Research article Special Issues

Adaptive step size controllers based on Runge-Kutta and linear-neighbor methods for solving the non-stationary heat conduction equation

  • Received: 04 January 2023 Revised: 26 February 2023 Accepted: 02 March 2023 Published: 29 March 2023
  • We systematically test families of explicit adaptive step size controllers for solving the diffusion or heat equation. After discretizing the space variables as in the conventional method of lines, we are left with a system of ordinary differential equations (ODEs). Different methods for estimating the local error and techniques for changing the step size when solving a system of ODEs were suggested previously by researchers. In this paper, those local error estimators and techniques are used to generate different types of adaptive step size controllers. Those controllers are applied to a system of ODEs resulting from discretizing diffusion equations. The performances of the controllers were compared in the cases of three different experiments. The first and the second system are heat conduction in homogeneous and inhomogeneous media, while the third one contains a moving heat source that can correspond to a welding process.

    Citation: Mahmoud Saleh, Endre Kovács, Nagaraja Kallur. Adaptive step size controllers based on Runge-Kutta and linear-neighbor methods for solving the non-stationary heat conduction equation[J]. Networks and Heterogeneous Media, 2023, 18(3): 1059-1082. doi: 10.3934/nhm.2023046

    Related Papers:

  • We systematically test families of explicit adaptive step size controllers for solving the diffusion or heat equation. After discretizing the space variables as in the conventional method of lines, we are left with a system of ordinary differential equations (ODEs). Different methods for estimating the local error and techniques for changing the step size when solving a system of ODEs were suggested previously by researchers. In this paper, those local error estimators and techniques are used to generate different types of adaptive step size controllers. Those controllers are applied to a system of ODEs resulting from discretizing diffusion equations. The performances of the controllers were compared in the cases of three different experiments. The first and the second system are heat conduction in homogeneous and inhomogeneous media, while the third one contains a moving heat source that can correspond to a welding process.



    加载中


    [1] E. Kovács, Á. Nagy, M. Saleh, A set of new stable, explicit, second order schemes for the non-stationary heat conduction equation, Mathematics, 9 (2021), 2284. https://doi.org/10.3390/math9182284 doi: 10.3390/math9182284
    [2] E. Kovács, A class of new stable, explicit methods to solve the non‐stationary heat equation, Numer Methods Partial Differ Equ, 37 (2021), 2469–2489. https://doi.org/10.1002/num.22730 doi: 10.1002/num.22730
    [3] E. Kovács, Á. Nagy, M. Saleh, A new stable, explicit, third‐order method for diffusion‐type problems, Adv Theory Simul, 5 (2022), 2100600. https://doi.org/10.1002/adts.202100600 doi: 10.1002/adts.202100600
    [4] S. Savović, B. Drljača, A. Djordjevich, A comparative study of two different finite difference methods for solving advection–diffusion reaction equation for modeling exponential traveling wave in heat and mass transfer processes, Ricerche di Matematica, 71 (2022), 245–252. https://doi.org/10.1007/s11587-021-00665-2 doi: 10.1007/s11587-021-00665-2
    [5] S. Conde, I. Fekete, J. N. Shadid, Embedded error estimation and adaptive step-size control for optimal explicit strong stability preserving Runge--Kutta methods, [Preprint], (2018)[cited 2023 Mar 29 ]. Available from: https://doi.org/10.48550/arXiv.1806.08693.
    [6] L. F. Shampine, Error estimation and control for ODEs, J Sci Comput, 25 (2005), 3–16. https://doi.org/10.1007/bf02728979 doi: 10.1007/s10915-004-4629-3
    [7] L. F. Shampine, H. A. Watts, Comparing error estimators for Runge-Kutta methods, 25 (1971), 445–455.
    [8] R. H. Merson, An operational methods for study of integration processes, Weapon Research Establishment Conference on Data Processing, 1 (1957), 110–125.
    [9] L. F. Shampine, Local extrapolation in the solution of ordinary differential equations, Math Comput, 27 (1973), 91. https://doi.org/10.2307/2005249 doi: 10.1090/S0025-5718-1973-0331803-1
    [10] J. C. Butcher, P. B. Johnston, Estimating local truncation errors for Runge-Kutta methods, J Comput Appl Math, 45 (1993), 203–212. https://doi.org/10.1016/0377-0427(93)90275-G doi: 10.1016/0377-0427(93)90275-G
    [11] J. H. Verner, Explicit Runge–Kutta methods with estimates of the local truncation error, SIAM J Numer Anal, 15 (1978), 772–790. https://doi.org/10.1137/0715051 doi: 10.1137/0715051
    [12] R. England, Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations, Comput J, 12 (1969), 166–170. https://doi.org/10.1093/comjnl/12.2.166 doi: 10.1093/comjnl/12.2.166
    [13] A. S. Chai, Error estimate of a fourth-order Runge-Kutta method with only one initial derivative evaluation, Proceedings of the April 30–May 2, 1968, spring joint computer conference, 1968,467. https://doi.org/10.1145/1468075.1468144 doi: 10.1145/1468075.1468144
    [14] R. E. Scraton, Estimation of the truncation error in Runge-Kutta and allied processes, Comput J, 7 (1964), 246–248. https://doi.org/10.1093/comjnl/7.3.246 doi: 10.1093/comjnl/7.3.246
    [15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes The Art of Scientific Computing, Cambridge: Cambridge University Press, 2007.
    [16] K. Gustafsson, M. Lundh, G. Söderlind, API stepsize control for the numerical solution of ordinary differential equations, BIT, 28 (1988), 270–287. doi: 10.1007/BF01934091
    [17] K. Gustafsson, Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods, ACM Trans Math Softw, 17 (1991), 533–554. doi: 10.1145/210232.210242
    [18] G. Söderlind, Automatic control and adaptive time-stepping, Numer Algorithms, 31 (2002), 281–310. doi: 10.1023/A:1021160023092
    [19] G. Söderlind, Digital filters in adaptive time-stepping, ACM Trans Math Softw, 29 (2003), 1–26. doi: 10.1145/641876.641877
    [20] G. Söderlind, L. Wang, Adaptive time-stepping and computational stability, J Comput Appl Math, 185 (2006), 225–243. https://doi.org/10.1016/j.cam.2005.03.008 doi: 10.1016/j.cam.2005.03.008
    [21] T. Ritschel, Numerical Methods For Solution of Differential Equations, (Denmark), Doctoral Thesis of Technical University of Denmark, Lyngby, 2013.
    [22] E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I, Berlin: Springer, 1993. https://doi.org/10.1007/978-3-540-78862-1
    [23] I. Fekete, S. Conde, J. N. Shadid, Embedded pairs for optimal explicit strong stability preserving Runge–Kutta methods, J Comput Appl Math, 412 (2022), 114325. https://doi.org/10.1016/j.cam.2022.114325 doi: 10.1016/j.cam.2022.114325
    [24] David F. Griffiths and Desmond J. Higham, Numerical methods for ordinary differential equations: initial value problems, London: Springer, 2010.
    [25] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical recipes in C : the art of scientific computing, Cambridge: Cambridge University Press, 1992.
    [26] Á. Nagy, J. Majár, E. Kovács, Consistency and convergence properties of 20 recent and old numerical schemes for the diffusion equation, Algorithms, 15 (2022), 425. https://doi.org/10.3390/a15110425. doi: 10.3390/a15110425
    [27] J. Feldman, A. Rechnitzer, E. Yeager, D.3: Variable Step Size Methods, In: CLP-2 Integral Calculus, (2021), 91843. Available from: https://math.libretexts.org/@go/page/91843.pdf.
    [28] S. Essongue, Y. Ledoux, A. Ballu, Speeding up mesoscale thermal simulations of powder bed additive manufacturing thanks to the forward Euler time-integration scheme: A critical assessment, Finite Elem Anal Des, 211 (2022), 103825. https://doi.org/10.1016/j.finel.2022.103825 doi: 10.1016/j.finel.2022.103825
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1991) PDF downloads(90) Cited by(1)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog