Citation: Jerzy Klamka, Helmut Maurer, Andrzej Swierniak. Local controllability and optimal control for\newline a model of combined anticancer therapy with control delays[J]. Mathematical Biosciences and Engineering, 2017, 14(1): 195-216. doi: 10.3934/mbe.2017013
[1] | [ G. Bergers,D. Hanahan, Modes of resistance to anti-angiogenic therapy, Nature Reviews Cancer, 8 (2008): 592-603. |
[2] | [ A. C. Billioux, U. Modlich and R, Bicknell, The Cancer Handbook: Angiogenesis, 2nd Edition, John Wiley & Sons, 2007. |
[3] | [ R. F. Brammer, Controllability in linear autonomous systems with positive controllers, SIAM J. Control, 10 (1972): 339-353. |
[4] | [ C. Büskens, Optimierungsmethoden und Sensitivitätsanalyse Für Optimale Steuerprozesse mit Steuer-und Zustands-Beschränkungen, PhD thesis, Institut für Numerische Mathematik, Universität Münster, Germany, 1998. |
[5] | [ C. Büskens,H. Maurer, SQP methods for solving optimal control problems with control and state constraints: Adjoint variables, sensitivity analysis and real time control, J. Comput. Appl. Math., 120 (2000): 85-108. |
[6] | [ J. M. Collins,D. S. Zaharko,R. L. Dedrick,B. A. Chabner, Potential roles for preclinical pharmacology in phase Ⅰ clinical trials, Cancer Treat. Rep., 70 (1986): 73-80. |
[7] | [ V. T. Devita and J. Folkman, Cancer: Principles and Practice of Oncology, 6th edition, Lippincott Williams & Wilkins Publishers, 2001. |
[8] | [ M. Dolbniak and A. Swierniak, Comparison of simple models of periodic protocols for combined anticancer therapy, Computational and Mathematical Methods in Medicine, 2013 (2013), Article ID 567213, 11pp. |
[9] | [ A. D'Onofrio,A. Gandolfi, Tumor eradication by anti-angiogenic therapy: Analysis and extensions of the model by Hahnfeldt et al. (1999), Mathematical Biosciences, 191 (2004): 159-184. |
[10] | [ A. D'Onofrio,A. Gandolfi, A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy, Mathematical Medicine and Biology, 26 (2009): 63-95. |
[11] | [ A. D'Onofrio,A. Gandolfi, Chemotherapy of vascularised tumors: Role of vessel density and the effect of vascular "pruning", Journal of Theoretical Biology, 264 (2010): 253-265. |
[12] | [ A. D'Onofrio,U. Ledzewicz,H. Maurer,H. Schaettler, On optimal delivery of combination therapy for tumors, Math. Biosciences, 222 (2009): 13-26. |
[13] | [ A. Ergun,K. Camphausen,L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors, Bulletin of Mathematical Biology, 65 (2003): 407-424. |
[14] | [ J. Folkman, Anti-angiogenesis: New concept for therapy of solid tumors, Annals of Surgery, 175 (1972): 409-416. |
[15] | [ J. Folkman, Tumor angiogenesis therapeutic implications, New England Journal of Medicine, 285 (1971): 1182-1186. |
[16] | [ R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Duxbury Press, Brooks-Cole Publishing Company, 1993. |
[17] | [ G. Gasparini,R. Longo,M. Fanelli,B. A. Teicher, Combination of anti-angiogenic therapy with other anticancer therapies: Results, challenges, and open questions, Journal of Clinical Oncology, 23 (2005): 1295-1311. |
[18] | [ L. Göllmann,H. Maurer, Theory and applications of optimal control problems with multiple time-delays, Special Issue on Computational Methods for Optimization and Control, J. of Industrial and Management Optimization, 10 (2014): 413-441. |
[19] | [ P. Hahnfeldt,D. Panigrahy,J. Folkman,L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, 59 (1999): 4770-4775. |
[20] | [ D. Hanahan,R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144 (2011): 646-674. |
[21] | [ R. S. Kerbel, Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents, BioEssays, 13 (1991): 31-36. |
[22] | [ M. Kimmel and A. Swierniak, Control theory approach to cancer chemotherapy: Benefiting from phase dependence and overcoming drug resistance, Tutorials in Mathematical Biosciences Ⅲ: Cell Cycle, Proliferation, and Cancer (A. Friedman-Ed. ), Lecture Notes in Mathematics, Mathematical Biosciences Subseries, Springer, Heidelberg, 1872 (2006), 185-221. |
[23] | [ J. Klamka, Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1991. |
[24] | [ J. Klamka, Constrained controllability of nonlinear systems, J. Math. Anal. Appl., 201 (1996): 365-374. |
[25] | [ U. Ledzewicz,H. Schaettler, Anti-angiogenic therapy in cancer treatment as an optimal control problem, SIAM Journal on Control and Optimization, 46 (2007): 1052-1079. |
[26] | [ U. Ledzewicz,H. Schaettler, Analysis of optimal controls for a mathematical model of tumor anti-angiogenesis, Optimal Control Applications and Methods, 29 (2008): 41-57. |
[27] | [ U. Ledzewicz,H. Schaettler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis, J. Theor. Biol., 252 (2008): 295-312. |
[28] | [ U. Ledzewicz,H. Schaettler, On the optimality of singular controls for a class of mathematical models for tumor antiangiogenesis, Discrete and Continuous Dynamical Systems, Series B, 11 (2009): 691-715. |
[29] | [ U. Ledzewicz,J. Marriott,H. Maurer,H. Schaettler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment, Mathematical Medicine and Biology, 27 (2010): 157-179. |
[30] | [ U. Ledzewicz, H. Maurer and H. Schaettler, Minimizing tumor volume for a mathematical model of anti-angiogenesis with linear pharmacokinetics, in Recent Advances in Optimization and its Applications in Engineering, 267-276, Springer, 2010. |
[31] | [ U. Ledzewicz,H. Maurer,H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor antiangiogenesis in combination with chemotherapy, Mathematical Biosciences and Engineering, 8 (2011): 307-323. |
[32] | [ J. Ma,D. J. Waxman, Combination of antiangiogenesis with chemotherapy for more effective cancer treatment, Molecular Cancer Therapeutics, 7 (2008): 3670-3684. |
[33] | [ H. Maurer,C. Büskens,J. H. R. Kim,C. Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang control, Optimal Control Appl. Meth., 26 (2005): 129-156. |
[34] | [ N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control, SIAM Advances in Design and Control, Vol. DC 24, SIAM Publications, Philadelphia, 2012. |
[35] | [ M. J. Piotrowska,U. Forys, Analysis of the Hopf bifurcation for the family of angiogenesis models, Journal of Mathematical Analysis and Applications, 382 (2011): 180-203. |
[36] | [ R. K. Sachcs,L. R. Hlatky,P. Hahnfeldt, Simple ODE models of tumor growth and anti-angiogenic or radiation treatment, Math. Comput. Mod, 33 (2001): 1297-1305. |
[37] | [ H. Schättler and U. Ledzewicz, Geometric Optimal Control. Theory, Methods and Examples, Springer, New York, 2012. |
[38] | [ A. Swierniak, Direct and indirect control of cancer populations, Bulletin of the Polish Academy of Sciences: Technical Sciences, 56 (2008): 367-378. |
[39] | [ A. Swierniak, Modelling combined anti-angiogenic and chemo-therapies, in: Proc. 14th National Conf. Appl. Math. Biol Medicine, Leszno, 2008,127-133. |
[40] | [ A. Swierniak, Comparison of six models of anti-angiogenic therapy, Applicationes Mathematicae, 36 (2009): 333-348. |
[41] | [ A. Swierniak, A. d'Onofrio and A. Gandolfi, Control problems related to tumor angiogenesis, Proc. of the 32nd Annual Conference on IEEE Industrial Electronics (IECON '06), Paris, 677-681, November 2006. |
[42] | [ A. Swierniak,J. Klamka, Local controllability of models of combined anticancer therapy with delays in control, Math. Model. Nat. Phenom., 9 (2014): 216-226. |
[43] | [ L. S. Teng,K. T. Jin,K. F. He,H. H. Wang,J. Cao,D. C. Yu, Advances in combination of anti-angiogenic agents targeting VEGF-binding and conventional chemotherapy and radiation for cancer treatment, Journal of the Chinese Medical Association, 73 (2010): 281-288. |
[44] | [ The Internet Drug Index, (2015), http://www.rxlist.com/avastin-drug/clinical-pharmacology.html |
[45] | [ US National Institutes of Health, Clinical Trials, (last updated June 2015), http://www.clinicaltrials.gov/ct2/show/NCT00520013 |
[46] | [ A. Wächter,L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006): 25-57. |