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Abstract: In the case of the KoBoL model with the jump process (KoBoLJ), the pricing problem of
American call option is investigated in this paper. The pricing model of this kind of financial derivatives
is a free boundary problem with a fractional-partial-integro-differential equation (FPIDE). In fact, it is
impossible to obtain the analytical solution of the mathematical model. Hence, the mathematical model
with free boundary should be changed as a fixed one and then the numerical scheme is set to solve the
transformed model. In the proposed approach, we proved that the American call option values obtained
by the current method are not lower than the intrinsic values of this option. Moreover the PCGNR
method with the fast Fourier transform (FFT) technique was employed to handle the semi-globalness
of the fractional-integro operator. The significant effects of the parameters in our model on the optimal
exercise price curve ware analyzed.
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1. Introduction

The American option is an important financial tool and is widely used in real market. However, the
pricing model of this financial derivative is a free boundary problem so that it is impossible to obtain
the analytic pricing formula of this financial derivative. Thus, in the past two decades, the numerical
method becomes a mainstream tool to solve the mathematical model.

More and more authors have studied the American option in the case of Black-Scholes model
(BS). For example, Geske and Johson [1] investigated the American put option, and an analytic
solution to this option was derived. Moreover, based on the analytical solution, the risk hedging
coefficient for American put was obtained. Based on this literature, Zhu et al. [2, 3] used the integral
transformation method to solve the American Contingent Claims pricing mathematical model, and the
price and optimal exercise price of this kind of financial derivatives are obtained. Gyulov and
Koleva [4] developed a numerical method based on the penalty for American option in the case of the
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BS model with the regime-switching process. Xiang and Wang [5] proposed an efficient quasi-Monte
Carlo method for estimating American option sensitivities. Wang et al. [6] constructed a high-order
deferred correction algorithm combined with penalty iteration for solving American option pricing
model. Elettra and Rossella [7] use the Recurrent neural network framework for computing prices and
deltas of American options in high dimensions. Under the framework of the Cox-Ingersoll-Ross
(CIR), Zhang et al. [8] proposed an efficient numerical method for the American options pricing.
Additionally for the perpetual American put option, an analytical solution is proposed under the
framework of BS in [9].

However, in the case of the classical BS model, the stock price is assumed to follow the Geometric
Brownian motion, which cannot reflect the character of the risk asset in the real market. The
conclusions in [10–13] show that the risk asset price should appear to be “phenomenon of jumps” and
“asymmetric distribution” . Thus, the more complex stochastic differential equation should be used to
capture the characters of the risk asset by many scholars. Prominent examples, including the FMLS
equation [14], CGMY equation [15], and KoBoL equation [16]. Moreover, as described in [17], both
FMLS and CGMY equations are the special cases of the KoBoL equation, so we consider the
American call pricing problem in this paper. Under this framework, the function of the option price
value is governed by the fractional partial differential equation free boundary problem, which is
proved in [18]. Following this work, Chen and Lin [19] used the integral transformation method to
obtain the analytical solution of the European option pricing model. For the European double barrier
option pricing model, the numerical method is set, and the convergence rate and stability of this
numerical method are proved in [17]. Mohapatra et al. [20] considered the numerical solution for the
time fractional Black-Scholes model under jump-diffusion involving a Caputo differential operator,
and their schemes are investigated for numerous European option pricing jump-diffusion models.
Guo et al. [21] proposed a numerical method for European and American option pricing under the
time fractional jump-diffusion model in Caputo scene. Fan et al. [22] considered the values and
optimal exercise prices of the American option under the CGMY model with the
regime-switching process.

Based on the literature, the American call option pricing problem is investigated in the case of the
KoBoL model with the jump process (KoBoLJ) in this paper. Under the framework of the KoBoLJ
model, the function of the American call value follows a FPIDE, and the pricing model is a free
boundary problem. To obtain a FPIDE boundary value problem over a fixed rectangular domain, a
nonlinear penalty term is added to the governing equation. However, it is still impossible to achieve the
analytical solution of the new mathematical model. Hence, the finite differential method is essentially
considered in this paper. Moreover, a dense coefficient matrix resulted from the fractional derivatives
in the final linear system, which requires the computational cost in the order of O(M3), where M
is the number of spatial grid nodes. This shows that the computational time of numerical method
will increase.

The major contributions of this study can be summarized as follows:

i) The Poisson jumps is introduced into the KoBoL model due to the need to capture the characters
of stock price so that the option pricing models can capture market risk;

ii) The preconditioned conjugate gradient normal residual (PCGNR) method with a Strang’s
circulant pre-conditioner [23] and the fast Fourier transform (FFT) technique are used, so that
the computational cost reduces significantly from O(M3) to O(M log M);
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iii) Based on the numerical scheme, we prove that the American call option value generated by the
penalty method cannot fall below the value obtained when the American call option is exercised
early, i.e., V(x, t) ≥ max(ex − K, 0).

The rest of this article is outlined below. In the next section, the pricing mathematical model of
American call under the framework of the KoBoLJ model is derived in detail. In Section 3, the
numerical scheme is proposed, and we prove that the American call option value obtained by our
numerical method is bigger than the exercising value. In Section 4, we prove the PCGNR method
with a circulant pre-conditioner and the FFT technique to calculate the final system. Moreover, the
numerical experiments are presented with some discussions in Section 5. We conclude this paper in
the last section.

2. Mathematical formulation

2.1. The stochastic process

Take (Ω,Ft,P) as a filtered probability, where t ∈ [0,T ]. The KoBoL model with the jump process is
defined on this probability space. Following the assumptions in [24], under this model, the logarithmic
price of the underlying, i.e., xt = ln(S t), satisfies the following stochastic differential equation

dxt = (r − ν − D − ξς)dt + dLKoBoL
t + d

 Nt∑
i=1

Yi

 , (2.1)

with solution

S T = S te(r−v)(T−t) +

∫ T

t
dLKoBoL

u ,

where xt is the logarithmic form stock price xt = ln S t, r is the risk-free interest rate, D is dividend,
dLKoBoL

t is the increment of a Lévy process under the equivalent martingale measure, and ν = 1
2σ
α[p(λ−

1)α + q(λ + 1)α − λα − αλα−1(q − p)] is convexity adjustment so that the expectation of S T becomes
E[S T ] = er(T−t)S t. Parameter α ∈ (1, 2) determines whether the KoBoLJ stochastic process has finite
or infinite variation. The relative frequency and overall upwind and downwind movements KoBoLJ
stochastic process are controlled by q > 0, p > 0(p + q = 1). The decay rate of tails of our stochastic
process probability density function is controlled by parameter λ > 0. Nt is a Poisson process and it is
characterized by the jump intensity ξ ≥ 0. {Yi, i = 1, 2, . . .} is a sequence of independent and identically
distributed hyper-exponential random variables with probability density function

fY(y) =
m1∑
i=1

p̂iθ̂ie−θ̂iy1{y≥0} +

m2∑
j=1

p̃ jθ̃ je−θ̃ jy1{y≤0}.

Note that p̂i (i = 1, 2, ...,m1) and p̃ j ( j = 1, 2, ...,m2) denote the probabilities of the ith positive and
negative jumps, respectively. They satisfy

∑m1
i=1 p̂i +

∑m2
j=1 p̃ j = 1. θ̂i > 1 (i = 1, ...,m1) is the magnitude

of the upward jumps and θ̃ j > 0 ( j = 1, ...,m2) is that of the downward random jumps. The average
jump size is given by

ς = EP
[
exp(Y1) − 1

]
=

m1∑
i=1

p̂iθ̂i

θ̂i − 1
+

m2∑
j=1

p̃ jθ̃ j

θ̃ j + 1
− 1, (2.2)

where EP is the expectation operator under probability measure P.
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2.2. The FPIDE system

Now, we turn to formulate mathematically the pricing of the American option under our model.
Financially, the payoff function of American call contract can be written as

Π(xT ,T ) = max(ex − K, 0), (2.3)

where K is the strike price. According to the no-arbitrage pricing principle, one can obtain

V(x, t) = e−r(T−t)EP[Π(xT ,T )]. (2.4)

Then, according to the conclusions in [18], it can be obtained that the American call option value
V(x, t) satisfies the following equation

∂V(x, t)
∂t

+ a
∂V(x, t)
∂x

+ ξ

∫ +∞

−∞

V(x + y, t) fY(y)dy (2.5)

+
1
2
σα

[
peλx

xDαx f
e−λxV(x, t) + qe−λx

−∞Dαx eλxV(x, t)
]
=

(
b +

1
2
σαλα

)
V(x, t),

where x ∈ (−∞, x f ], t ∈ [0,T ], a = r − ν − D − ξς − λα−1(q − p), b = r + ξ, and

eλx
xDαx f

e−λxV(x, t) =
eλx

Γ(2 − α)
∂2

∂x2

∫ x f

x

e−λξV(ξ, t)
(ξ − x)α−1 dξ,

e−λx
−∞Dαx eλxV(x, t) =

e−λx

Γ(2 − α)
∂2

∂x2

∫ x

−∞

eλξV(ξ, t)
(x − ξ)α−1 dξ.

In fact, the fractional derivative in Eq (2.5) is closely related to the KoBoLJ model. Moreover, the
fractional derivatives in the governing Eq (2.5) are non-local in order to describe the American call
option value in the holding region (−∞, x f ].

In this paper, we take American call as the research object, so the function V(x, t) satisfies the
following boundary conditions: 

limx→−∞ V(x, t) = 0,
V(x f , t) = ex f − K,
∂V(x f ,t)
∂x = S f = e f ,

V(x,T ) = max(ex − K, 0).

(2.6)

To sum up, a complete pricing mathematical model of American call under the KoBoLJ process can
be obtained as Eqs (2.5) and (2.6). Moreover, we remark that the above FPIDE system is much more
difficult to solve than the corresponding BS case with jumps, with the main difficulty resulting from
the free boundary and the non-localness of the fractional-integro differential operator. In the following
section, a new numerical scheme is proposed to solve it efficiently.

According to the unique characteristics of the American call option, the value function V(x, t) of
this financial derivative should satisfy the following inequality constraint

V(x, t) ≥ max(ex − K, 0), (2.7)

for all t ∈ [0,T ] and x ≤ x f .
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3. Numerical method

There are two parts in this section. In the first part, the free boundary problem should be changed
as one defined on a fixed interval by introducing a nonlinear penalty term. Both the difference scheme
and theoretical analysis are displayed in the second part.

3.1. Model transformation

Let 0 < ϵ ≪ 1 and C > 0 be a fixed constant, and we will determine its specific value. We construct
the following nonlinear penalty term

εC
Vε(x, t) + ε − Q(x)

, and Q(x) = ex − K. (3.1)

Then we add it to Eq (2.5)and obtain the following system,

∂Vε(x, t)
∂t

+ a
∂Vϵ(x, t)
∂x

+
1
2
σα[peλx

xDαxmax
e−λxVε(x, t) (3.2)

+ qe−λx
−∞Dαx eλxVε(x, t)] +

ϵC
Vε(x, t) + ϵ − Q(x)

+ ξ

∫ +∞

−∞

V(x + y, t) fY(y)dy =
(
b +

1
2
σαλα

)
Vε(x, t),

where x ∈ (−∞, xmax], t ∈ [0,T ], 1 < α < 2,

lim
x→−∞

Vε(x, t) = 0, (3.3)

Vϵ(xmax, t) = exmax − K, (3.4)

Vϵ(x,T ) = max(ex − K, 0). (3.5)

Moreover, according to the conclusion in [25], the maximum value of risk asset equal to 4 times of
K value. The subscript ε of Vε(x, t) should be omitted for clarity.

3.2. Difference scheme

Define ∆t > 0 and ∆x > 0 as time and spatial step, respectively. Taking N,M as the positive
N ∗ ∆t = T and M∆x = xmax. Thus

ti = (i − 1)∆t, i = 1, 2, ...,N + 1,
x j = ( j − 1)∆x, j = 1, 2, ...,M + 1.

The forward and backward difference schemes are used for the discrete first-order space. For the
time derivative , we use the forward and backward difference schemes, respectively. The approximation
of the left-sided and right-sided tempered fractional derivatives given in formula [26] can be used to
discretize the left-sided and right-sided tempered fractional derivatives as the following:

e−λx
−∞Dαx

(
eλxV j

i

)
− λαV j

i =
1

(∆x)α

∞∑
k=0

gkV i
j−k+1 + O(∆x),
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eλx
−∞Dαx

(
e−λxV j

i

)
− λαV j

i =
1

(∆x)α

M− j+1∑
k=0

gkV i
j+k−1 + O(∆x),

where V i
j is the value of function V(x, t) at grid point (x j, ti). The coefficients gk (k = 0, 1, 2, · · · ) are

used and satisfy the following two equations

gk =


(−1)k

( α
k

)
e−(k−1)λ∆x, f or k , 1

−α − eλ∆x
(
1 − e−λ∆x

)α
, f or k = 1,

(3.6)

In addition, the integral term contained in the governing equation of Eq (3.2) is approximated by
the trapezoidal rules [24], i.e.,∫ +∞

−∞

V(x j + y, ti) fY(y)dy ≈
M∑
ℓ=0

ρM
ℓ− j

[
V i
ℓ + V i

ℓ+1

]
+ R j,

where

ρM
j =

1
2

∫ ( j+1)∆x

j∆x
fY(y)dy (3.7)

=


1
2

∑m1
ℓ=1 p̂ℓ

(
e−θ̂ℓ j∆x − e−θ̂ℓ( j+1)∆x

)
, j ≥ 0,

1
2

∑m2
ℓ=1 p̃ℓ

(
eθ̃ℓ( j+1)∆x − eθ̃ℓ j∆x

)
, j ≤ 0,

and

R j =

∫ +∞

xM+1−x j

(
ex j+y − K

)
fY(y)dy, (3.8)

= ex j

m1∑
ℓ=1

p̂ℓθ̂ℓ
θ̂ℓ − 1

e(1−θ̂ℓ)(xmax−x j) − K
m1∑
ℓ=1

p̂ℓe−θ̂ℓ(xmax−x j),

= (exmax − K)
m1∑
ℓ=1

p̂ℓ
θ̂ℓ

e−θ̂ℓ(xmax−x j).

To sum up, the fully implicit difference scheme for Eq (3.2) can be obtained as follows:

V i+1
j − V i

j

∆t
+ a

V i
j − V i

j−1

∆x
+ ξ

M∑
ℓ=0

ρM
ℓ− j

[
V i
ℓ + V i

ℓ+1

]
(3.9)

+
1
2
σα

 p
(∆x)α

M− j+2∑
k=0

gαk,λV
i
j+k−1 +

q
(∆x)α

∞∑
k=0

gαk,λV
i
j−k+1


+ ξR j +

ϵC
V i

j + ϵ − q j
= bV i

j,
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and the boundary conditions are approximated as

lim
j→∞

V i
j = 0, (3.10)

V i
M+1 = exmax − K, (3.11)

VN+1
j = max(ex j − K, 0), (3.12)

The fact that the values of V i
j for all i, j) must satisfy the constraint condition (2.7) should be strictly

proven. In order to ensure completion of proof, we first give two lemmas as follows

Lemma 3.1. ([26]) If α ∈ (1, 2), then the coefficients gk in Eq (3.6) satisfy
g0 = eλ∆x, g1 = −α − eλ∆x

(
1 − e−λ∆x

)α
< 0, g2 > g3 > ... > 0,

∑∞
k=0 gk = 0,

∑m
k=0 gk < 0,

where m ≥ 1.

Lemma 3.2. ( [27]) Both the coefficients ρM
j in Eq (3.7) and R j in Eq (3.8) are bounded and satisfy

M∑
−∞

ρM
j ≤

1
2
,

R j ≤ exmax − K.

Theorem 3.1. If ∆t ≤ 1∣∣∣∣b+2ξ
∑M
ℓ=0 ρ

M
ℓ− j

∣∣∣∣ and the constant C satisfies the following inequality

C ≥ |a|
exmax − 1

xmax
+ σα

[
(λ + 1)α + e(λ+2)xmax

]
+ (b + 3ξ)K.

then V i
j obtained by Eq (3.9) satisfies the following inequality V i

j ≥ max(ex j − K, 0). Here, K =
exp(xmax) − K.

Proof. We are going to complete the proof in two steps: We first prove V i
j ≥ ex j − K and then prove

that V i
j ≥ 0 for all i, j.

Let Q j = ex j − K, ui
j = V i

j − Q j, then we have

ui+1
j −

a∆t
∆x

ui
j−1 +

1
2
σα∆t

 p
(∆x)α

M− j+2∑
k=0

gkui
j+k−1 +

q
(∆x)α

∞∑
k=0

gkui
j−k+1


+ ξ∆t

M∑
ℓ=0

ρM
ℓ− j + ξ∆tR j +

[
ui
ℓ + ui

ℓ+1

]
+
ϵC∆t
ui

j + ϵ
− ∆tF

= (1 −
a∆t
∆x
+ b∆t)ui

j,
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where

F =
a
∆x

(q j − q j−1) − bq j − ξ

M∑
ℓ=0

ρM
ℓ− j [ezℓ + ezℓ+1 − 2K] − ξR j

+
1
2
σα

 p
(∆x)α

M− j+2∑
k=0

gkq j+k−1 +
q

(∆x)α

∞∑
k=0

gkq j−k+1

 .
Since | e

∆x−1
∆x | ≤

exmax−1
xmax

≤ 1,
∑∞

k=0 gkex j−k+1 = ex j+1
∑∞

k=0 gke−k∆x, and when |z| < 1

∞∑
k=0

(−1)k
( α

k

)
zk = (1 − z)α.

Hence, we have

| F | ≤ |a|
exmax − 1

xmax
+ b(exmax − K) + ξ(exmax − K)

+
1
2
σα

[
λα + e(λ+1)xmax + (λ + 1)α + e(λ+2)xmax

]
+ ξ

∣∣∣∣∣∣∣
M∑
ℓ=0

ρM
ℓ− j [exℓ + exℓ+1 − 2K]

∣∣∣∣∣∣∣ .
≤ |a|

exmax − 1
xmax

+ b(exmax − K) + ξ(exmax − K)

+ σα
[
(λ + 1)α + e(λ+2)xmax

]
+ ξ

∣∣∣∣∣∣∣
M∑
ℓ=0

ρM
ℓ− j [exℓ + exℓ+1 − 2K]

∣∣∣∣∣∣∣ .
Moreover, let K = [exp(xmax) − K], then∣∣∣∣∣∣∣

M∑
ℓ=0

ρM
ℓ− j [exℓ + exℓ+1 − 2K]

∣∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣∣
M∑
ℓ=0

ρM
ℓ− jK

∣∣∣∣∣∣∣ 2 ≤ K
M∑
ℓ=0

ρM
ℓ− j ≤ 2K.

Therefore,

|F| ≤ |a|
exmax − 1

xmax
+ σα

[
(λ + 1)α + e(λ+2)xmax

]
+ (b + 3ξ)K.

Let ui
J = min j ui

j and ui+1
L = min j ui+1

j , then1 −
1
2
σα∆t

 p
(∆x)α

M− j+2∑
k=0

gαk,λ +
q

(∆x)α

∞∑
k=0

gαk,λ


 ui

J

− b∆tui
J −
ϵC∆t
ui

J + ϵ
− 2ξ

M∑
ℓ=0

ρM
ℓ− ju

i
J∆t + ∆tF ≥ ui+1

L .

Namely, 1 − −b − 2ξ
M∑
ℓ=0

ρM
ℓ− j

∆t

 ui −
ϵC∆t
ui + ϵ

+ ∆tF ≥ ui+1
L .
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On the other hand, according to Lemma 3.2 and ∆t ≤ 1∣∣∣∣b+2ξ
∑M
ℓ=0 ρ

M
ℓ− j

∣∣∣∣ , we can obtain

1 −

−b − 2ξ
M∑
ℓ=0

ρM
ℓ− j

∆t ≥ 0.

Let

A = 1 −

−b − 2ξ
M∑
ℓ=0

ρM
ℓ− j

∆t,

and define a function H(x) as

H(x) = Ax −
ϵC∆t
x + ϵ

+ ∆tF. (3.13)

Then, H(ui) ≥ 0 if ui+1 ≥ 0. Since H′(x) = A + ϵC∆t
(x+ϵ)2 ≥ 0, H(0) = ∆t(F − C) ≤ 0, and uN+1 ≥ 0, we

obtain ui ≥ 0. Hence, ui
j ≥ 0, and consequently V i

j ≥ Q j is satisfied.
Next, we prove that V i

j ≥ 0. We define V i = min j V i
j and let J satisfy V i

J = V i. Hence, according to
Eq (3.9), the following inequality can be obtained,1 −

1
2
σα∆t

 p
(∆x)α

M− j+2∑
k=0

gαk,λ +
q

(∆x)α

∞∑
k=0

gαk,λ


 V i

− b∆tV i −
ϵC∆t

V i + ϵ − Q j
− 2ξ

M∑
ℓ=0

ρM
ℓ− jV

i∆t + ∆tF ≥ V i+1
J .

Then, 1 − −b − 2ξ
M∑
ℓ=0

ρM
ℓ− j

∆t

 V i ≥ V i+1
J +

ϵC∆t
V i + ϵ − Q j

.

In the first step, V i
j ≥ Q j(∀i, j) is proven, so ϵC∆t

V i+ϵ−Q j
≥ 0. Thus,1 − −b − 2ξ

M∑
ℓ=0

ρM
ℓ− j

∆t

 V i ≥ V i+1
J .

Since, VN+1
j = max

[
exp(x j) − K, 0

]
≥ 0, therefore

V i
j ≥ 0,∀i, j.

To sum up, we complete the proof.

4. The PCGNR method with a circulant pre-conditioner

In fact, the penalty term should result that the discrete system (3.9) is nonlinear; therefore, the
Newton iteration method is employed. However, due to the existence of the fractional-integro
differential operator, there is a matrix with a dense form in the final system. Thus, we should enhance
the computational efficiency while decreasing the storage space.

Networks and Heterogeneous Media Volume 20, Issue 1, 143–164.



152

In order to facilitate the computer to simulate the algorithm (3.9), the original semi-infinite region
(−∞, xmax] × [0,T ] must be truncated into a limited region (x, t) ∈ (xmin, xmax] × [0,T ], where xmin =

ln(0.01) in the numerical experiments below. Now, the left boundary condition in the original model is
changed to V(xmin, t) = 0.

We should redefine the spatial step size ∆x = (xmax − xmin)/M, then x j = ( j − 1)∆x + xmin, for
j = 2, . . . ,M + 1. Now, we define

ϑ =
a∆t
∆x
, β = 1 −

a∆t
∆x
+ ∆tb, η = −

1
2
∆tσα

(∆x)α
,

and
W M

l = ρ
M
l + ρ

M
l−1, l = 0,±1,±2, ...,±(M − 2).

Then, system (3.9) can be rewritten as the following matrix form,

[
βI + ϑB + η(pA⊤ + qA) − ∆tW

]
Vi − F(Vi) = Vi+1 + Zi − ∆tRi, (4.1)

where
F(Vi) = (F(V i

2), F(V i
3), . . . , F(V i

M−1), F(V i
M)),Vi = (V i

2,V
i
3, . . . ,V

i
M−1,V

i
M),

with

F(V i
j) =

ϵC∆t
V i

j + ϵ − Q j
, Ri =

(
Ri

2,R
i
2, ...,R

i
M

)
,

Z
i =

(
0, 0, ..., ηqg0 + ϑ(ρM

0 + ρ
M
1 + ... + ρ

M
M−2)

)
V i

M+1.

I is an identity matrix of order (M − 1), and A⊤ means matrix transpose of A. A, B, and W are
Toeplitz matrices, i.e.,

W = ξ



W M
0 W M

1 W M
2 · · · W M

M−2
W M
−1 W M

0 W M
1 · · · W M

M−3
W M
−2 W M

−1 W M
0 · · · W M

M−4
...

. . .
. . .

. . .
...

W M
2−M W M

3−M W M
4−M · · · W M

0


,

A =



g1 g0 0 · · · 0
g2 g1 0 · · · 0
g3 g2 g0 · · · 0
...

. . .
. . .
. . .

...

gM−2 gM−3 · · · g1 g0

gM−1 gM−2 · · · g2 g1


and B =



0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...
. . .
. . .
. . .
. . .
...

0 0 0 · · · 0 0
0 0 0 · · · 1 0


.

In fact, the nonlinear penalty term shows that the system (4.1) cannot be solved directly; therefore,
we first use the Newton iteration method to change it as a linear system,

[βI + ξB + η(pA⊤ + qA) − JF (ωl−1) − ∆tW]∆wl (4.2)
= V i+1 − Zi+1 − [βI + ξB + η(pA⊤ + qA) − ∆tW]wl−1 + F (wl−1) − ∆tRi,
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w
l = wl−1 + κ∆wl,

where l = 1, 2, 3, . . ., JF (wl−1) is the Jacobian matrix of the vector F (wl−1), and 0 < κ < 1 is the
adjustment factor. During the numerical iteration, it is assumed that for the current time layer ti, the
information of the previous time layer ti+1 is known. Therefore, V i+1 can be taken as the initial value of
the iterative sequence wl, i.e., w0 = V i+1. We set V i = wl once the stopping criterion ∥ wl − wl−1 ∥≤ tol
for some l is reached, where tol is the stopping tolerance of the iterative method. Now, by taking

M = βI + ξB + η(pA⊤ + qA) − JF (wl−1) − ∆tW,
bl = V i+1 + ηZi+1 − ∆tRi − [βI + ξB + η(pA⊤ + qA) − ∆tW]wl−1 + F(wl−1),

Eq (4.2) can be rewritten as [
M − JF(wl−1)

]
(δwl) = bl. (4.3)

The most challenging part in solving Eq (4.3) is the high computational cost resulting from the
fact that both A and W are dense matrices. To overcome this difficulty, we first apply the CGNR
method [28], which is to solve [M − JF ]⊤Mδwl = [M − JF ]⊤bl instead of Eq (4.3).

However, by noticing that the convergence rate of the CGNR method is still quite low due to the
fact that the conditional number of the matrixM⊤M is large, a pre-conditioner technique is applied to
accelerate the convergence rate of the CGNR method. It is straightforward to find that the matrix JF
is not the Toeplitz matrix, and we should approximate this matrix as a0I, where a0 is the average value
of main diagonal elements of matrix JF . Thus, we structure a Toeplitz matrix as follows

T = M − a0I.

Next, the Strang’s circulant preconditioner s(T ) = [s j−k]0≤ j,k<M for matrix T is structured as

s j =


T j, 0 ≤ j < M/2,
0, j = M/2 if M is even, and j = (M + 1)/2 if M is odd,
T j−M, M/2 < j < M,

T j+M, 0 < − j < M.

Let P denote the Strang’s circulant preconditioner s(T ) = [s j−k]0≤ j,k<M to simplify the expression.
Mathematically, after the PCGNR method with a pre-conditioner P is applied, Eq (4.3) becomes[

(P)−1(M − JF )
]⊤ [

(P)−1(M − JF )
]
δwl =

[
(P)−1(M − JF )

]⊤
(P)−1bl.

The pseudo-code of the PCGNR method is displayed in Algorithm 1. The matrix-vector
multiplication needs only O(MlogM) operations via the fast Fourier transform (FFT) method.
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Algorithm 1. PCGNR method for solving (M − JF )(δwl) = bl with a pre-conditioner P.
Given the initial guess x0, and a stopping tolerance tol.
Compute r0 =

[
P−1(bl − (M − JF ))x0

]
,

z0 =
[
(P)−1(M − JF )

]⊤
r0, p0 = z0,mr = ||r0||

2
2.

For i = 0, 1, ...,
wi =

[
(P)−1(M − JF )

]⊤
pi,

αi = ||zi||
2
2/||wi||

2
2,

xi+1 = xi + αi pi,
ri+1 = ri − αiwi,
zi+1 =

[
(P)−1(M − JF )

]⊤
ri+1,

βi = ||zi+1||
2
2/||zi||

2
2,

pi+1 = zi+1 + βi pi,
res = ||ri+1||

2
2.

If res/mr < tol, stop;
otherwise, set δwl = xi+1.

End for

5. Numerical simulations and discussions

Several numerical examples are given to show the computational efficiency of our numerical method
in this part. Moreover, the impacts of the key parameter in our model to the option value and optimal
exercise boundary are also discussed. All simulations are implemented using MATLAB2014a on a
Lenovo T14 laptop with configuration: Intel(R) Core(TM) i7-1260P 2.10 GHz. The CPU time (in
seconds) is estimated by using the timing functions tic/toc.

5.1. Performance of the numerical method

First, we should examine whether or not the numerical solution preserves the basic properties of
American call. This could be viewed as a necessary condition for the reliability of the proposed
approach. Mathematically, the current numerical solution must satisfy the inequality
V i

j ≥ max(q j − K, 0). Depicted in Figure 1 are the surfaces of V i
j − max(q j − K, 0) with different

parameter settings, which implies that the inequality is preserved.
Figure 2(a),(b) display the American call value surface and option values and payoff function,

respectively. First, the curves in the two figures indicate that the American call option price is an
increasing function with respect to an underlying asset price, and the ‘high contact’ condition for
American call is also confirmed by such surfaces in Figure 2(a), which shows KoBoLJ model is
indeed reasonable. It can be observed from the two figures that the numerical method based on the
penalty term produces the smooth and stable approximation solutions. To sum up, both our model and
the numerical scheme are reasonable.

To further investigate the performance of the method, we compare the computational efficiency of
the Gaussian elimination (GE), the CGNR method, and the PCGNR method, as shown in Table 1. The
parameters adopted for computing this table are K = 20, r = 0.05, σ = 0.24, D = 0.06, p = 0.6,
p̂ = 0.07, θ̂ = 1.5, θ̃ = 0.5, , α = 1.52, ξ = 0.2, p̂ = 0.08, θ̂ = 1.8, θ̃ = 0.2, ξ = 0.1. Moreover,
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in this table, Ite − In denotes the average iteration number required in each time step. ORGE, ORCGNR

and ORPCGNR refer the convergence order in x direction of three different method, respectively. The
convergence order is defined as

ORi+1 =
ln(Erri) − ln(Erri+1)

ln(Mi+1) − ln(Mi)
,

where Mi is the number of spatial grid nodes employed and

Err = ∥V j,i
k − V(k; x, t)re f ∥2,

where ∥ · ∥2 is the L2 norm for matrix, and V(x, t)ref is the benchmark solution determined directly
through matrix operation ‘A\b’ in Matlab with (M,N) = (212, 1000).

(a) p̂ = 0.08, θ̂ = 1.8, θ̃ = 0.2, ξ = 0.1 (b) p̂ = 0.07, θ̂ = 1.5, θ̃ = 0.5, ξ = 0.2

Figure 1. Surface of V i
j − max(q j, 0) with r = 0.05, D = 0.06, α = 1.52, σ = 0.24, K = 20,

p = 0.6,M = 27 + 1, and N = 100.
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(a) The surface of option price V(x,t)
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(b) Option values V(x, t) VS payoff values

Figure 2. The model parameters are r = 0.05, D = 0.06, α = 1.52, σ = 0.24, K = 20,
p = 0.6, p̂ = 0.07, θ̂ = 1.5, θ̃ = 0.5, ξ = 0.2,M = 27 + 1, and N = 100.
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Table 1. Comparisons among three methods.

GE CGNR PCGNR

M Time(s) Err ORGE Ite − In T ime(s) Err ORCGNR Ite − In T ime(s) Err ORPCGNR

25 37.5201 0.0743 - 51.2422 1.0240 0.0793 - 5.2846 0.6513 0.0945 -

26 150.2406 0.0303 1.2940 52.7299 1.9356 0.0322 1.3003 6.4601 0.7291 0.0402 1.2331

27 628.7839 0.0114 1.4103 50.7812 3.5031 0.0130 1.3085 7.0381 1.3810 0.0164 1.2935

28 2494.7124 0.0042 1.4406 52.3963 9.5677 0.0055 1.2410 6.8341 7.1290 0.0068 1.2701

29 18290.4211 0.0017 1.3049 52.1256 49.9873 0.0023 1.2578 6.8930 19.0211 0.0026 1.3870

210 ** ** ** 52.6767 250.1262 0.0010 1.2016 7.0025 21.4600 0.0011 1.2410

We can observe from Table 1 that for a fixed number of nodal points, the total CPU times required
by the CGNR and PCGNR to produce the same level of error are significantly less than that of the
GE. Furthermore, the average inner iteration numbers required by the PCGNR method are the lowest.
These suggest the superiority of the PCGNR method in computational efficiency over the GE and
CGNR methods. Moreover, it is clear that the ORGE, ORCGNR, and ORPCGNR are close to 1, which
indicates that the three schemes are of first-order convergence in the spatial direction.

Similarly, the convergence order and error in the t direction of the PCGNR method is also examined.
First, the V(x, t)ref is the benchmark solution that can be determined directly through matrix operation
‘A\b’ in Matlab with (M,N) = (212+1, 1000). We increase the grid number in the t direction from 100
to 800. In Table 2, both the Err and OR denote the error and convergence order in the t direction of
PCGNR method, respectively. The results are displayed in Table 2. From this table, it is clear that our
scheme is first-order convergent.

Table 2. Convergence order in the time direction of the PCGNR method.

Number of time steps Err OR

100 0.0701 –
200 0.0334 1.0696
400 0.0156 1.0983
600 0.0103 1.0238
800 0.0046 1.1629

5.2. Analysis on parameter impact

We first consider the value of parameter α, which affects the optimal exercise boundary of American
call. Tow sets of optimal exercise boundary with different α are computed and displayed in Figure 3.
From the curves in this figure, one can find that a bigger value of α should show a higher optimal
exercise boundary. Financially, the α controls the tail of the distribution of the returns of risk asset, and
both tails will be fatter when α becomes bigger. Thus, as α becomes bigger, the possibility of smaller
stock price increases, and so does the optimal exercise price.
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α = 1.70
α = 1.52

Figure 3. Optimal exercise prices under different α. And r = 0.05, D = 0.06, σ = 0.24,
K = 10, p = 0.6, p̂ = 0.07, θ̂ = 1.2, θ̃ = 0.2, ξ = 0.2, λ = 1.9,M = 210 + 1, and N = 100.

Next, we consider how the discrete jumps influence the optimal exercise price of American call. As
shown in Figure 4 is the optimal exercise price as a function of the time to expiry with different jump
intensity ξ. One can observe from this figure that the optimal exercise price increases with respect to
ξ. Financially, a larger jump intensity indicates that the risk asset would change more often so that the
American call option contract should be more valuable as it contains more risks. Hence, according to
the smooth pasty condition across the free boundary, the monotonicity of S f with respect to ξ holds
automatically.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
9

10

11

12

13

14

15

16

17

18

Time to Expiry

O
p

ti
m

al
 E

xe
rc

is
e 

P
ri

ce
 

 

 

ξ = 0.1
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Figure 4. Optimal exercise prices under different ξ. And r = 0.05, D = 0.06, σ = 0.24,
K = 10, p = 0.6, p̂ = 0.07, θ̂ = 1.2, θ̃ = 0.2, α = 1.7, λ = 1.9,M = 210 + 1, and N = 100.

In Figure 5, the optimal exericse price is plotted against the time to expiry with different probabilities
of positive jumps p̂. From the curves in this figure, it is straightforward to find that a larger p̂ results in
a lower optimal exercise boundary curve. In fact, the logarithmic return of the risk asset is decreasing
with respect to p̂, because the return decreases with respect to ξ from Eq (2.1) and ξ increases with
respect to p̂ from Eq (2.4). Therefore, an increasing p̂ would lower the risk asset value, and thus
makes the intermediate American call option less valuable. Therefore, the optimal exercise boundary
ex f of the intermediate American call decreases with respect to p̂. Similarly, one could explain the
monotonicity of the optimal exercise price with respect to θ̂ and θ̃. For the length of the paper, we
provide those curves in Figure 6 with no detailed explanations.
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p̂ = 0.06

Figure 5. Optimal exercise prices under different p̂. And r = 0.05, D = 0.06, σ = 0.24,
K = 10, p = 0.6, α = 1.7, θ̂ = 1.2, θ̃ = 0.2, ξ = 0.2, λ = 1.9,M = 210 + 1, and N = 100.
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θ̂ = 1.5

θ̂ = 1.2

(a) Optimal exercise price with different θ̂
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θ̃ = 0.5

θ̃ = 0.2

(b) Optimal exercise price with different θ̃

Figure 6. The Model parameters are r = 0.05, D = 0.06, σ = 0.24, K = 10, p = 0.6,
p̂ = 0.07, α = 1.7, ξ = 0.2, λ = 1.9,M = 210 + 1, and N = 100.
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p = 0.6
p = 0.58

Figure 7. Optimal exercise prices under different p. And r = 0.05, D = 0.06, σ = 0.24,
K = 10, α = 1.7, p̂ = 0.07, θ̂ = 1.2, θ̃ = 0.2, ξ = 0.2, λ = 1.9,M = 210 + 1, and N = 100.

Next, we should investigate the impacts of parameters p and q. In fact, the upward movement
frequency of our stochastic process is controlled by parameter p. If the value of parameter p becomes
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bigger, which means that our stochastic process should have increased upward movement, then the
American call option price should become bigger. As a rational investor, a higher price should be
used to exercise the option. Hence, a bigger value of p should result in a higher optimal exercise
price as shown in Figure 7. Similarly, we can analyze the impacts of parameter q on the optimal
exercise boundary.

The optimal exercise boundary curves under different parameter λ are displayed in Figure 8. As
described in Section 3.2, the decay rate of tails of our stochastic process probability density function is
controlled by parameter λ > 0. Thus, a bigger value of this parameter should result in a thinner tail of
the stochastic process density function, and the investor should want to gain a bigger price to exercise
the American option.
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λ = 1.9
λ = 1.2

Figure 8. Optimal exercise prices under different λ. And r = 0.05, D = 0.06, σ = 0.24,
K = 10, p = 0.6, p̂ = 0.07, θ̂ = 1.2, θ̃ = 0.2, ξ = 0.2, α = 1.7,M = 210 + 1,N = 100.

5.3. An application of the current method

In this subsection, we consider the stock loans based on the finite moment log-stable process
(FMLS). Under this framework of FMLS, the stock loans pricing model is [25].

∂V(x,t)
∂t − (r − D − ν)∂V(x,t)

∂x + ν−∞Dαx V(x, t) = −rV(x, t),
limx→−∞ V(x, t) = 0,
V(x,T ) = max(ex − KeγT , 0),
V(x f , t) = ex f − Keγt,
∂V(x f ,t)
∂x = ex f ,

(5.1)

where V(x, t) denotes the price of stock loans, r, D, and t are the risk free interest rate, the dividend
and the current time, respectively, σ is a constant, and ν = −σα sec απ2 is a convexity adjustment.
t ∈ [0,T ], x ∈ (−∞, x f ), 1 < α < 2, ex f is the optimal redemption price of stock loans. Thus,

−∞Dαx V(x, t;α) =
1

Γ(2 − α)
∂2

∂x2

∫ x

−∞

V(z, t;α)
(x − z)α−1 dz.

In fact, the FMLS model is a special case of the KoBoLJ model. Hence, the method is used to solve
model (5.1).
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We choose the spatial step size ∆x = xmax−xmin
211+1 and temporal step size ∆t = 2

1000 . Thus, we can obtain
the following three figures:

Figure 9. The difference between V i
j and max(ex j − Keγti , 0). Other parameters are r =

0.05,D = 0.05, σ = 0.25,T = 2,K = 50, and γ = 0.06.
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D = 0.1

Figure 10. Optimal redemption price for different D with r = 0.05, γ = 0.06, α = 1.52, σ =
0.22,T = 2, and K = 50.
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Figure 11. Optimal redemption price with different σ with r = 0.05, α = 1.52, γ = 0.06,D =
0.05,T = 2, and K = 50.
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The curved surface in Figure 9 and the curve in Figures 10 and 11 show that our numerical method
is effective.

6. Conclusions

In this paper, we consider the American call option pricing based on the KoBoLJ model. The pricing
model is a free boundary problem, and the governing equation is a FPIDE. Thus, a numerical scheme
based on the penalty function is set. Both the pricing mathematical model and current scheme are very
reliable, which is verified by our numerical results. In order to improve computational efficiency, both
the PCGNR and fast Fourier transform technique are used to solve the final linear system. Moreover,
the impacts of key parameters α, p, p̂, θ̂, θ̃, and λ on optimal exercise price are also analyzed.

At the end of this section, we point out that several issues are not discussed in this paper but the
future studies will be implemented for them. First, a risk-free interest rate is a constant in our model.
In fact, the constant interest rate cannot describe how the interest rate evolves with respect to the time,
especially for the option contracts that have a long time horizon. Second, our numerical results show
that the KoBoLJ model is a more comprehensive model than the KoBoJ model; therefore, it should be
used to investigate other financial derivative pricing and hedging problems, such as the CDS and Stock
Loans. Finally, for the jump processes without the consideration of diffusion processes, we should
discuss whether their approaches can be extended to models with jumps and diffusion, such as the
stochastic volatility and stochastic liquidity [29–31].
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