1.
|
Urszula Ledzewicz, Heinz Schättler,
2014,
Chapter 7,
978-1-4939-1792-1,
157,
10.1007/978-1-4939-1793-8_7
|
|
2.
|
Urszula Ledzewicz, Heinz Schaettler,
2016,
Chapter 11,
978-3-319-42021-9,
209,
10.1007/978-3-319-42023-3_11
|
|
3.
|
Urszula Ledzewicz, Heinz Schättler,
Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy,
2007,
206,
00255564,
320,
10.1016/j.mbs.2005.03.013
|
|
4.
|
Andrzej Swierniak, Marek Kimmel, Jaroslaw Smieja,
Mathematical modeling as a tool for planning anticancer therapy,
2009,
625,
00142999,
108,
10.1016/j.ejphar.2009.08.041
|
|
5.
|
Urszula Ledzewicz, Helmut Maurer, Heinz Schättler,
2010,
Chapter 23,
978-3-642-12597-3,
267,
10.1007/978-3-642-12598-0_23
|
|
6.
|
Urszula Ledzewicz, Yi Liu, Heinz Schattler,
2009,
The effect of pharmacokinetics on optimal protocols for a mathematical model of tumor anti-angiogenic therapy,
978-1-4244-4523-3,
1060,
10.1109/ACC.2009.5159849
|
|
7.
|
Alexander Bratus, Igor Samokhin, Ivan Yegorov, Daniil Yurchenko,
Maximization of viability time in a mathematical model of cancer therapy,
2017,
294,
00255564,
110,
10.1016/j.mbs.2017.10.011
|
|
8.
|
Urszula Ledzewicz, Mozhdeh Faraji, Heinz Schattler,
2012,
On optimal protocols for combinations of chemo- and immunotherapy,
978-1-4673-2066-5,
7492,
10.1109/CDC.2012.6427039
|
|
9.
|
Daniela Iacoviello,
2019,
Chapter 9,
978-3-030-23072-2,
131,
10.1007/978-3-030-23073-9_9
|
|
10.
|
Maciej Leszczyński, Urszula Ledzewicz, Heinz Schättler, Florence Hubert,
Optimal control for a mathematical model for chemotherapy with pharmacometrics,
2020,
15,
0973-5348,
69,
10.1051/mmnp/2020008
|
|
11.
|
Urszula Ledzewicz, Heinz Schättler,
2014,
Chapter 10,
978-1-4939-0457-0,
295,
10.1007/978-1-4939-0458-7_10
|
|
12.
|
И.Е. Егоров, I.Ye. Yegorov,
Optimal Feedback Control in a Mathematical Model of Malignant Tumour Treatment with the Immune Reaction Taken Into Account,
2014,
9,
19946538,
257,
10.17537/2014.9.257
|
|
13.
|
Urszula Ledzewicz, Heinz Schättler,
Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis,
2008,
252,
00225193,
295,
10.1016/j.jtbi.2008.02.014
|
|
14.
|
Luis A. Fernández, Cecilia Pola,
Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint,
2014,
19,
1553-524X,
1563,
10.3934/dcdsb.2014.19.1563
|
|
15.
|
Jessica J. Cunningham, Joel S. Brown, Robert A. Gatenby, Kateřina Staňková,
Optimal control to develop therapeutic strategies for metastatic castrate resistant prostate cancer,
2018,
459,
00225193,
67,
10.1016/j.jtbi.2018.09.022
|
|
16.
|
Shuo Wang, Heinz Schättler,
Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity,
2016,
13,
1551-0018,
1223,
10.3934/mbe.2016040
|
|
17.
|
Urszula Ledzewicz, Heinz Schattler, Andrew Berman,
2009,
On the structure of optimal controls for a mathematical model of tumor anti-angiogenic therapy with linear pharmacokinetics,
978-1-4244-4601-8,
71,
10.1109/CCA.2009.5281177
|
|
18.
|
Sébastien Benzekry, Philip Hahnfeldt,
Maximum tolerated dose versus metronomic scheduling in the treatment of metastatic cancers,
2013,
335,
00225193,
235,
10.1016/j.jtbi.2013.06.036
|
|
19.
|
Andrzej Świerniak, Marek Kimmel, Jaroslaw Smieja, Krzysztof Puszynski, Krzysztof Psiuk-Maksymowicz,
2016,
Chapter 2,
978-3-319-28093-6,
9,
10.1007/978-3-319-28095-0_2
|
|
20.
|
Optimal and suboptimal protocols for a mathematical model for
tumor anti-angiogenesis in combination with chemotherapy,
2011,
8,
1551-0018,
307,
10.3934/mbe.2011.8.307
|
|
21.
|
I. Yegorov, Y. Todorov,
Synthesis of optimal control in a mathematical model of tumour-immune dynamics,
2015,
36,
01432087,
93,
10.1002/oca.2103
|
|
22.
|
Nitendra Nath, Irfan Kil, Ugur Hasirci, Richard E. Groff, Timothy C. Burg,
Nonlinear Adaptive Optimal Controller Design for Anti-Angiogenic Tumor Treatment,
2023,
11,
2227-9059,
497,
10.3390/biomedicines11020497
|
|
23.
|
Urszula Ledzewicz, Heinz Schättler,
Analysis of a mathematical model for low-grade gliomas under chemotherapy as a dynamical system,
2025,
85,
14681218,
104344,
10.1016/j.nonrwa.2025.104344
|
|
24.
|
Itishree Jena, Kaushik Dehingia, Anuj Kullu, Anupam Priyadarshi,
Bifurcation Analysis of a Discrete-Time Tumor Model with Crowley-Martin Functional Response and its Optimal Control Theory,
2025,
2731-8095,
10.1007/s40995-025-01796-z
|
|