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Abstract: In this paper, we design a novel class of arbitrarily high-order, linearly implicit and energy-
preserving numerical schemes for solving the nonlinear dispersive equations. Based on the idea of the
energy quadratization technique, the original system is firstly rewritten as an equivalent system with
a quadratization energy. The prediction-correction strategy, together with the Partitioned Runge-Kutta
method, is then employed to discretize the reformulated system in time. The resulting semi-discrete
system is high-order, linearly implicit and can preserve the quadratic energy of the reformulated system
exactly. Finally, we take the Camassa-Holm equation as a benchmark to show the efficiency and
accuracy of the proposed schemes.

Keywords: Dispersive equation; Camassa-Holm equation; energy conservation; high-order linearly
implicit scheme; Partitioned Runge-Kutta method

1. Introduction

In this paper, we consider numerically a class of nonlinear dispersive equations [18] as follows:

ut − uxxt + κux + 3uux = γ(2uxuxx + uuxxx), u(x, 0) = u0(x), x ∈ R, t > 0, (1.1)

which models a variety of nonlinear dispersive phenomena depending on the parameters κ and γ. If
κ ≥ 0 and γ = 1, it reduces to the Camassa-Holm (CH) equation:

ut − uxxt + κux = 2uxuxx + uuxxx − 3uux, u(x, 0) = u0(x), x ∈ R, t > 0,

which characterizes unidirectional shallow water waves [2, 3], with u representing the height of the
fluid’s free surface above a flat bottom (or equivalently the fluid velocity in the x direction), and κ
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denoting the critical shallow water wave speed. The CH model possesses a bi-Hamiltonian structure,
is completely integrable, and has global solutions. Moreover, it has solitary waves. Compared with the
Korteweg-de Vries equation, the solitary waves become peaked in the limit of κ→0 (called “peakons”),
which characterize in physical context “wave-breaking” [25]. It is worth noting that the dispersive
Eq (1.1), by choosing different values of κ and γ [18], may turn into other physical models, such as the
Dai equation and regularized long wave equation.

The system (1.1) can be rewritten in an infinite-dimensional Hamiltonian system

ut = D
δH

δu
, (1.2)

whereD = (1 − ∂xx)−1∂x is a skew-adjoint operator, andH is the Hamiltonian energy functional

H(t) = −
1
2

∫ L

0
(κu2 + u3 + γuu2

x)dx. (1.3)

In this paper, we choose the periodic boundary condition

u(x, t) = u(x + L, t), x ∈ R, 0 < t ≤ T. (1.4)

Besides the energy conservation law H(t) = H(0), the dispersive system (1.1) further satisfies the
following mass and momentum conservation laws, respectively,

I(t) =

∫ L

0
udx = I(0), (1.5)

M(t) =
1
2

∫ L

0

(
u2 + (ux)2)dx =M(0). (1.6)

Over the past few decades, structure-preserving methods have come to the fore due to their superior
capability for long-term computation over traditional numerical methods [12]. In Ref. [4], Cohen et al.
first proposed multisymplectic finite difference schemes for the CH equation. Subsequently, their idea
was generalized to solve generalized hyperelastic-rod wave equation [5]. In particular, the wavelet col-
location method [30] and discontinuous Galerkin method [24] were further shown to be powerful tools
for constructing multisymplectic schemes of the nonlinear system (1.1). In addition to the geometric
structure, the nonlinear dispersive equation also satisfies three first integrals Eqs (1.3)–(1.6). It is well-
known that the first integral plays a key role in the numerical analyses for conservative systems. In
Ref. [18], Matsuo et al. first proposed an energy-preserving Galerkin scheme for the dispersive system
(1.1), and some numerical experiments for the CH equation and Dai equation were also investigated.
Moreover, numerical comparisons between the energy-preserving scheme and momentum-preserving
scheme have been conducted for the CH equation [17]. Further discussions on energy-preserving
Galerkin schemes can be found in Ref. [19]. Cohen et al. [5] then proposed a new energy-preserving
scheme based on the discrete gradient approach. Later on, Gong et al. [9] combined the averaged vec-
tor field method and wavelet collocation method to design an energy-preserving wavelet collocation
scheme, and some numerical comparisons with the multisymplectic wavelet collocation scheme [30]
were also carried out. Recently, Brugnano et al. [1] developed an energy-conserving and space-time
spectrally accurate method for Hamiltonian systems. However, almost all the mentioned schemes are
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fully implicit, which implies that the nonlinear iteration is inevitable at each time step, and thus it
may be time consuming. In Ref. [8], Furihata and Matsuo first proposed a linearly implicit energy-
preserving scheme for the CH model, in which only a linear system needs to be solved at each time
step. Thus it is computationally much cheaper than that of the fully implicit counterparts. Another
efficient strategy for constructing linearly implicit energy-preserving schemes of the nonlinear disper-
sive system (1.1) is based on the Kahan’s method and the polarised discrete gradient method. For more
details, please refer to Refs. [6, 7]. Moreover, some linearly implicit momentum-preserving schemes
can be founded in Refs. [13, 16]. Nevertheless, to our best knowledge, the mentioned linearly implicit
schemes are of only second-order accuracy in time at most.

It’s worth noting that Yang et al. [27] coined the idea of invariant energy quadratization (IEQ) to
develop energy stable schemes for solving the MBE model. Then Gong et al. [10] first generalized
their idea to construct arbitrarily high-order energy stable algorithms for gradient flow models. Sub-
sequently, the IEQ method [22] was further shown to be an efficient approach to design second-order
and linearly implicit energy-preserving schemes for the CH model [14, 15]. However, it is known that
the issue with IEQ /EQ method is that it only preserves the modified energy. Recently, this has been
partially addressed with a relaxation technique [29]. Moreover, for certain types of nonlinear systems,
numerical schemes based on the IEQ idea have been shown to preserve the original energy law [28].

In this paper, we aim to develop a class of high-order, linearly implicit and energy-preserving
schemes for the dispersive Eq (1.1). Based on the idea of the IEQ approach, the original model is
firstly reformulated into an equivalent system with a quadratic energy by introducing an auxiliary vari-
able. Inspired by the previous works [11, 21], we further apply the prediction-correction strategy and
the symplectic Partitioned Runge-Kutta (PRK) method [12, 23] for temporal discretization, and the
resulting semi-discrete system is linear, high-order accurate, and can preserve the quadratic energy of
the reformulated system exactly. Finally, various numerical tests are addressed to verify the efficiency
and accuracy of the proposed schemes.

2. Model reformulation using the EQ approach

In this section, we utilize the EQ idea to recast the model Eq (1.1) into an equivalent system,
which possesses a modified energy function of the new variable. The new system can provide an
elegant platform for developing high-order, linearly implicit and energy-preserving schemes. Here,
we consider the system (1.1) in a finite domain [0, L] × [0,T ], and define the L2 inner product as
( f , g) =

∫ L

0
f gdx,∀ f , g ∈ L2([0, L]).

Inspired by the EQ approach [27], we first introduce an auxiliary variable

q := q(x, t) = −
1
2

(κu + u2 + γu2
x),

and the Hamiltonian energy Eq (1.3) can be reformulated in a quadratic form rewritten as

H(t) = (u, q). (2.1)

According to the energy variational principle, we further reformulate the system (1.2) to the following
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equivalent form 
ut = D

(
q −

1
2
κu − u2 + γ(uxu)x

)
,

qt = −
1
2
κut − uut − γuxuxt,

(2.2)

with consistent initial conditions

u(x, 0) = u0(x), q(x, 0) = −
1
2

(
κu0 + u2

0 + γ(u0)2
x

)
.

It is readily to verify the energy conservation law. The integration by parts, together with the periodic
boundary condition and Eq (2.2), yields

dH
dt

=(ut, q)+(u, qt) = (q, ut)+
(
u,−

1
2
κut−uut−γuxuxt

)
=
(
q−

1
2
κu−u2+γ(uxu)x, ut

)
=
(
q −

1
2
κu − u2 + γ(uxu)x,D

(
q −

1
2
κu − u2 + γ(uxu)x

))
=0, (2.3)

where the skew-symmetry of the operatorD was used.

3. High-order, linearly implicit and energy-preserving scheme

In this section, we develop a class of high-precision, linearly implicit schemes for the reformulated
system (2.2) by combing the prediction-correction approach and the PRK method, then show that the
proposed schemes can exactly preserve the modified energy Eq (2.1). We here focus on temporal
semi-discretization, and denote tn = nτ, n = 0, 1, 2, · · · , where τ is the time step.

Inspired by the previous works in [11, 21], we employ the prediction-correction strategy, together
with the PRK method, to the system (2.2), and obtain the following prediction-correction method:

Scheme 3.1. Let bi, b̂i, ai j, âi j(i, j = 1, · · · , s) be real numbers and let ci =
∑s

j=1 ai j, ĉi =
∑s

j=1 âi j,
we apply a s-stage PRK method to the system (2.2) in time, and first compute the predicted values
un,∗

i , i = 1, · · · , s, as follows:
1. Prediction: for given (un, qn), we set un,0

i = un, qn,0
i = qn. Let M > 0 be a given integer, for m = 0 to

M − 1, we compute un,m+1
i , qn,m+1

i , kn,m+1
i , ln,m+1

i by using

un,m+1
i = un + τ

s∑
j=1

ai jkn,m+1
j ,

kn,m+1
i = D

(
qn,m+1

i −
1
2
κun,m+1

i −
(
un,m

i
)2

+ γ
(
(un,m

i )xun,m
i

)
x

)
,

qn,m+1
i = qn + τ

s∑
j=1

âi jln,m+1
j ,

ln,m+1
i = −

1
2
κkn,m+1

i − un,m
i kn,m

i − γ
(
un,m

i
)

x
(
kn,m

i
)

x, i = 1, · · · , s.
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Then, for the predicted value, we set un,∗
i = un,M

i , followed by the following correction step:
2. Correction: we further compute the intermediate values kn

i , l
n
i , u

n
i , q

n
i via

un
i = un + τ

s∑
j=1

ai jkn
j , qn

i = qn + τ

s∑
j=1

âi jln
j ,

kn
i = D

(
qn

i −
1
2
κun

i − un,∗
i un

i + γ((un,∗
i )xun

i )x

)
,

ln
i = −

1
2
κkn

i − un,∗
i kn

i − γ(un,∗
i )x(kn

i )x,

(3.1)

then (un+1, qn+1) is updated via

un+1 = un + τ

s∑
i=1

bikn
i , qn+1 = qn + τ

s∑
i=1

b̂iln
i .

Theorem 3.1. If the coefficients of Scheme 3.1 satisfy

bîai j + b̂ ja ji = bîb j f or i, j = 1, · · · , s,

bi = b̂i f or i = 1, · · · , s,
(3.2)

then it preserves the following semi-discrete energy conservation law

En+1 = En, n = 0, 1, · · · ,N − 1, (3.3)

where En = (un, qn).

Proof. It follows from the last two equalities of Eq (3.1) that

(kn
i , q

n
i ) + (un

i , l
n
i )

=(qn
i , k

n
i ) +

(
un

i ,−
1
2
κkn

i − un,∗
i kn

i − γ(un,∗
i )x(kn

i )x

)
=
(
qn

i −
1
2
κun

i − un,∗
i un

i + γ((un,∗
i )xun

i )x, kn
i

)
=
(
qn

i −
1
2
κun

i − un,∗
i un

i + γ((un,∗
i )xun

i )x,D
(
qn

i −
1
2
κun

i − un,∗
i un

i + γ((un,∗
i )xun

i )x

))
=0, i = 1, · · · , s,

where the skew-symmetry of D was used. This, together with the first two equalities of Eq (3.1) and
the condition (3.2), derives that

En+1−En =(un+1, qn+1) − (un, qn)

=
(
un + τ

s∑
i=1

bikn
i , q

n + τ

s∑
i=1

b̂iln
i

)
− (un, qn)

=τ

s∑
i=1

bi(kn
i , q

n) + τ

s∑
i=1

b̂i(un, ln
i
)

+ τ2
s∑

i=1

s∑
j=1

bîb j(kn
i , l

n
j)
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=τ

s∑
i=1

bi

(
kn

i , q
n
i −τ

s∑
j=1

âi jln
j

)
+ τ

s∑
i=1

b̂i

(
un

i −τ

s∑
j=1

ai jkn
j , l

n
i

)
+τ2

s∑
i=1

s∑
j=1

bîb j(kn
i , l

n
j)

=τ

s∑
i=1

bi(kn
i , q

n
i
)

+ τ

s∑
i=1

b̂i
(
un

i , l
n
i
)
− τ2

s∑
i=1

s∑
j=1

bîai j(kn
i , l

n
j
)

− τ2
s∑

i=1

s∑
j=1

b̂iai j
(
kn

j , l
n
i
)
+τ2

s∑
i=1

s∑
j=1

bîb j(kn
i , l

n
j)

=τ

s∑
i=1

bi

[
(kn

i , q
n
i ) + (un

i , l
n
i )
]

+ τ2
s∑

i=1

s∑
j=1

(bîb j − bîai j − b̂ ja ji)(kn
i , l

n
j) = 0,

which completes the proof. �

Table 1. Coefficients of the 3-stage Lobatto IIIA-IIIB pair.

IIIA:

0 0 0 0

1/2 5/24 1/3 −1/24

1 1/6 2/3 1/6

1/6 2/3 1/6

IIIB:

0 1/6 −1/6 0

1/2 1/6 1/3 0

1 1/6 5/6 0

1/6 2/3 1/6

Table 2. Coefficients of the 4-stage Lobatto IIIA-IIIB pair.

IIIA:

0 0 0 0 0

5−
√

5
10

11+
√

5
120

25−
√

5
120

25−13
√

5
120

−1+
√

5
120

5+
√

5
10

11−
√

5
120

25+13
√

5
120

25+
√

5
120

−1−
√

5
120

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

IIIB:

0 1
12

−1−
√

5
24

−1+
√

5
24 0

5−
√

5
10

1
12

25+
√

5
120

25−13
√

5
120 0

5+
√

5
10

1
12

25+13
√

5
120

25−
√

5
120 0

1 1
12

11−
√

5
24

11+
√

5
24 0

1
12

5
12

5
12

1
12

Remark 3.1. If the coefficients of a partitioned Runge-Kutta method satisfy Eq (3.2), it conserves
the quadratic invariant of the form Q(y, z) = y>Dz (see Ref. [12] for more details), thus the energy
conservation law Eq (3.3) stands naturally. Moreover, the coefficients of PRK methods of order 4
and 6 are explicitly given in Tables 1 and 2 (please see [20]), respectively. Hereafter, the prediction-
correction scheme 3.1, coupled with 4th- and 6th-order PRK methods, are denoted by 4th- and 6th-
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order LEQP1, respectively. Exchanging the order of Lobatto IIIA-IIIB pairs, we further derive 4th-
and 6th-order LEQP2 methods.

Remark 3.2. In general, a numerical algorithm, which can preserve the corresponding energy ex-
actly, is called an energy-preserving scheme. Thus, for the semi-discrete Scheme 3.1, it should be
careful to choose a suitable spatial discretization, and we need to consider the following aspects:
(i) It should preserve the skew-symmetry of the operator D; (ii) The accuracy of spatial discretiza-
tion should be comparable to that of temporal counterpart. These, together with the periodic boundary
condition (1.4), enlighten us to use the Fourier pseudo-spectral method for spatial discretization, which
allows the application of FFT technique. In fact, the derived full discrete schemes also preserve the
corresponding full discrete energy conservation law. The details are omitted here.

Remark 3.3. To our best knowledge, no theoretical result is found on the choice of iteration step
M. From our numerical experience, the 4th-order LEQP methods can reach fourth-order accuracy
by choosing M = 3, while the 6th-order LEQP methods can reach sixth-order accuracy by choosing
M = 5.

4. Numerical experiments

In this section, some numerical tests are carried out to investigate the accuracy, efficiency and
invariants-preservation of the proposed schemes. For brevity, we only take the CH equation as a bench-
mark model for illustration purposes, and the corresponding prediction-correction schemes can be di-
rectly obtained by setting κ = 0, γ = 1 in Scheme 3.1. As shown above, the proposed scheme, which
preserves the modified energy, could reach arbitrary high-order accuracy in time. Some comparisons
would be made with the linearized Crank-Nicolson (IEQ-LCN) method [15] and energy-preserving
Fourier pseudo-spectral (EPFP) method [9], where the wavelet collocation discretization in space is
substituted by the standard Fourier pseudo-spectral method. In the following, the convergence rate in
time is computed by the following formula

Rate =
ln

(
error1/error2)

ln(τ1/τ2)
,

where τl, errorl (l = 1, 2) are time steps and errors with time step τl, respectively.
Example 4.1 We first consider the CH equation as follows

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0, (x, t) ∈ Ω × (0,T ],
u(x, 0) = u0(x), x ∈ Ω,

(4.1)

with the following conservation laws

M(t) =

∫
Ω

udx, H(t) = −
1
2

∫
Ω

(u3 + uu2
x)dx,

where u0(x) = sin(x),Ω = [0, 2π], andM,H denote the mass and Hamiltonian energy, respectively.
Moreover, the numerical “exact” solution is obtained by 6th-order LEQP1 scheme with small time step
τ = 0.001 and mesh size h = 2π/128. Numerical results involving accuracy test are shown in Table 3.
As is observed that the 4th- and 6th-order LEQP methods arrive at fourth- and sixth-order convergence
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rates in time, respectively. What’s more, they perform obviously more accurate than the other second-
order schemes, while the LEQP1 schemes seem a bit more accurate than the corresponding LEQP2
schemes for both 4th- and 6th-order cases.

Table 3. Temporal errors of the numerical solutions with T = 1,N = 128.

τ = 1/30 τ = 1/60 τ = 1/100 τ = 1/120

IEQ-LCN [15] ‖e‖∞,h 2.4481e-003 5.8420e-004 2.0830e-004 1.4438e-004
Rate * 2.06 2.02 2.01
‖e‖h 1.5831e-003 3.9367e-004 1.4180e-004 9.8508e-005
Rate * 2.01 2.00 2.00

EPFP [9] ‖e‖∞,h 4.8232e-004 1.2089e-004 4.3546e-004 3.0243e-005
Rate * 2.00 2.00 2.00
‖e‖h 6.1360e-004 1.5380e-004 5.5401e-005 3.8477e-005
Rate * 2.00 2.00 2.00

4th-order LEQP1 ‖e‖∞,h 1.9789e-007 1.2646e-008 1.6738e-009 8.1237e-010
Rate * 3.97 3.96 3.96
‖e‖h 8.6448e-008 5.7624e-009 7.7034e-010 3.7448e-010
Rate * 3.91 3.94 3.96

4th-order LEQP2 ‖e‖∞,h 4.8122e-007 3.1072e-008 4.0957e-009 1.9840e-009
Rate * 3.95 3.97 3.98
‖e‖h 2.2853e-007 1.4356e-008 1.8679e-009 9.0179e-010
Rate * 3.99 3.99 3.99

6th-order LEQP1 ‖e‖∞,h 2.9625e-010 4.1179e-012 1.8738e-013 6.2783e-014
Rate * 6.16 6.04 6.00
‖e‖h 2.3575e-010 2.6531e-012 1.1785e-013 3.9568e-014
Rate * 6.47 6.09 5.99

6th-order LEQP2 ‖e‖∞,h 8.9943e-010 1.0775e-011 4.5380e-013 1.4805e-013
Rate * 6.38 6.20 6.14
‖e‖h 4.9226e-010 5.0410e-012 1.9006e-013 6.0599e-014
Rate * 6.61 6.42 6.26

In Figure 1a, we show the L∞-norm solution error versus the execution time for different schemes,
and it can be clearly seen that the proposed high-order methods perform more effective than other
second-order counterparts. Subsequently, Figures 1b–d investigate the errors of invariants of different
schemes in the long-time behaviour, where we choose τ = 1/3000,N = 1/128.

As illustrated in Figure 1b, all schemes conserve the mass exactly. Though the proposed schemes
can not preserve the exact Hamiltonian energy theoretically, the corresponding numerical errors can be
preserved up to machine errors as demonstrated in Figure 1c. Moreover, Figure 1d illustrates that the
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proposed schemes preserve the quadratic energy precisely, which confirms the preceding theoretical
analysis.
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Figure 1. Comparisons of different numerical schemes.

Example 4.2 In this example, we further apply the proposed method to simulate the three-peakon
interaction of the CH equation with the initial condition [26]

u0(x) = φ1(x) + φ2(x) + φ3(x),

where

φi(x) =


ci

cosh(L/2)
cosh(x − xi), |x − xi| ≤ L/2,

ci

cosh(L/2)
cosh(L − (x − xi)), |x − xi| > L/2,

i = 1, 2, 3. (4.2)

The corresponding parameters are taken as c1 = 2, c2 = 1, c3 = 0.8, x1 = −5, x2 = −3, x3 = −1, L = 30,
and the computational domain is Ω = [0, L] with a periodic boundary condition.
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In Figure 2a, we show the dynamics of three-peakon interaction computed by 4th-order LEQP1
scheme, and other LEQP schemes perform similarly. It is clearly seen that the moving peak interaction
is resolved well. The taller wave overtakes the shorter counterparts, and afterwards they still keep
their original shapes and velocities. Meanwhile, we study the invariants of the proposed schemes in
long-time simulations. As demonstrated in Figures 2b–d, the proposed schemes preserve the mass
and quadratic energy precisely, and perform more accurate than the IEQ-LCN method in terms of
Hamiltonian energy.

(a) Three-peakon interaction with N =2048, τ=0.0001
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Figure 2. Three-peakon simulation and comparisons of different numerical schemes.

5. Concluding remarks

In this paper, we develop a class of high-order, linearly implicit numerical algorithms, which can
preserve the modified energy exactly, for the nonlinear dispersive equation. The proposed schemes,
which can reach arbitrarily high-order accuracy in time, are easy to implement and computationally
efficient. The key strategy lies in the application of the prediction-correction technique and the PRK
method. Compared with the second-order linearly implicit structure-preserving schemes, the proposed
methods perform more accurate and more efficient in longtime computations, and they can be directly
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applied to some relevant background problems, such as the Dai equation and regularized long wave
equation in high dimensions.
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