Research article

American call option pricing under the KoBoL model with Poisson jumps

  • Received: 08 October 2024 Revised: 11 January 2025 Accepted: 07 February 2025 Published: 20 February 2025
  • In the case of the KoBoL model with the jump process (KoBoLJ), the pricing problem of American call option is investigated in this paper. The pricing model of this kind of financial derivatives is a free boundary problem with a fractional-partial-integro-differential equation (FPIDE). In fact, it is impossible to obtain the analytical solution of the mathematical model. Hence, the mathematical model with free boundary should be changed as a fixed one and then the numerical scheme is set to solve the transformed model. In the proposed approach, we proved that the American call option values obtained by the current method are not lower than the intrinsic values of this option. Moreover the PCGNR method with the fast Fourier transform (FFT) technique was employed to handle the semi-globalness of the fractional-integro operator. The significant effects of the parameters in our model on the optimal exercise price curve ware analyzed.

    Citation: Beng Feng, Congyin Fan. American call option pricing under the KoBoL model with Poisson jumps[J]. Networks and Heterogeneous Media, 2025, 20(1): 143-164. doi: 10.3934/nhm.2025009

    Related Papers:

  • In the case of the KoBoL model with the jump process (KoBoLJ), the pricing problem of American call option is investigated in this paper. The pricing model of this kind of financial derivatives is a free boundary problem with a fractional-partial-integro-differential equation (FPIDE). In fact, it is impossible to obtain the analytical solution of the mathematical model. Hence, the mathematical model with free boundary should be changed as a fixed one and then the numerical scheme is set to solve the transformed model. In the proposed approach, we proved that the American call option values obtained by the current method are not lower than the intrinsic values of this option. Moreover the PCGNR method with the fast Fourier transform (FFT) technique was employed to handle the semi-globalness of the fractional-integro operator. The significant effects of the parameters in our model on the optimal exercise price curve ware analyzed.



    加载中


    [1] R. Geske, H. E. Johnson, The American put option valued analytically, J. Finance, 5 (1984), 1511–1524. http://dx.doi.org/10.1111/j.1540-6261.1984.tb04921.x doi: 10.1111/j.1540-6261.1984.tb04921.x
    [2] N. T. Le, S. P. Zhu, X. Lu, An integral equation approach for the valuation of American-style down and out calls with rebates, Comput. Math. Appl., 71 (2016), 544–564. https://doi.org/10.1016/j.camwa.2015.12.013 doi: 10.1016/j.camwa.2015.12.013
    [3] S. P. Zhu, X. J. He, X. P. Lu, A new integral equation formulation for American put options, Quant. Finance, 18 (2018), 483–490. https://doi.org/10.1080/14697688.2017.1348617 doi: 10.1080/14697688.2017.1348617
    [4] T. B. Gyulov, M. N. Koleva, Penalty method for indifference pricing of American option in a liquidity switching market, Appl. Numer. Math., 172 (2022), 525–545. https://doi.org/10.1016/j.apnum.2021.11.002 doi: 10.1016/j.apnum.2021.11.002
    [5] J. Xiang, X. Wang, Quasi-Monte Carlo simulation for American option sensitivities, J. Comput. Appl. Math., 413 (2022), 114268. https://doi.org/10.1016/j.cam.2022.114268 doi: 10.1016/j.cam.2022.114268
    [6] D. W. Wang, S. Kirill, C. Christina, A high-order deferred correction method for the solution of free boundary problems using penalty iteration, with an application to American option pricing, J. Comput. Appl. Math., 432 (2023), 115272. https://doi.org/10.1016/j.cam.2023.115272 doi: 10.1016/j.cam.2023.115272
    [7] A. Elettra, A. Rossella, Pricing multidimensional American options, Int. J. Financ. Stud., 11 (2023), 51. http://doi.org/10.3390/IJFS11010051 doi: 10.3390/IJFS11010051
    [8] Q. Zhang, Q. Wang, H. M. Song, Y. L. Hao, Primal-dual active set method for evaluating American put options on zero-coupon bonds, Comput. Appl. Math., 43 (2024), 213–230. http://doi.org/10.1007/S40314-024-02729-Z doi: 10.1007/S40314-024-02729-Z
    [9] L. B. Li, Z. S. Wu, Defaultable perpetual American put option in a last passage time model, Stat. Probab. Lett., 209 (2024), 110018. https://doi.org/10.1016/j.spl.2023.110018 doi: 10.1016/j.spl.2023.110018
    [10] D. S. Bates, Dollar jump fears, 1984–1992: Distributional abnormalities implicit in currency futures options, J. Int. Money Finance, 15 (1996), 65–93. https://doi.org/10.1016/0261-5606(95)00039-9 doi: 10.1016/0261-5606(95)00039-9
    [11] P. Jorion, On jump processes in the foreign exchange and stock markets, Rev. Financ. Stud., 1 (1988), 427–445. https://doi.org/10.1093/rfs/1.4.427 doi: 10.1093/rfs/1.4.427
    [12] E. F. Fama, The behavior of stock market prices, J. Business, 38 (1965), 34–105. https://www.jstor.org/stable/2350752
    [13] B. B. Mandelbrot, Fractals and Scaling in Finance: Discontinuity, Concentration, Risk: Selecta Volume E, Springer-Verlag, New York, 1997.
    [14] P. Carr, L. Wu, The finite moment log stable process and option pricing, J. Finance, 58 (2003), 753–777. https://doi.org/10.1111/1540-6261.00544 doi: 10.1111/1540-6261.00544
    [15] C. Fan, C. H. Zhou, Pricing stock loans with the CGMY model, Discrete. Dyn. Nat. Soc., (2019), 1–11. https://doi.org/10.1155/2019/6903019 doi: 10.1155/2019/6903019
    [16] I. Koponen, Analytic approach to the problem of convergence of truncated L$\check{e}$vy flights towards the Gaussian stochastic process, Phys. Rev. E, 52 (1995), 1197. http://doi.org/10.1103/PhysRevE.52.1197 doi: 10.1103/PhysRevE.52.1197
    [17] H. Zhang, F. Liu, I. Turner, S. Chen, The numerical simulation of the tempered fractional Black-Scholes equation for European double barrier option, Appl. Math. Modell., 40 (2016), 5819–5834. https://doi.org/10.1016/j.apm.2016.01.027 doi: 10.1016/j.apm.2016.01.027
    [18] A. Cartea, Dynamic Hedging of Financial Instruments when the Underlying Follows a Non-Gaussian Process, Birkbeck College, University of London, London, 2005. http://dx.doi.org/10.2139/ssrn.934812
    [19] W. Chen, S. Lin, Option pricing under the KoBoL model, ANZIAM J., 60 (2018), 175–190. http://dx.doi.org/10.1017/S1446181118000196 doi: 10.1017/S1446181118000196
    [20] J. Mohapatra, S. Sudarshan, R. Higinio, Analytical and numerical solution for the time fractional Black-Scholes model under jump-diffusion, Comput. Econ., 63 (2023), 1853–1878. https://doi.org/10.1007/s10614-023-10386-3 doi: 10.1007/s10614-023-10386-3
    [21] W. Gong, Z. Xu, Y. Sun, An RBF method for time fractional jump-diffusion option pricing model under temporal graded meshes, Axioms, 13 (2024), 674. https://doi.org/10.3390/axioms13100674 doi: 10.3390/axioms13100674
    [22] C. Y. Fan, X. M. Gu, S. H. Dong, H. Yuan, American option valuation under the framework of CGMY model with regime-switching process, Comput. Econ. 6 (2024), 1–25. https://doi.org/10.1007/s10614-024-10734-x doi: 10.1007/s10614-024-10734-x
    [23] X. Chen, D. Ding, S. L. Lei, W. Wang, A fast preconditioned iterative method for two-dimensional options pricing under fractional differential models, Comput. Math. Appl., 79 (2020), 440–456. https://doi.org/10.1016/j.camwa.2019.07.010 doi: 10.1016/j.camwa.2019.07.010
    [24] Z. Zhou, J. Ma, X. Gao, Convergence of iterative Laplace transform methods for a system of fractional PDEs and PIDEs arising in option pricing, East Asian. J. Appl. Math., 8 (2018), 782–808. http://dx.doi.org/10.4208/eajam.130218.290618 doi: 10.4208/eajam.130218.290618
    [25] W. Chen, X. Xu, S. P. Zhu, A predictor-corrector approach for pricing American options under the finite moment log-stable model, Appl. Numer. Math., 97 (2015), 15–29. https://doi.org/10.1016/j.apnum.2015.06.004 doi: 10.1016/j.apnum.2015.06.004
    [26] X. Chen, W. Wang, D. Ding, S. Lei. A fast preconditioned policy iteration method for solving the tempered fractional HJB equation governing American options valuation, Comput. Math. Appl., 73 (2017), 1932–1944. https://doi.org/10.1016/j.camwa.2017.02.040 doi: 10.1016/j.camwa.2017.02.040
    [27] C. Y. Fan, W. T. Chen, B. Feng, Pricing stock loans under the L$\acute{e}$vy-$\alpha$-stable process with jumps, Networks Heterogen. Media, 18 (2022), 191–211. https://doi.org/10.3934/nhm.2023007 doi: 10.3934/nhm.2023007
    [28] S. L. Lei, H. W. Sun, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 242 (2013), 715–725. https://doi.org/10.1016/j.jcp.2013.02.025 doi: 10.1016/j.jcp.2013.02.025
    [29] X. J. He, S. Lin, A probabilistic approach for the valuation of variance swaps under stochastic volatility with jump clustering and regime switching, Financ. Innovation, 10 (2024), 114. http://dx.doi.org/10.1186/S40854-024-00640-4 doi: 10.1186/S40854-024-00640-4
    [30] X. J. He, S. Lin, A stochastic liquidity risk model with stochastic volatility and its applications to option pricing, Stochastic Models, 10 (2024), 1–20. https://doi.org/10.1080/15326349.2024.2332326 doi: 10.1080/15326349.2024.2332326
    [31] X. J. He, S. Lin, Analytical formulae for variance and volatility swaps with stochastic volatility, stochastic equilibrium level and regime switching, AIMS Math., 9 (2024), 22225–22238. https://doi.org/10.3934/math.20241081 doi: 10.3934/math.20241081
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(53) PDF downloads(8) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog