Research article Special Issues

Nonlocal scalar conservation laws with discontinuous flux

  • Received: 04 October 2022 Revised: 14 December 2022 Accepted: 19 December 2022 Published: 29 December 2022
  • We prove the well-posedness of entropy weak solutions for a class of space-discontinuous scalar conservation laws with nonlocal flux. We approximate the problem adding a viscosity term and we provide $ {{\bf{L}}^\infty} $ and BV estimates for the approximate solutions. We use the doubling of variable technique to prove the stability with respect to the initial data from the entropy condition.

    Citation: Felisia Angela Chiarello, Giuseppe Maria Coclite. Nonlocal scalar conservation laws with discontinuous flux[J]. Networks and Heterogeneous Media, 2023, 18(1): 380-398. doi: 10.3934/nhm.2023015

    Related Papers:

  • We prove the well-posedness of entropy weak solutions for a class of space-discontinuous scalar conservation laws with nonlocal flux. We approximate the problem adding a viscosity term and we provide $ {{\bf{L}}^\infty} $ and BV estimates for the approximate solutions. We use the doubling of variable technique to prove the stability with respect to the initial data from the entropy condition.



    加载中


    [1] J. Aleksić, D. Mitrović, Strong traces for averaged solutions of heterogeneous ultra-parabolic transport equations, J. Hyperbolic Differ. Equ., 10 (2013), 659–676. https://doi.org/10.1142/S0219891613500239 doi: 10.1142/S0219891613500239
    [2] S. W. Amadori Debora, An integro-differential conservation law arising in a model of granular flow, J. Hyperbolic Differ. Equ., 9 (2012), 105–131.
    [3] B. Andreianov, K. H. Karlsen, N. H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux, Netw. Heterog. Media, 5 (2010), 617–633. https://doi.org/10.3934/nhm.2010.5.617 doi: 10.3934/nhm.2010.5.617
    [4] B. Andreianov, D. Mitrović, Entropy conditions for scalar conservation laws with discontinuous flux revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1307–1335. https://doi.org/10.1016/j.anihpc.2014.08.002 doi: 10.1016/j.anihpc.2014.08.002
    [5] C. Bardos, A. Y. le Roux, J. C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017–1034. https://doi.org/10.1080/03605307908820117 doi: 10.1080/03605307908820117
    [6] F. Betancourt, R. Bürger, K. H. Karlsen, E. M. Tory, On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855–885.
    [7] S. Blandin, P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217–241. http://dx.doi.org/10.1007/s00211-015-0717-6 doi: 10.1007/s00211-015-0717-6
    [8] A. Bressan, G. Guerra, W. Shen, Vanishing viscosity solutions for conservation laws with regulated flux, J. Differential Equations, 266 (2019), 312–351. https://doi.org/10.1016/j.jde.2018.07.044 doi: 10.1016/j.jde.2018.07.044
    [9] F. A. Chiarello, J. Friedrich, P. Goatin, S. Göttlich, O. Kolb, A non-local traffic flow model for 1-to-1 junctions, Eur. J. Appl. Math., 31 (2020), 1029–1049.
    [10] F. A. Chiarello, P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM: M2AN, 52 (2018), 163–180. https://doi.org/10.1051/m2an/2017066 doi: 10.1051/m2an/2017066
    [11] G. M. Coclite, M. M. Coclite, Conservation laws with singular nonlocal sources, J. Differential Equations, 250 (2011), 3831–3858. https://doi.org/10.1016/j.jde.2010.12.001 doi: 10.1016/j.jde.2010.12.001
    [12] G. M. Coclite, L. di Ruvo, Well-posedness of the Ostrovsky-Hunter equation under the combined effects of dissipation and short-wave dispersion, J. Evol. Equ., 16 (2016), 365–389. https://doi.org/10.1007/s00028-015-0306-2 doi: 10.1007/s00028-015-0306-2
    [13] G. M. Coclite, H. Holden, K. H. Karlsen, Wellposedness for a parabolic-elliptic system, Discrete Contin. Dyn. Syst., 13 (2005), 659–682. https://doi.org/10.3934/dcds.2005.13.659 doi: 10.3934/dcds.2005.13.659
    [14] G. M. Coclite, K. H. Karlsen, S. Mishra, N. H. Risebro, Convergence of vanishing viscosity approximations of $2\times2$ triangular systems of multi-dimensional conservation laws, Boll. Unione Mat. Ital., 2 (2009), 275–284.
    [15] G. M. Coclite, E. Jannelli, Well-posedness for a slow erosion model, J. Math. Anal. Appl., 456 (2017), 337–355. https://doi.org/10.1016/j.jmaa.2017.07.006 doi: 10.1016/j.jmaa.2017.07.006
    [16] R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023.
    [17] M. Garavello, R. Natalini, B. Piccoli and A. Terracina, Conservation laws with discontinuous flux, Netw. Heterog. Media, 2 (2007), 159–179. https://doi.org/10.3934/nhm.2007.2.159. doi: 10.3934/nhm.2007.2.159
    [18] S. Göttlich, S. Hoher, P. Schindler, V. Schleper, A. Verl, Modeling, simulation and validation of material flow on conveyor belts, Appl. Math. Model., 38 (2014), 3295–3313.
    [19] M. Gröschel, A. Keimer, G. Leugering, Z. Wang, Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity, SIAM J. Control Optim., 52 (2014), 2141–2163.
    [20] K. H. Karlsen, N. H. Risebro, J. D. Towers, $L^1$ stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients, Skr. K. Nor. Vidensk. Selsk., 3 (2003), 1–49.
    [21] A. Keimer, L. Pflug, Discontinuous nonlocal conservation laws and related discontinuous ODEs Existence, Uniqueness, Stability and Regularity, arXiv: 2110.10503, [Preprint], (2021), [cited 2022 Dec 28 ]. Available from: https://arXiv.org/pdf/2110.10503.pdf
    [22] C. Klingenberg, N. H. Risebro, Convex conservation laws with discontinuous coefficients. Existence, uniqueness and asymptotic behavior, Comm. Partial Differential Equations, 20 (1995), 1959–1990. https://doi.org/10.1080/03605309508821159 doi: 10.1080/03605309508821159
    [23] S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228–255.
    [24] E. Y. Panov, Erratum to: Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux, Arch. Ration. Mech. Anal., 196 (2010), 1077–1078. https://doi.org/10.1007/s00205-010-0303-0 doi: 10.1007/s00205-010-0303-0
    [25] E. Y. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux, Arch. Ration. Mech. Anal., 195 (2010), 643–673. https://doi.org/10.1007/s00205-009-0217-x doi: 10.1007/s00205-009-0217-x
    [26] B. Perthame, Transport equations in biology, Basel: Springer, 2007.
    [27] W. Shen, Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads, Netw. Heterog. Media, 14 (2019), 709–732. https://doi.org/10.3934/nhm.2019028 doi: 10.3934/nhm.2019028
    [28] A. Sopasakis, M. A. Katsoulakis, Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 66 (2006), 921–944.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1360) PDF downloads(89) Cited by(1)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog