Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis

  • Received: 01 September 2007 Revised: 01 January 2008
  • Primary: 35K57, 35K55, 92B05

  • In this paper, we consider a system of nonlinear partial differential equations modeling the Lotka Volterra interactions of preys and actively moving predators with prey-taxis and spatial diffusion. The interaction between predators are modelized by the statement of a food pyramid condition. We establish the existence of weak solutions by using Schauder fixed-point theorem and uniqueness via duality technique. This paper is a generalization of the results obtained in [2].

    Citation: Mostafa Bendahmane. Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis[J]. Networks and Heterogeneous Media, 2008, 3(4): 863-879. doi: 10.3934/nhm.2008.3.863

    Related Papers:

    [1] Mostafa Bendahmane . Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis. Networks and Heterogeneous Media, 2008, 3(4): 863-879. doi: 10.3934/nhm.2008.3.863
    [2] Verónica Anaya, Mostafa Bendahmane, Mauricio Sepúlveda . Mathematical and numerical analysis for Predator-prey system in a polluted environment. Networks and Heterogeneous Media, 2010, 5(4): 813-847. doi: 10.3934/nhm.2010.5.813
    [3] Rinaldo M. Colombo, Francesca Marcellini, Elena Rossi . Biological and industrial models motivating nonlocal conservation laws: A review of analytic and numerical results. Networks and Heterogeneous Media, 2016, 11(1): 49-67. doi: 10.3934/nhm.2016.11.49
    [4] Simone Fagioli, Yahya Jaafra . Multiple patterns formation for an aggregation/diffusion predator-prey system. Networks and Heterogeneous Media, 2021, 16(3): 377-411. doi: 10.3934/nhm.2021010
    [5] Verónica Anaya, Mostafa Bendahmane, David Mora, Ricardo Ruiz Baier . On a vorticity-based formulation for reaction-diffusion-Brinkman systems. Networks and Heterogeneous Media, 2018, 13(1): 69-94. doi: 10.3934/nhm.2018004
    [6] Mostafa Bendahmane, Kenneth H. Karlsen . Martingale solutions of stochastic nonlocal cross-diffusion systems. Networks and Heterogeneous Media, 2022, 17(5): 719-752. doi: 10.3934/nhm.2022024
    [7] Mostafa Bendahmane, Kenneth H. Karlsen . Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Networks and Heterogeneous Media, 2006, 1(1): 185-218. doi: 10.3934/nhm.2006.1.185
    [8] Narcisa Apreutesei, Vitaly Volpert . Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23
    [9] Don A. Jones, Hal L. Smith, Horst R. Thieme . Spread of viral infection of immobilized bacteria. Networks and Heterogeneous Media, 2013, 8(1): 327-342. doi: 10.3934/nhm.2013.8.327
    [10] Toshiyuki Ogawa, Takashi Okuda . Oscillatory dynamics in a reaction-diffusion system in the presence of 0:1:2 resonance. Networks and Heterogeneous Media, 2012, 7(4): 893-926. doi: 10.3934/nhm.2012.7.893
  • In this paper, we consider a system of nonlinear partial differential equations modeling the Lotka Volterra interactions of preys and actively moving predators with prey-taxis and spatial diffusion. The interaction between predators are modelized by the statement of a food pyramid condition. We establish the existence of weak solutions by using Schauder fixed-point theorem and uniqueness via duality technique. This paper is a generalization of the results obtained in [2].


  • This article has been cited by:

    1. Jonathan Bell, Evan C. Haskell, Attraction–repulsion taxis mechanisms in a predator–prey model, 2021, 2, 2662-2963, 10.1007/s42985-021-00080-0
    2. Mostafa Bendahmane, Kenneth H. Karlsen, Martingale solutions of stochastic nonlocal cross-diffusion systems, 2022, 17, 1556-1801, 719, 10.3934/nhm.2022024
    3. A. N. Elmurodov, M. S. Rasulov, On a Uniqueness of Solution for a Reaction-Diffusion Type System with a Free Boundary, 2022, 43, 1995-0802, 2099, 10.1134/S1995080222110087
    4. Youshan Tao, Global existence of classical solutions to a predator–prey model with nonlinear prey-taxis, 2010, 11, 14681218, 2056, 10.1016/j.nonrwa.2009.05.005
    5. Lakshmi Narayan Guin, Mainul Haque, Prashanta Kumar Mandal, The spatial patterns through diffusion-driven instability in a predator–prey model, 2012, 36, 0307904X, 1825, 10.1016/j.apm.2011.05.055
    6. Mostafa Bendahmane, Michel Langlais, A reaction-diffusion system with cross-diffusion modeling the spread of an epidemic disease, 2010, 10, 1424-3199, 883, 10.1007/s00028-010-0074-y
    7. L. Shangerganesh, N. Barani Balan, K. Balachandran, Weak-renormalized solutions for predator–prey system, 2013, 92, 0003-6811, 441, 10.1080/00036811.2011.625014
    8. Dietmar Hömberg, Robert Lasarzik, Luisa Plato, On the existence of generalized solutions to a spatio-temporal predator–prey system with prey-taxis, 2023, 23, 1424-3199, 10.1007/s00028-023-00871-5
    9. Chenglin Li, Global existence of classical solutions to the cross-diffusion three-species model with prey-taxis, 2016, 72, 08981221, 1394, 10.1016/j.camwa.2016.07.002
    10. Huanhuan Qiu, Shangjiang Guo, Shangzhi Li, Stability and Bifurcation in a Predator–Prey System with Prey-Taxis, 2020, 30, 0218-1274, 2050022, 10.1142/S0218127420500224
    11. Sainan Wu, Junping Shi, Boying Wu, Global existence of solutions and uniform persistence of a diffusive predator–prey model with prey-taxis, 2016, 260, 00220396, 5847, 10.1016/j.jde.2015.12.024
    12. EVAN C. HASKELL, JONATHAN BELL, BIFURCATION ANALYSIS FOR A ONE PREDATOR AND TWO PREY MODEL WITH PREY-TAXIS, 2021, 29, 0218-3390, 495, 10.1142/S0218339021400131
    13. Mostafa Bendahmane, Weak and classical solutions to predator–prey system with cross-diffusion, 2010, 73, 0362546X, 2489, 10.1016/j.na.2010.06.021
    14. Lakshmi Narayan Guin, Existence of spatial patterns in a predator–prey model with self- and cross-diffusion, 2014, 226, 00963003, 320, 10.1016/j.amc.2013.10.005
    15. Jianping Gao, Shangjiang Guo, Effect of prey-taxis and diffusion on positive steady states for a predator-prey system, 2018, 41, 01704214, 3570, 10.1002/mma.4847
    16. Xiaoli Wang, Wendi Wang, Guohong Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, 2015, 38, 01704214, 431, 10.1002/mma.3079
    17. Wendkouni Ouedraogo, Hamidou Ouedraogo, Boureima Sangaré, A Reaction Diffusion Model to Describe the Toxin Effect on the Fish-Plankton Population, 2018, 2018, 2314-4629, 1, 10.1155/2018/2037093
    18. Gurusamy Arumugam, Global existence and stability of three species predator-prey system with prey-taxis, 2023, 20, 1551-0018, 8448, 10.3934/mbe.2023371
    19. Alaaeddine Hammoudi, Oana Iosifescu, Mathematical Analysis of a Chemotaxis-Type Model of Soil Carbon Dynamic, 2018, 39, 0252-9599, 253, 10.1007/s11401-018-1063-7
    20. Yan Jiang, Intermittent distributed control for a class of nonlinear reaction-diffusion systems with spatial point measurements, 2019, 356, 00160032, 3811, 10.1016/j.jfranklin.2019.01.010
    21. Verónica Anaya, Mostafa Bendahmane, Michel Langlais, Mauricio Sepúlveda, A convergent finite volume method for a model of indirectly transmitted diseases with nonlocal cross-diffusion, 2015, 70, 08981221, 132, 10.1016/j.camwa.2015.04.021
    22. Chenglin Li, Zhangguo Hong, Global Existence of Classical Solutions to a Three-Species Predator-Prey Model with Two Prey-Taxes, 2012, 2012, 1110-757X, 1, 10.1155/2012/702603
    23. Yan Li, Zhiyi Lv, Fengrong Zhang, Hui Hao, Bifurcation analysis of a diffusive predator–prey model with hyperbolic mortality and prey-taxis, 2024, 17, 1793-5245, 10.1142/S1793524523500110
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4468) PDF downloads(133) Cited by(23)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog