1.
|
Jonathan Bell, Evan C. Haskell,
Attraction–repulsion taxis mechanisms in a predator–prey model,
2021,
2,
2662-2963,
10.1007/s42985-021-00080-0
|
|
2.
|
Mostafa Bendahmane, Kenneth H. Karlsen,
Martingale solutions of stochastic nonlocal cross-diffusion systems,
2022,
17,
1556-1801,
719,
10.3934/nhm.2022024
|
|
3.
|
A. N. Elmurodov, M. S. Rasulov,
On a Uniqueness of Solution for a Reaction-Diffusion Type System with a Free Boundary,
2022,
43,
1995-0802,
2099,
10.1134/S1995080222110087
|
|
4.
|
Youshan Tao,
Global existence of classical solutions to a predator–prey model with nonlinear prey-taxis,
2010,
11,
14681218,
2056,
10.1016/j.nonrwa.2009.05.005
|
|
5.
|
Lakshmi Narayan Guin, Mainul Haque, Prashanta Kumar Mandal,
The spatial patterns through diffusion-driven instability in a predator–prey model,
2012,
36,
0307904X,
1825,
10.1016/j.apm.2011.05.055
|
|
6.
|
Mostafa Bendahmane, Michel Langlais,
A reaction-diffusion system with cross-diffusion modeling the spread of an epidemic disease,
2010,
10,
1424-3199,
883,
10.1007/s00028-010-0074-y
|
|
7.
|
L. Shangerganesh, N. Barani Balan, K. Balachandran,
Weak-renormalized solutions for predator–prey system,
2013,
92,
0003-6811,
441,
10.1080/00036811.2011.625014
|
|
8.
|
Dietmar Hömberg, Robert Lasarzik, Luisa Plato,
On the existence of generalized solutions to a spatio-temporal predator–prey system with prey-taxis,
2023,
23,
1424-3199,
10.1007/s00028-023-00871-5
|
|
9.
|
Chenglin Li,
Global existence of classical solutions to the cross-diffusion three-species model with prey-taxis,
2016,
72,
08981221,
1394,
10.1016/j.camwa.2016.07.002
|
|
10.
|
Huanhuan Qiu, Shangjiang Guo, Shangzhi Li,
Stability and Bifurcation in a Predator–Prey System with Prey-Taxis,
2020,
30,
0218-1274,
2050022,
10.1142/S0218127420500224
|
|
11.
|
Sainan Wu, Junping Shi, Boying Wu,
Global existence of solutions and uniform persistence of a diffusive predator–prey model with prey-taxis,
2016,
260,
00220396,
5847,
10.1016/j.jde.2015.12.024
|
|
12.
|
EVAN C. HASKELL, JONATHAN BELL,
BIFURCATION ANALYSIS FOR A ONE PREDATOR AND TWO PREY MODEL WITH PREY-TAXIS,
2021,
29,
0218-3390,
495,
10.1142/S0218339021400131
|
|
13.
|
Mostafa Bendahmane,
Weak and classical solutions to predator–prey system with cross-diffusion,
2010,
73,
0362546X,
2489,
10.1016/j.na.2010.06.021
|
|
14.
|
Lakshmi Narayan Guin,
Existence of spatial patterns in a predator–prey model with self- and cross-diffusion,
2014,
226,
00963003,
320,
10.1016/j.amc.2013.10.005
|
|
15.
|
Jianping Gao, Shangjiang Guo,
Effect of prey-taxis and diffusion on positive steady states for a predator-prey system,
2018,
41,
01704214,
3570,
10.1002/mma.4847
|
|
16.
|
Xiaoli Wang, Wendi Wang, Guohong Zhang,
Global bifurcation of solutions for a predator-prey model with prey-taxis,
2015,
38,
01704214,
431,
10.1002/mma.3079
|
|
17.
|
Wendkouni Ouedraogo, Hamidou Ouedraogo, Boureima Sangaré,
A Reaction Diffusion Model to Describe the Toxin Effect on the Fish-Plankton Population,
2018,
2018,
2314-4629,
1,
10.1155/2018/2037093
|
|
18.
|
Gurusamy Arumugam,
Global existence and stability of three species predator-prey system with prey-taxis,
2023,
20,
1551-0018,
8448,
10.3934/mbe.2023371
|
|
19.
|
Alaaeddine Hammoudi, Oana Iosifescu,
Mathematical Analysis of a Chemotaxis-Type Model of Soil Carbon Dynamic,
2018,
39,
0252-9599,
253,
10.1007/s11401-018-1063-7
|
|
20.
|
Yan Jiang,
Intermittent distributed control for a class of nonlinear reaction-diffusion systems with spatial point measurements,
2019,
356,
00160032,
3811,
10.1016/j.jfranklin.2019.01.010
|
|
21.
|
Verónica Anaya, Mostafa Bendahmane, Michel Langlais, Mauricio Sepúlveda,
A convergent finite volume method for a model of indirectly transmitted diseases with nonlocal cross-diffusion,
2015,
70,
08981221,
132,
10.1016/j.camwa.2015.04.021
|
|
22.
|
Chenglin Li, Zhangguo Hong,
Global Existence of Classical Solutions to a Three-Species Predator-Prey Model with Two Prey-Taxes,
2012,
2012,
1110-757X,
1,
10.1155/2012/702603
|
|
23.
|
Yan Li, Zhiyi Lv, Fengrong Zhang, Hui Hao,
Bifurcation analysis of a diffusive predator–prey model with hyperbolic mortality and prey-taxis,
2024,
17,
1793-5245,
10.1142/S1793524523500110
|
|