In this paper, we design a novel class of arbitrarily high-order, linearly implicit and energy-preserving numerical schemes for solving the nonlinear dispersive equations. Based on the idea of the energy quadratization technique, the original system is firstly rewritten as an equivalent system with a quadratization energy. The prediction-correction strategy, together with the Partitioned Runge-Kutta method, is then employed to discretize the reformulated system in time. The resulting semi-discrete system is high-order, linearly implicit and can preserve the quadratic energy of the reformulated system exactly. Finally, we take the Camassa-Holm equation as a benchmark to show the efficiency and accuracy of the proposed schemes.
Citation: Jin Cui, Yayun Fu. A high-order linearly implicit energy-preserving Partitioned Runge-Kutta scheme for a class of nonlinear dispersive equations[J]. Networks and Heterogeneous Media, 2023, 18(1): 399-411. doi: 10.3934/nhm.2023016
In this paper, we design a novel class of arbitrarily high-order, linearly implicit and energy-preserving numerical schemes for solving the nonlinear dispersive equations. Based on the idea of the energy quadratization technique, the original system is firstly rewritten as an equivalent system with a quadratization energy. The prediction-correction strategy, together with the Partitioned Runge-Kutta method, is then employed to discretize the reformulated system in time. The resulting semi-discrete system is high-order, linearly implicit and can preserve the quadratic energy of the reformulated system exactly. Finally, we take the Camassa-Holm equation as a benchmark to show the efficiency and accuracy of the proposed schemes.
[1] | L. Brugnano, F. Iavernaro, J. Montijano, L. R$\rm \acute{a}$ndez, Spectrally accurate space-time solution of Hamiltonian PDEs, Numer. Algorithms., 81 (2019), 1183–1202. https://doi.org/10.1007/s11075-018-0586-z doi: 10.1007/s11075-018-0586-z |
[2] | R. Camassa, D. D. Holm, A integrable shallow water equation with peaked solutions, Phys. Rev. Lett., 71 (1993), 1661–1664. https://doi.org/10.1103/PhysRevLett.71.1661 doi: 10.1103/PhysRevLett.71.1661 |
[3] | R. Camassa, D. D. Holm, J. M. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1–33. https://doi.org/10.1093/rheumatology/33.1.31 doi: 10.1093/rheumatology/33.1.31 |
[4] | D. Cohen, B. Owren, X. Raynaud, Multi-symplectic integration of the Camassa-Holm equation, J. Comput. Phys., 227 (2008), 5492–5512. https://doi.org/10.1016/j.jcp.2008.01.051 doi: 10.1016/j.jcp.2008.01.051 |
[5] | D. Cohen, X. Raynaud, Geometric finite difference schemes for the generalized hyperelastic-rod wave equation, J. Comput. Appl. Math., 235 (2011), 1925–1940. https://doi.org/10.1016/j.cam.2010.09.015 doi: 10.1016/j.cam.2010.09.015 |
[6] | S. Eidnes, L. Li, Linearly implicit local and global energy-preserving methods for PDEs with a cubic Hamiltonian, SIAM J. Sci. Comput., 42 (2020), A2865–A2888. https://doi.org/10.1137/19M1272688 doi: 10.1137/19M1272688 |
[7] | S. Eidnes, L. Li, S. Sato, Linearly implicit structure-preserving schemes for Hamiltonian systems, J. Comput. Appl. Math., 387 (2021), 112489. https://doi.org/10.1016/j.cam.2019.112489 doi: 10.1016/j.cam.2019.112489 |
[8] | D. Furihata, T. Matsuo, Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations, London: Chapman & Hall/CRC, 2011. |
[9] | Y. Gong, Y. Wang, An energy-preserving wavelet collocation method for general multi-symplectic formulations of Hamiltonian PDEs, Commun. Comput. Phys., 20 (2016), 1313–1339. https://doi.org/10.4208/cicp.231014.110416a doi: 10.4208/cicp.231014.110416a |
[10] | Y. Gong, J. Zhao, Energy-stable Runge-Kutta schemes for gradient flow models using the energy quadratization approach, Appl. Math. Lett., 94 (2019), 224–231. https://doi.org/10.1016/j.aml.2019.02.002 doi: 10.1016/j.aml.2019.02.002 |
[11] | Y. Gong, J. Zhao, Q. Wang, Arbitrarily high-order linear energy stable schemes for gradient flow models, J. Comput. Phys., 419 (2020), 109610. https://doi.org/10.1016/j.jcp.2020.109610 doi: 10.1016/j.jcp.2020.109610 |
[12] | E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Berlin: Springer-Verlag, 2006. |
[13] | Q. Hong, Y. Gong, Z. Lv, Linear and Hamiltonian-conserving Fourier pseudo-spectral schemes for the Camassa-Holm equation, Appl. Math. Comput., 346 (2019), 86–95. https://doi.org/10.1016/j.amc.2018.10.043 doi: 10.1016/j.amc.2018.10.043 |
[14] | C. Jiang, Y. Gong, W. Cai, Y. Wang, A linearly implicit structure-preserving scheme for the Camassa-Holm equation based on multiple scalar auxiliary variables approach, J. Sci. Comput., 83 (2020), 1–20. |
[15] | C. Jiang, Y. Wang, Y. Gong, Arbitrarily high-order energy-preserving schemes for the Camassa-Holm equation, Appl. Numer. Math., 151 (2020), 85–97. https://doi.org/10.1016/j.apnum.2019.12.016 doi: 10.1016/j.apnum.2019.12.016 |
[16] | H. Liu, T. Pendleton, On invariant-preserving finite difference schemes for the Camassa-Holm equation and the two-component Camassa-Holm system, Commun. Comput. Phys., 19 (2016), 1015–1041. |
[17] | T. Matsuo, A Hamiltonian-conserving Galerkin scheme for the Camassa-Holm equation, J. Comput. Appl. Math., 234 (2010), 1258–1266. https://doi.org/10.1016/j.cam.2009.09.020 doi: 10.1016/j.cam.2009.09.020 |
[18] | T. Matsuo, H. Yamaguchi, An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations, J. Comput. Phys., 228 (2009), 4346–4358. https://doi.org/10.1016/j.jcp.2009.03.003 doi: 10.1016/j.jcp.2009.03.003 |
[19] | Y. Miyatake, T. Matsuo, A general framework for finding energy dissipative/conservative $H^1$-Galerkin schemes and their underlying $H^1$-weak forms for nonlinear evolution equations, BIT, 54 (2014), 1119–1154. |
[20] | B. N. Ryland, R. I. McLachlan, On multisymplecticity of Partitioned Runge-Kutta methods, SIAM J. Sci. Comput., 30 (2008), 1318–1340. |
[21] | J. Shen, J. Xu, Stabilized predictor-corrector schemes for gradient flows with strong anisotropic free energy, Commun. Comput. Phys., 24 (2018), 635–654. |
[22] | J. Shen, J. Xu, J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61 (2019), 474–506. https://doi.org/10.1137/070688468 doi: 10.1137/070688468 |
[23] | G. Sun, Symplectic partitioned Runge-Kutta methods, J. Comput. Math., 4 (1993), 365–372. |
[24] | Z. Sun, Y. Xing, On structure-preserving discontinuous Galerkin methods for Hamiltonian partial differential equations: energy conservation and multi-symplecticity, J. Comput. Phys., 419 (2020), 109662. |
[25] | G. B. Whitham, Linear and Nonlinear Waves. New York: John Wiley & Sons, 1974. |
[26] | Y. Xu, C. W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation, SIAM J. Numer. Anal., 46 (2008), 1998–2021. https://doi.org/10.1137/070679764 doi: 10.1137/070679764 |
[27] | X. Yang, J. Zhao, Q. Wang, Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, J. Comput. Phys., 333 (2017), 104–127. https://doi.org/10.1016/j.jcp.2016.12.025 doi: 10.1016/j.jcp.2016.12.025 |
[28] | Z. Zhang, Y. Gong, J. Zhao, A remark on the invariant energy quadratization (IEQ) method for preserving the original energy dissipation laws, Electron. Res. Arch., 30 (2022), 701–714. https://doi.org/10.3934/era.2022037 doi: 10.3934/era.2022037 |
[29] | J. Zhao, A revisit of the energy quadratization method with a relaxation technique, Appl. Math. Lett., 120 (2021), 107331. https://doi.org/10.1016/j.aml.2021.107331 doi: 10.1016/j.aml.2021.107331 |
[30] | H. Zhu, S. Song, Y. Tang, Multi-symplectic wavelet collocation method for the nonlinear Schrödinger equation and the Camassa-Holm equation, Comput. Phys. Commun., 182 (2011), 616–627. |