The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 August 2005
  • MSC : 49J15,92C50.

  • Mathematical models for cancer chemotherapy as optimal control problems are considered. Results on scheduling optimal therapies when the controls represent the effectiveness of chemotherapeutic agents, or, equivalently, when the simplifying assumption is made that drugs act instantaneously, are compared with more realistic models that include pharmacokinetic (PK) equations modelling the drug's plasma concentration and various pharmacodynamic (PD) models for the effect the concentrations have on cells.

    Citation: Urszula Ledzewicz, Heinz Schättler. The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models[J]. Mathematical Biosciences and Engineering, 2005, 2(3): 561-578. doi: 10.3934/mbe.2005.2.561

    Related Papers:

    [1] Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier . On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences and Engineering, 2017, 14(1): 217-235. doi: 10.3934/mbe.2017014
    [2] Urszula Ledzewicz, Heinz Schättler . Controlling a model for bone marrow dynamics in cancer chemotherapy. Mathematical Biosciences and Engineering, 2004, 1(1): 95-110. doi: 10.3934/mbe.2004.1.95
    [3] Shuo Wang, Heinz Schättler . Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences and Engineering, 2016, 13(6): 1223-1240. doi: 10.3934/mbe.2016040
    [4] Hongli Yang, Jinzhi Lei . A mathematical model of chromosome recombination-induced drug resistance in cancer therapy. Mathematical Biosciences and Engineering, 2019, 16(6): 7098-7111. doi: 10.3934/mbe.2019356
    [5] Urszula Ledzewicz, Heinz Schättler, Mostafa Reisi Gahrooi, Siamak Mahmoudian Dehkordi . On the MTD paradigm and optimal control for multi-drug cancer chemotherapy. Mathematical Biosciences and Engineering, 2013, 10(3): 803-819. doi: 10.3934/mbe.2013.10.803
    [6] Andrzej Swierniak, Jaroslaw Smieja . Analysis and Optimization of Drug Resistant an Phase-Specific Cancer. Mathematical Biosciences and Engineering, 2005, 2(3): 657-670. doi: 10.3934/mbe.2005.2.657
    [7] Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030
    [8] Urszula Ledzewicz, Behrooz Amini, Heinz Schättler . Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences and Engineering, 2015, 12(6): 1257-1275. doi: 10.3934/mbe.2015.12.1257
    [9] Ghassen Haddad, Amira Kebir, Nadia Raissi, Amira Bouhali, Slimane Ben Miled . Optimal control model of tumor treatment in the context of cancer stem cell. Mathematical Biosciences and Engineering, 2022, 19(5): 4627-4642. doi: 10.3934/mbe.2022214
    [10] Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White . Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences and Engineering, 2018, 15(6): 1435-1463. doi: 10.3934/mbe.2018066
  • Mathematical models for cancer chemotherapy as optimal control problems are considered. Results on scheduling optimal therapies when the controls represent the effectiveness of chemotherapeutic agents, or, equivalently, when the simplifying assumption is made that drugs act instantaneously, are compared with more realistic models that include pharmacokinetic (PK) equations modelling the drug's plasma concentration and various pharmacodynamic (PD) models for the effect the concentrations have on cells.


  • This article has been cited by:

    1. Urszula Ledzewicz, Heinz Schättler, 2014, Chapter 7, 978-1-4939-1792-1, 157, 10.1007/978-1-4939-1793-8_7
    2. Urszula Ledzewicz, Heinz Schaettler, 2016, Chapter 11, 978-3-319-42021-9, 209, 10.1007/978-3-319-42023-3_11
    3. Urszula Ledzewicz, Heinz Schättler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy, 2007, 206, 00255564, 320, 10.1016/j.mbs.2005.03.013
    4. Andrzej Swierniak, Marek Kimmel, Jaroslaw Smieja, Mathematical modeling as a tool for planning anticancer therapy, 2009, 625, 00142999, 108, 10.1016/j.ejphar.2009.08.041
    5. Urszula Ledzewicz, Helmut Maurer, Heinz Schättler, 2010, Chapter 23, 978-3-642-12597-3, 267, 10.1007/978-3-642-12598-0_23
    6. Urszula Ledzewicz, Yi Liu, Heinz Schattler, 2009, The effect of pharmacokinetics on optimal protocols for a mathematical model of tumor anti-angiogenic therapy, 978-1-4244-4523-3, 1060, 10.1109/ACC.2009.5159849
    7. Alexander Bratus, Igor Samokhin, Ivan Yegorov, Daniil Yurchenko, Maximization of viability time in a mathematical model of cancer therapy, 2017, 294, 00255564, 110, 10.1016/j.mbs.2017.10.011
    8. Urszula Ledzewicz, Mozhdeh Faraji, Heinz Schattler, 2012, On optimal protocols for combinations of chemo- and immunotherapy, 978-1-4673-2066-5, 7492, 10.1109/CDC.2012.6427039
    9. Daniela Iacoviello, 2019, Chapter 9, 978-3-030-23072-2, 131, 10.1007/978-3-030-23073-9_9
    10. Maciej Leszczyński, Urszula Ledzewicz, Heinz Schättler, Florence Hubert, Optimal control for a mathematical model for chemotherapy with pharmacometrics, 2020, 15, 0973-5348, 69, 10.1051/mmnp/2020008
    11. Urszula Ledzewicz, Heinz Schättler, 2014, Chapter 10, 978-1-4939-0457-0, 295, 10.1007/978-1-4939-0458-7_10
    12. И.Е. Егоров, I.Ye. Yegorov, Optimal Feedback Control in a Mathematical Model of Malignant Tumour Treatment with the Immune Reaction Taken Into Account, 2014, 9, 19946538, 257, 10.17537/2014.9.257
    13. Urszula Ledzewicz, Heinz Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis, 2008, 252, 00225193, 295, 10.1016/j.jtbi.2008.02.014
    14. Luis A. Fernández, Cecilia Pola, Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint, 2014, 19, 1553-524X, 1563, 10.3934/dcdsb.2014.19.1563
    15. Jessica J. Cunningham, Joel S. Brown, Robert A. Gatenby, Kateřina Staňková, Optimal control to develop therapeutic strategies for metastatic castrate resistant prostate cancer, 2018, 459, 00225193, 67, 10.1016/j.jtbi.2018.09.022
    16. Shuo Wang, Heinz Schättler, Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity, 2016, 13, 1551-0018, 1223, 10.3934/mbe.2016040
    17. Urszula Ledzewicz, Heinz Schattler, Andrew Berman, 2009, On the structure of optimal controls for a mathematical model of tumor anti-angiogenic therapy with linear pharmacokinetics, 978-1-4244-4601-8, 71, 10.1109/CCA.2009.5281177
    18. Sébastien Benzekry, Philip Hahnfeldt, Maximum tolerated dose versus metronomic scheduling in the treatment of metastatic cancers, 2013, 335, 00225193, 235, 10.1016/j.jtbi.2013.06.036
    19. Andrzej Świerniak, Marek Kimmel, Jaroslaw Smieja, Krzysztof Puszynski, Krzysztof Psiuk-Maksymowicz, 2016, Chapter 2, 978-3-319-28093-6, 9, 10.1007/978-3-319-28095-0_2
    20. Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy, 2011, 8, 1551-0018, 307, 10.3934/mbe.2011.8.307
    21. I. Yegorov, Y. Todorov, Synthesis of optimal control in a mathematical model of tumour-immune dynamics, 2015, 36, 01432087, 93, 10.1002/oca.2103
    22. Nitendra Nath, Irfan Kil, Ugur Hasirci, Richard E. Groff, Timothy C. Burg, Nonlinear Adaptive Optimal Controller Design for Anti-Angiogenic Tumor Treatment, 2023, 11, 2227-9059, 497, 10.3390/biomedicines11020497
    23. Urszula Ledzewicz, Heinz Schättler, Analysis of a mathematical model for low-grade gliomas under chemotherapy as a dynamical system, 2025, 85, 14681218, 104344, 10.1016/j.nonrwa.2025.104344
    24. Itishree Jena, Kaushik Dehingia, Anuj Kullu, Anupam Priyadarshi, Bifurcation Analysis of a Discrete-Time Tumor Model with Crowley-Martin Functional Response and its Optimal Control Theory, 2025, 2731-8095, 10.1007/s40995-025-01796-z
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2571) PDF downloads(508) Cited by(24)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog