. Math., 92 (2015), 1160–1179. https://doi.org/10.1080/00207160.2014.927059 doi: 10.1080/00207160.2014.927059
    [11] I. C. Christov, On the numerical solution of a variable–coefficient Burgers equation arising in granular segregation, arXiv: 1707.00034, [Preprint], (2017) [cited 2022 Dec 08 ]. Available from: https://arXiv.org/abs/1707.00034.
    [12] T. Öziş, E. N. Aksan, A. Özdeş, A finite element approach for solution of Burgers' equation, Appl. Math. Comput., 139 (2003), 417–428. https://doi.org/10.1016/S0096-3003(02)00204-7 doi: 10.1016/S0096-3003(02)00204-7
    [13] O. P. Yadav, R. Jiwari, Finite element analysis and approximation of Burgers'-Fisher equation, Numer Methods Partial Differ Equ, 33 (2017), 1652–1677. https://doi.org/10.1002/num.22158 doi: 10.1002/num.22158
    [14] H. Wu, H. Ma, H. Y. Li, Optimal error estimates of the Chebyshev-Legendre spectral method for solving the generalized Burgers equation, SIAM J. Numer. Anal., 41 (2003), 659–672. https://doi.org/10.1137/S0036142901399781 doi: 10.1137/S0036142901399781
    [15] A. Rashid, A. I. B. Ismail, A fourier pseudospectral method for solving coupled viscous Burgers equations, Comput. Methods Appl. Math., 9 (2009), 412–420. https://doi.org/10.2478/cmam-2009-0026 doi: 10.2478/cmam-2009-0026
    [16] E. N. Weinan, Convergence of spectral methods for Burgers' equation, SIAM J. Numer. Anal., 29 (1992), 1520–1541.
    [17] M. P. Bonkile, A. Awasthi, C. Lakshmi, V. Mukundan, V. S. Aswin, A systematic literature review of Burgers' equation with recent advances, Pramana, 90 (2018), 1–21. https://doi.org/10.1007/s12043-018-1559-4 doi: 10.1007/s12043-018-1559-4
    [18] M. Sarboland, A. Aminataei, On the numerical solution of one-dimensional nonlinear nonhomogeneous Burgers' equation, J. Appl. Math. 2014 (2014), 1–15. https://doi.org/10.1155/2014/598432 doi: 10.1155/2014/598432
    [19] Q. Zhang, C. Zhang, A new linearized compact multisplitting scheme for the nonlinear convection-reaction-diffusion equations with delay, Commun Nonlinear Sci Numer Simul, 18 (2013), 3278–3288. https://doi.org/10.1016/j.cnsns.2013.05.018 doi: 10.1016/j.cnsns.2013.05.018
    [20] W. Liao, A compact high-order finite difference method for unsteady convection-diffusion equation, Int. J. Comput. Methods Eng. Sci. Mech., 13 (2012), 135–145. https://doi.org/10.1080/15502287.2012.660227 doi: 10.1080/15502287.2012.660227
    [21] Y. M. Wang, A compact finite difference method for solving a class of time fractional convection-subdiffusion equations, BIT Numer. Math., 55 (2015), 1187–1217. https://doi.org/10.1007/s10543-014-0532-y doi: 10.1007/s10543-014-0532-y
    [22] Q. Zhang, L. Liu, C. Zhang, Compact scheme for fractional diffusion-wave equation with spatial variable coefficient and delays, Appl. Anal., 101 (2020), 1911–1932. https://doi.org/10.1080/00036811.2020.1789600 doi: 10.1080/00036811.2020.1789600
    [23] X. Yang, Y. Ge, L. Zhang, A class of high-order compact difference schemes for solving the Burgers' equations, Appl. Math. Comput., 358 (2019), 394–417. https://doi.org/10.1016/j.amc.2019.04.023 doi: 10.1016/j.amc.2019.04.023
    [24] X. Yang, Y. Ge, B. Lan, A class of compact finite difference schemes for solving the 2D and 3D Burgers' equations, Math. Comput. Simul., 185 (2021), 510–534. https://doi.org/10.1016/j.matcom.2021.01.009 doi: 10.1016/j.matcom.2021.01.009
    [25] Z. Z. Sun, The Method of Order Reduction and its Application to the Numerical Solutions of Partial Differential Equations, Beijing: Science Press, 2009.
    [26] C. Zhang, Z. Tan, Linearized compact difference methods combined with Richardson extrapolation for nonlinear delay Sobolev equations, Commun Nonlinear Sci Numer Simul, 91 (2020), 105461. https://doi.org/10.1016/j.cnsns.2020.105461 doi: 10.1016/j.cnsns.2020.105461
    [27] Y. Zhou, C. Zhang, L. Brugnano, An implicit difference scheme with the KPS preconditioner for two-dimensional time-space fractional convection-diffusion equations, Comput. Math. Appl., 80 (2020), 31–42.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1137) PDF downloads(86) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog