Citation: Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays[J]. Mathematical Biosciences and Engineering, 2017, 14(1): 321-337. doi: 10.3934/mbe.2017021
[1] | [ R. Bellmann and K. L. Cooke, Differential-Difference Equations Academic Press, New York, 1963. |
[2] | [ B. Buonomo,M. Cerasuolo, The effect of time delay in plant-pathogen interactions with host demography, Math. Biosci. Eng., 12 (2015): 473-490. |
[3] | [ C. Büskens, Optimierungsmethoden und Sensitivitätsanalyse Für Optimale Steuerprozesse mit Steuer-und Zustands-Beschränkungen PhD thesis, Institut für Numerische Mathematik, Universität Münster, Germany, 1998. |
[4] | [ C. Büskens,H. Maurer, SQP methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control, J. Comput. Appl. Math., 120 (2000): 85-108. |
[5] | [ C. Castillo-Chavez,Z. Feng, To treat or not to treat: The case of tuberculosis, J. Math. Biol., 35 (1997): 629-656. |
[6] | [ T. Cohen,M. Murray, Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness, Nat. Med., 10 (2004): 1117-1121. |
[7] | [ R. V. Culshaw,S. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells, Math. Biosci., 165 (2000): 27-39. |
[8] | [ J. Dieudonné, Foundations of Modern Analysis Academic Press, New York, 1960. |
[9] | [ R. Fourer,D. M. Gay,B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Duxbury Press, Brooks-Cole Publishing Company, null (1993). |
[10] | [ L. Göllmann,H. Maurer, Theory and applications of optimal control problems with multiple time-delays, Special Issue on Computational Methods for Optimization and Control, J. Ind. Manag. Optim., 10 (2014): 413-441. |
[11] | [ M. G. M. Gomes,P. Rodrigues,F. M. Hilker,N. B. Mantilla-Beniers,M. Muehlen,A. C. Paulo,G. F. Medley, Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions, J. Theoret. Biol., 248 (2007): 608-617. |
[12] | [ J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations Springer-Verlag, New York, 1993. |
[13] | [ H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000): 599-653. |
[14] | [ Y. Kuang, Delay Differential Equations with Applications in Population Dynamics Academic Press, San Diego, 1993. |
[15] | [ M. L. Lambert,P. Van der Stuyft, Delays to tuberculosis treatment: Shall we continue to blame the victim?, Trop. Med. Int. Health, 10 (2005): 945-946. |
[16] | [ H. Maurer,C. Büskens,J.-H. R. Kim,Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang controls, Optimal Control Appl. Methods, 26 (2005): 129-156. |
[17] | [ N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control SIAM Advances in Design and Control, Vol. DC 24, SIAM Publications, Philadelphia, 2012. |
[18] | [ P. Rodrigues,C. Rebelo,M. G. M. Gomes, Drug resistance in tuberculosis: A reinfection model, Theor. Popul. Biol., 71 (2007): 196-212. |
[19] | [ P. Rodrigues,C. J. Silva,D. F. M. Torres, Cost-effectiveness analysis of optimal control measures for tuberculosis, Bull. Math. Biol., 76 (2014): 2627-2645. |
[20] | [ H. Schättler,U. Ledzewicz,H. Maurer, Sufficient conditions for strong local optimality in optimal control problems with $L^2$-type objectives and control constraints, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014): 2657-2679. |
[21] | [ L. F. Shampine,S. Thompson, Solving DDEs in MATLAB, Appl. Numer. Math., 37 (2001): 441-458. |
[22] | [ C. J. Silva,D. F. M. Torres, Optimal control strategies for tuberculosis treatment: A case study in Angola, Numer. Algebra Control Optim., 2 (2012): 601-617. |
[23] | [ C. J. Silva,D. F. M. Torres, Optimal Control of Tuberculosis: A Review, Dynamics, Games and Science, CIM Series in Mathematical Sciences, 1 (2015): 701-722. |
[24] | [ C. T. Sreeramareddy, K. V. Panduru, J. Menten and J. Van den Ende, Time delays in diagnosis of pulmonary tuberculosis: A systematic review of literature BMC Infectious Diseases 9 (2009), p91. |
[25] | [ D. G. Storla, S. Yimer and G. A. Bjune, A systematic review of delay in the diagnosis and treatment of tuberculosis BMC Public Health 8 (2008), p15. |
[26] | [ K. Toman, Tuberculosis case-finding and chemotherapy: Questions and answers, WHO Geneva, 1979. |
[27] | [ P. W. Uys, M. Warren and P. D. van Helden, A threshold value for the time delay to TB diagnosis PLoS ONE 2(2007), e757. |
[28] | [ P. van den Driessche,J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosc., 180 (2002): 29-48. |
[29] | [ H. Yang,J. Wei, Global behaviour of a delayed viral kinetic model with general incidence rate, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015): 1573-1582. |
[30] | [ A. Wächter,L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106 (2006): 25-57. |
[31] | [ Systematic Screening for Active Tuberculosis --Principles and Recommendations Geneva, World Health Organization, 2013, http://www.who.int/tb/tbscreening/en/. |
[32] | [ Global Tuberculosis Report 2014 Geneva, World Health Organization, 2014, http://www.who.int/tb/publications/global_report/en/. |
[33] | [ Centers for Disease and Control Prevention http://www.cdc.gov/tb/topic/treatment/ltbi.htm |