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Abstract. Mathematical models for cancer chemotherapy as optimal con-
trol problems are considered. Results on scheduling optimal therapies when
the controls represent the effectiveness of chemotherapeutic agents, or, equiva-
lently, when the simplifying assumption is made that drugs act instantaneously,
are compared with more realistic models that include pharmacokinetic (PK)
equations modelling the drug’s plasma concentration and various pharmaco-
dynamic (PD) models for the effect the concentrations have on cells.

1. Introduction. Mathematical modelling of cancer chemotherapy has more than
four decades of history (e.g., [2, 5, 17, 18, 22, 23]) and has contributed to the de-
velopment of several qualitative ideas for chemotherapy scheduling. But the more
difficult part of this research lies in generating quantitative practical results. The
reasons for this lie in both biomedicine and mathematics. On the biological side,
important cell processes still are not fully understood, since the complexity of the
underlying biological processes is difficult to capture. Thus our understanding of
the dynamics is incomplete, especially in multidrug treatments when synergistic or
antagonistic relations may not be clear. Another problem is that crucial parame-
ters in the modeling may not be known or may simply vary too much from case to
case so that data are not readily transferable. On the mathematical side, the only
feasible approach for dealing with realistic (and thus necessarily high-dimensional,
complicated, and intricate) models is through numerical simulation studies relying
on computational power (as for the model underlying [21]). But if there is high
uncertainty or a large range of relevant parameter values from patient to patient,
then in chemotherapy simulations inherently are of limited quantitative practical
value as well. As Goldie has observed, “The best average treatment may be the
poorest option for a particular patient” [7]. Theoretical analysis, on the other hand,
is limited to small and hence overly simplified models whose results are not appli-
cable quantitatively. Nevertheless, their analysis can further our understanding
of some simplified aspects of the overall system, a necessary step toward the goal
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of analyzing more medically relevant models. For example, these investigations
can point out how sensitive some protocols are with respect to specific parameters
and thus indicate the relevant and less relevant medical parameters in quantitative
approaches.

Mathematically, cancer chemotherapy can be viewed as a control system with
the state of the system, N , given by the numbers of cells of various type in specific
compartments. The number of compartments determines the dimension n of the
system. For example, the compartments can correspond to the phases of the cell
cycle or some clusters of these, and the components of N give the average number
of cancer cells in these compartments as in the models in [23, 25]. If the emphasis is
on healthy cells rather than on cancer cells, the state might consist of the number
of bone marrow cells as in [6]. The control, u, typically represents the drug dosage
or, in simplified models, the effect the drugs have on normal and cancer cells. Since
chemotherapeutic agents affect normal cells as well as cancer cells, the objective
becomes to minimize the number of cancer cells over a fixed therapy interval while
keeping the toxicity to the normal tissue at an acceptable level. In such a formu-
lation, side effects typically are modeled implicitly only by minimizing the total
amount of drugs given. If the side effects are more in the focus of the model, the
objective may be to maximize the bone marrow cells while trying to administer as
much drugs as possible. Either way, these approaches naturally can be formulated
as optimal control problems.

In view of the complexity of the real medical problem, it makes sense to start with
the analysis of simplified models and then add increasingly complex and medically
more realistic features to the model. In this sense, a commonly made simplifica-
tion is to identify the drug dosage with its concentration or even with its effects.
In reality, these clearly are different phenomena and their relationships are stud-
ied under the names of pharmacokinetics (PK) and pharmacodynamics (PD). In
this paper, we consider a general mathematical model for cancer chemotherapy de-
scribed by a bilinear system, but add pharmacokinetic equations that model the
drug’s concentration in the body plasma and also allow for pharmacodynamic ef-
fects in modeling the effectiveness of the drugs. Thus, in principle, the dynamics of
drug delivery and effectiveness can formally be incorporated in the models. But the
models used here are still small and clearly are not comprehensive. For example,
the important aspect of drug resistance is not included.

In section 2, a general mathematical model with the dynamics given by a bilinear
system is formulated that is then augmented by models for PK and PD in section 3.
An analysis of optimal controls using the Maximum principle is given in section 4,
and the optimality of singular controls is investigated. These results are illustrated
for two simple two-dimensional models in section 5. For these examples, it is shown
that the optimality status of singular controls does not change under the addition
of linear PK and PD models. For both models, which have been initially analyzed
in [14] and [16], singular controls are not optimal when linear PK and PD models
are added. However, with nonlinearities in the PK/PD equations, singular controls
become viable candidates for optimality.
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2. A general compartmental model for cancer chemotherapy as optimal
control problem.

2.1. Dynamics. Many models for cancer chemotherapy considered in the litera-
ture have an underlying dynamics described by a bilinear system of the form

Σ0 : Ṅ = (A +
m∑

i=1

uiBi)N, N(0) = N0, (1)

where A and Bi are n×n matrices, Bi 6= 0, and n is the number of compartments.
(For example, see [6, 12, 13, 23].) The components of the vector N denote the
number of cancer (or other) cells in the compartments, and the controls ui often
represent the drug dosages of various drugs and take values in compact intervals
[αi, βi] ⊂ [0,∞) with αi = 0 in these cases. Initially all components of N0 are
positive. An obvious state space constraint for these models is that the number
of cells remains positive. However, with correct modeling this constraint should
not need to be imposed.1 Mathematically, a simple sufficient condition for this to
hold, which often can easily be verified, is that all the matrices A +

∑m
i=1 uiBi,

ui ∈ [αi, βi], i = 1, . . . , m, have nonnegative off-diagonal entries.

Proposition 2.1. Suppose all the matrices A+
∑m

i=1 uiBi, u ∈ U = [α1, β1]× . . .×
[αm, βm], have nonnegative off-diagonal entries. Then all states Ni, i = 1, . . . , n,
are positive over the interval [0, T ].

Proof. For any control u defined on [0,∞), (1) is a linear system with bounded
coefficients, and thus solutions exist over [0,∞). Define τ as the supremum over all
times η such that all components Ni(t) are positive on [0, η]:

τ = sup{η ≥ 0 : Ni(t) > 0 for 0 ≤ t ≤ η and all i}. (2)

Since all components of N0 are positive, τ > 0. If τ < ∞, then let ρ denote one of
the components i of N for which Ni(τ) = 0. Then ρ satisfies a first-order ordinary
differential equation (ODE) of the form ρ̇ = αρ + β with ρ(0) > 0 and β(t) ≥ 0 for
0 ≤ t ≤ τ. Hence,

ρ(τ) = exp
(∫ τ

0

α(s)ds

)[
ρ(0) +

∫ τ

0

exp
(
−

∫ s

0

α(r)dr

)
β(s)ds

]
> 0.

Contradiction. ¤
In the cell-cycle-specific compartmental models for cancer chemotherapy devel-

oped in [23], this condition is always satisfied since there are outflows only from
the ith compartment but no direct return flows into the ith compartment. Thus,
if Ni(0) > 0 for all i = 1, . . . , n, then Ni(t) > 0 for all i = 1, . . . , n and all times
t > 0. Therefore the physical state-space constraints Ni(t) ≥ 0 for i = 1, . . . , n
of our model will never be active and need not be stated explicitly. We therefore
henceforth assume that the system Σ0 is positive invariant in this sense.

2.2. Objective. The aim of any treatment is to kill the cancer or at a minimum to
curtail its further spread while keeping the side effects of treatment on the normal
tissue acceptable. Mathematically there are many (nonequivalent) ways of modeling
this. In this paper, we consider a linear (L1-type) objective of the form

J = rN(T ) +
∫ T

0

qN(t) + `u(t)dt, (3)

1If the state variables can turn negative, the modeling is faulty.
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where r = (r1, . . . , rn) and q = (q1, . . . , qn) are row vectors of positive coefficients
and ` = (`1, . . . , `m) is a nonzero row vector of nonnegative coefficients, `i ≥ 0.
While some of the components of ` may be zero (for example, this would be natural
for the weight `i of a drug that has minimal or no significant side effects, such as
recruiting agents), the weights in ` corresponding to killing agents must be positive.
Depending on the specific model and the actual meaning of the vector N , we may
want to minimize J (in the case of cancer cells) or maximize J (in the case of
bone-marrow cells). For example, for a model where N represents the number of
cancer cells, the terminal term rN(T ) represents a weighted average of the total
number of cancer cells at the end of an assumed fixed therapy interval [0, T ], and
the term qN(t) in the Lagrangian measures the number of cancer cells over the
therapy period and is added to prevent the number of cancer cells from rising to
unacceptably high levels at intermediate times. Side effects of treatment (e.g.,
toxicity to healthy tissue) are modeled only indirectly here through the last term,
which is taken as linear in the control generating an L1-type objective. Clearly,
other choices for modeling side effects are also possible. A linear integral term
has the advantage that it gives a measure proportional to the overall dosage (this
would be distorted by a quadratic or other nonlinear term), and since side effects
can be manifold, and are not always easily quantifiable, this appears reasonable.
At the moment, we do not yet take into account pharmacokinetic equations or
pharmacodynamics. Thus the optimal control problem is to

(Pmin / max): choose a Lebesgue measurable function u : [0, T ] → U that mini-
mizes (or maximizes) the objective (3) subject to dynamics (1).

While the choice of Lebesgue measurable functions as controls may appear un-
realistic in their generality, this choice guarantees some basic mathematical prop-
erties, such as the existence of an optimal control.2

2.3. Example 1: Phase-specific models for cancer cells. Each cell passes
through a sequence of phases from cell birth to cell division. The starting point is a
growth phase G1, after which the cell enters a phase S where DNA synthesis occurs.
Then a second growth phase G2 takes place in which the cell prepares for mitosis
or phase M . Here, cell division occurs. Each of the two daughter cells may either
reenter phase G1 or simply lie dormant in a separate phase G0 for some time until
reentering G1, thus starting the entire process all over again. These distinctions
are important, because most drugs are active in a specific phase of the cell cycle.
For example, so-called spindle poisons destroy a mitotic spindle and are active in
mitosis. In the modeling, G2 and M often are combined into one compartment,
since the boundaries between these phases are difficult to establish and many killing
agents, such as paclitaxel (Taxol), mainly affect cells during their division and thus
are G2/M specific. The reason for this is that the cell walls become very thin
and porous in mitosis M , and so the cell is more vulnerable to an attack during
this phase. Drug treatment influences the cell cycle in many other ways besides
cell-killing; blocking and recruitment agents also play important roles. Blocking
agents slow the transitions of the cells through the cell cycle and thus impede the
tumor’s growth, while recruiting agents make cancer cells leave the dormant stage
G0, where they typically are not susceptible to any chemotherapy.

2No such statement can be made a priori, for example, with controls given by piecewise con-
tinuous functions, although often optimal controls do in fact belong to this class.
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Taking into account phase specificity naturally leads to compartmental models
for cancer chemotherapy. One class of probabilistic models of this type was de-
veloped in [23, 25]. Depending on the number and types of therapeutic agents
considered, the phases of the cell cycle are clustered into compartments, with the
state representing the average number of cells in each compartment and the control
representing the dosages or effects of the various drugs. The dynamics describes
the in- and outflows between the compartments in the presence of the control, that
is, under therapy. The transit times of cells through phases of the cell cycle vary,
particularly in malignant cells. If an exponential distribution is used to model the
transit times, then for the averages, a bilinear system of the type Σ0 arises, with
the parameters of the matrices related to the inverse of the expected transit times
[23].

The simplest model arises when a single G2/M -specific killing agent is consid-
ered. Then it is natural to combine the dormant phase G0, the first growth phase
G1 and the synthesis phase S into the first compartment, while the second consists
of the second growth phase G2 and mitosis M . If Ni(t), i = 1, 2, denote the number
of cancer cells in the ith compartment at time t, then a single-input two-dimensional
system of the form

Ṅ(t) = (A + uB)N(t), N(0) = N0, (4)

arises with

A =
( −a1 2a2

a1 −a2

)
, B =

(
0 −2a2

0 0

)
(5)

and control constraint 0 ≤ u ≤ 1. The coefficients ai represent the inverse mean
transit times of the cells through the ith compartment [23].

If additional drugs are considered, the numbers of controls and compartments
increases as in examples including blocking agents [12], recruiting agents, or both
[13]. For example, the insensitivity of dormant cells to anticancer drugs is a major
problem for leukemia. A mathematical model in which active recruitment of the
cells in the dormant stage G0 through cytokines [26] is modeled distinguishes the
dormant phase G0 from the first growth phase G1 and combines the remaining
phases S, G2, and M . This leads to a three-dimensional system of the form

Ṅ(t) = (A + u1B1 + u2B2)N(t), N(0) = N0, (6)

where

A =



−a0 0 2b0a2

a0 −a1 2b1a2

0 a1 −a2


 (7)

and

B1 =




0 0 −2b0a2

0 0 −2b1a2

0 0 0


 , B2 =



−a0 0 0
a0 0 0
0 0 0


 . (8)

The control u1, 0 ≤ u1 ≤ 1, represents the killing agent, and a recruiting agent u2

is applied to reduce the average sejour time in the quiescent phase. As a result,
the average transit time through the compartment G0 is reduced, increasing the
outflow by a factor 1 + u2, 0 ≤ u2 ≤ wmax. The control u2 = 0 corresponds to no
drug being applied, while u2 = wmax occurs with a full dose. It is assumed that
newly born cells either enter G1 and immediately start the cell division process or
that they enter the dormant stage G0 with probabilities b0 and b1, b0 + b1 = 1.
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2.4. Example 2: Models for bone-marrow cells. A different type of model
that goes back to Eisen [5] and fits the same mathematical pattern was considered
by Panetta [19]. For many drugs, the limiting tissue is hemopoietic (i.e., related to
blood-cell formulation). Mature cells of these renewing tissues are formed through
differentiation from the self-renewing stem-cell population in the bone marrow,
and it is generally accepted that “ideal cancer treatment would aim to bring about
minimal normal stem cell kill” [9]. Toxicity to the bone marrow thus is one of
the main limiting factors in chemotherapy and should be taken into account. This
model focuses on this aspect of treatment.

The model distinguishes proliferating cells P from quiescent (or dormant) cells Q
in the bone marrow. The growth rate of the proliferating cells is denoted by γ, and
the transition rates from proliferating to quiescent cells and vice versa are denoted
by α and β, respectively. The rate at which bone marrow enters the blood stream
is denoted by ρ, and the natural death rate of the proliferating cells is called δ. It
is assumed that all these parameters governing the cell cycle remain constant over
the time horizon considered and that chemotherapy kills proliferating cells but that
quiescent cells are not affected by the agent. The overall dynamics of the controlled
system is described by

Ṗ = (γ − δ − α− u)P + βQ, P (0) = P0, (9)

Q̇ = αP − (ρ + β)Q, Q(0) = Q0, (10)

with all initial conditions positive. If we set N = (P,Q), the general form of the
dynamics is given by the bilinear system

Ṅ = (A + uB)N, N(0) = N0, (11)

with

A =
(

γ − δ − α β
α −(ρ + β)

)
and B =

( −1 0
0 0

)
. (12)

2.5. Brief summary of existing results. In earlier research, we have analyzed
both specific models from the class Σ0 [11, 12, 13] as well as the structure of its
solutions in the general case [24]. The necessary conditions for optimality for these
models given by the Pontryagin maximum principle [20] single out bang-bang and
singular controls [1, 10] as the prime candidates, although they do not fully restrict
the candidates for optimal controls in general. Bang-bang controls correspond to
protocols in which a full dose is administered separated by rest periods when no
dose is given. Singular controls correspond to specific types of protocols with time-
varying partial doses. However, with the aid of high-order necessary conditions for
optimality, such as the generalized Legendre-Clebsch condition or the Goh condition
[10], it has been shown for each of the specific models considered that singular
controls are not optimal. In fact, for all models considered falling into the type of
Example 1, singular controls are locally maximizing rather than minimizing [11, 12],
and they also are not optimal for the bone-marrow model of Example 2. For all
these models, easily verifiable sufficient conditions for local optimality of bang-bang
trajectories [11, 24] have been developed using the method of characteristics. These
results agree with medical practice of giving full-dose chemotherapy sessions with
complete rest periods in between. Giving continuously varying partial doses as they
would occur for singular arcs is in fact not optimal for problem (Pmin / max).
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3. Models including pharmacokinetics and pharmacodynamics (PK/PD).
In these earlier models, the drug’s dosage is identified with its concentration and ef-
fects. Here we investigate whether and to what extent the qualitative results about
optimal controls will change if more generally one augments model (1) with PK
equations that model the drug’s concentration in the body and also adds functions
e = s(c) as a model for PD. These are important aspects and make the models
more medically relevant and realistic.

3.1. Pharmacokinetics. In (1), as in most other models, the variable u actually
represents the effects of the drugs. Mathematically equivalent, the relations between
the drug dosage and the effects of the drugs are considered instantaneous. We
augment the class of compartmental models for cancer chemotherapy defined by
(1) with PK equations that model the time evolution of the drug’s concentration.
We first consider a single chemotherapeutic agent. Simple models considered in
the literature use a first-order linear system to represent the dynamics for the drug
concentration c in the plasma. The model itself is one of exponential growth and
decay as it is commonly used as the model for continuous infusions. Here, we more
generally consider a bilinear system of the form

ċ = −(f + ug)c + hu, c(0) = 0, (13)

where f and h are positive constants, but g is arbitrary. This model introduces
some mild nonlinearities and allows for the feature that concentrations build up
to their maximum level at a different rate from that at which the drug is cleared
by the system if no additional drugs are given. This makes sense because these
are physiologically different procedures. For example, if c(τ) = c̄ and a constant
control u(t) ≡ ū is used for t > τ , then

c(t) = exp(−(f + ūg)(t− τ))c̄ +
hū

f + ūg
(1− exp(−(f + ūg)(t− τ)) .

For a linear system (g = 0) the concentrations therefore build up to their maximal
value exponentially in the same way that they decay when no drug is given, namely,
at rate f . For the bilinear model in the absence of additional drugs given, the
concentration still decays exponentially at rate f , but it is possible to differentiate
the speed of the build up to f + ūg. Thus g > 0 implies a faster buildup of
the concentration than the eventual clearance of the drug. Figure 1 illustrates the
different behaviors for a system of the form ċ = −(1+ug)c+hu for g = 0, 1, 2, 3 when
an initial dose u ≡ 1 is given on the interval [0, 2]. The normalization h = 1+ g has
been made to set the maximal achievable concentration to c = 1 for all cases. The
linear system g = 0 corresponds to the lower solid line for which the concentration
grows to less than 90%, while the curves for g = 1 (dash-dot), g = 2 (dash), and
g = 3 (upper solid curve) show an acceleration in the buildup of the concentration.
After the drug has been stopped, the decay follows the same exponential law in
all the cases, and the curves for positive g are very close to each other. We only
note that the dynamic response can also be tailored to bolus injections by properly
choosing the parameters simply with the understanding that the time interval of
application is very small.

The bilinear model (13) represents a first attempt at introducing nonlinearities
into the PK model and could be replaced with more complicated nonlinear struc-
tures. But then our analysis in section 4 below would need to be adjusted and
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Figure 1. Bilinear model for PK.

carried out anew. In this paper, our interest is to explore the effect of nonlinear-
ities on the structure of optimal solutions, and for this the model (13) is a good
starting point.

For multidrug treatments it is still a reasonable first-order approximation to
assume that the concentrations of the different drugs build up independently. Thus
if we add an equation of the type (13) for each of the drugs and replace the drug
dosage in the dynamics by its concentration, then the combined dynamics becomes

Ṅ = (A +
m∑

i=1

ciBi)N, N(0) = N0, (14)

ċi = −(fi + uigi)ci + hiui, ci(0) = 0; (15)

the objective remains unchanged.

3.2. Pharmacodynamics. However, (14) does not properly account for the effect
e the drug concentration c has on the cancer cells. For instance, in the models of
Example 1, it is assumed that the effect e of the drug is proportional to the number
of ineffective cell divisions in the G2/M phase; that is, e = sc and s is called the
effectiveness of the drug. Thus, for the two-compartment model, while all cells
a2N2 leave the compartment G2/M , only a fraction (1 − e)a2N2 of cells reenters
phase G1/S and undergoes cell division. The same model is used for the bone-
marrow model of Example 2 [6]. This is the most elementary way of modeling
pharmacodynamics, but it is only reasonable over a range of concentration and
often is not a valid model for low or high concentrations. More generally, the
effect of a single chemotherapeutic agent can be modeled by a function s defined
on the interval [0,∞) with values in some interval [0, s̄]. Depending on the choice
of this function, qualitatively different models arise. Commonly used forms are a
Michaelis-Menton or Emax type model [3] of the form

s(c) =
Emaxc

EC50 + c
, (16)
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which more accurately describes the effectiveness for high concentrations and sig-
moidal functions [8] try to capture the behavior at both lower and higher concen-
trations. Examples of these are

s(c) = Emin +
Emax −Emin

1 + 10n(log EC50−c)
(17)

or its approximation

s(c) =
Emaxc

n

ECn
50 + cn

, (18)

where n is a positive integer greater than 1. In these equations, Emax and Emin

denote the maximum and minimum effects, respectively, and EC50 denotes the
concentration at half the maximum effect; these are commonly used parameters
in pharmacology. The Emax model is reasonable for fast-acting drugs, which then
saturate at high concentrations while the sigmoidal models more accurately ap-
proximate the effectiveness at both lower and higher concentrations.
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Figure 2. (a) Emax model; (b) sigmoidal model.

In our analysis below we only assume that the functions si satisfy si(0) = 0,
are strictly increasing and twice continuously differentiable with values in intervals
[0, s̄i], 0 < s̄i < ∞, possibly only reaching level s̄i asymptotically for full dose. For a
linear function or other unbounded models, this can be guaranteed by appropriately
choosing the model parameters in (13).

In a multidrug treatment, however, these formulations are only applicable if the
drugs act in different ways. Clearly, if there are two or more killing drugs that essen-
tially act in the same phase of the cell cycle, their combined effectiveness depends
on the concentrations of all of them and all their possible synergistic properties. To
the best of our knowledge, these types of interactions are not well understood even
for the most commonly used drugs, and therefore usually similarly acting drugs
are bundled into one control in mathematical models. In the model below this is
assumed, or equivalently, the controls correspond to qualitatively different drugs
(e.g., killing agents versus recruiting agents) that act in different compartments in
the model. Then we can formulate the overall dynamics as

Ṅ = (A +
m∑

i=1

si(ci)Bi)N, N(0) = N0, (19)

ċi = −(fi + uigi)ci + hiui, ci(0) = 0. (20)
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Since side effects of drugs are manifold and not necessarily restricted to the killing
agents, we retain the drug dosage u as a measure in the integral of the objective.
Thus, overall the problem now becomes:

(Qmin / max): choose a Lebesgue measurable function u : [0, T ] → U that mini-
mizes (or maximizes) objective (3) subject to dynamics (19) and (20).

4. Analysis of the model with PK/PD equations.

4.1. Necessary conditions for optimality. First-order necessary conditions for
optimality are given by the Pontryagin maximum principle [20, 1]. It is easily seen
that extremals are normal and therefore these conditions reduce to the following
statement: If u∗ is an optimal control with corresponding trajectory (N∗, c∗), then
there exist absolutely continuous functions λ and µ, which we write as row vectors,
λ : [0, T ] → (Rn)∗, µ : [0, T ] → (Rm)∗, satisfying the adjoint equations with
transversality condition,

λ̇ = −λ(A +
m∑

i=1

si(ci)Bi)− q, λ(T ) = r, (21)

µ̇i = µi(fi + uigi)− s′i(ci)λBiN, µi(T ) = 0, (22)

such the optimal control u∗ minimizes (or maximizes) the Hamiltonian H,

H = qN +
m∑

i=1

`iui + λ(A +
m∑

i=1

si(ci)Bi)N +
m∑

i=1

µi ((hi − gici)ui − fici) , (23)

over the control set U = [α1, β1]× . . .× [αm, βm] along (λ(t), µ(t), N∗(t), c∗(t)). For
the sake of definiteness, we henceforth consider the minimization problem.

We call a pair ((N, c), u) consisting of an admissible control u with correspond-
ing trajectory (N, c) for which there exist multipliers (λ, µ) such that the condi-
tions of the maximum principle are satisfied an extremal (pair), and the triple
((N, c), u, (λ, µ)) is an extremal lift (to the cotangent bundle).

Proposition 4.1. Suppose all the matrices A +
∑m

i=1 siBi, s ∈ S̄ = [0, s̄1]× . . .×
[0, s̄m], have nonnegative off-diagonal entries. Then all states Ni and costates λi,
i = 1, . . . , n, are positive over the interval [0, T ].

Proof. For any admissible control ui the function si takes values in the interval
[0, s̄i], and thus it follows from Proposition 2.1 that all components of N remain
positive. Similarly, as the solution to a linear ODE, the adjoint variable exists over
the full interval. Let σ denote the infimum over all times η such that all components
λi are positive on [η, T ]:

σ = inf{η ≤ T : λi(t) > 0 for η ≤ t ≤ T for all i}.
Since the components of r are positive, we have σ < T . If σ > −∞, let ρ denote
one of the components i of λ for which λi(σ) = 0. Again ρ satisfies a first-order
ODE of the form ρ̇ = αρ+β with ρ(T ) > 0, but now β(t) ≤ 0 for τ ≤ t ≤ T. Hence

ρ(τ) = exp

(
−

∫ T

τ

α(s)ds

)[
ρ(T )−

∫ T

τ

exp

(∫ T

s

α(r)dr

)
β(s)ds

]
> 0.

Contradiction. ¤
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We henceforth assume that all states N and costates λ are positive. Sign prop-
erties of the multipliers µi depend on the coefficients of the matrix Bi. If τ is a
zero of µi, then

µ̇i(τ) = −s′i(ci(τ))λ(τ)BiN(τ). (24)

Since si is strictly increasing, for example, we have the following proposition.

Proposition 4.2. If all entries of the matrix Bi are nonpositive (resp. nonnega-
tive), then the multiplier µi is negative (resp. positive) for t < T .

Proof. We only consider the case when the entries are nonpositive. Then, since
Bi 6= 0, at least one entry must be negative, and thus λ(t)BiN(t) < 0 for all t.
Therefore, µ̇i(τ) > 0 whenever µi(τ) = 0. Since µi(T ) = 0, it follows that µi is
negative for t < T . ¤

More generally, similar results can be proven if it can be asserted that λ(τ)BiN(τ) <
0 whenever µi(τ) = 0. The conditions of the maximum principle in some instances
allow to do this.

4.2. Bang-bang and singular controls. The Hamiltonian H of the optimal con-
trol problem is of the form

H = Φ0 +
m∑

i=1

uiΦi (25)

with
Φi(t) = `i + µi(t)(hi − gici(t)) (26)

and

Φ0(t) = qN(t) + λ(A +
m∑

i=1

si(ci)Bi)N −
m∑

i=1

µifici. (27)

Since the control set is an interval, U = [α1, β1]× . . .× [αm, βm], the minimization
condition is equivalent to m scalar minimization problems for each control ui, and
thus we have

u∗i (t) =
{

αi if Φi(t) > 0,
βi if Φi(t) < 0.

(28)

The functions Φi are called the corresponding switching functions. Note that
Φi(T ) = `i ≥ 0, and thus optimal controls will always end with an interval where
ui(t) ≡ αi if a positive weight is put on the corresponding drug. Intuitively this
is clear, since the addition of a pharmacokinetic model generates a delay in the
effectiveness of the control, and thus because since side effects still are measured
instantaneously in the model in terms of the drug dosage, it is not optimal to give
drugs until the very end of therapy.

A priori, the controls are not determined by the minimum condition at times
when Φi(t) = 0. However, if Φi(t) ≡ 0 on an open interval, then all derivatives of
Φi(t) also must vanish, and this may determine the control. Controls of this kind
are called singular, while we refer to the constant controls as bang controls. Optimal
controls then need to be synthesized from these candidates through an analysis of
the switching function. For example, if Φ(τ) = 0 but Φ̇(τ) 6= 0, then the control
has a switch at time τ and must be bang-bang near τ . To analyze the structure of
the optimal controls, we therefore need to analyze the switching function and its
derivatives. A simple direct computation shows that these derivatives are given by

Φ̇i(t) = µi(t)fihi − s′i(ci(t))[hi − gici(t)]λ(t)BiN(t). (29)
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This allows for Φ̇i(τ) to vanish at points where Φi(τ) = 0. For example, if the
entries of Bi are nonpositive, then λ(τ)BiN(τ) < 0, µi(τ) < 0 and hi−gici(τ) > 0.
Since s′i > 0, we always have a difference of negative terms, which allows for the
possibility of singular arcs.

If the control ui is singular on some open interval I (i.e., if the switching function
Φi vanishes on I), minimization of the Hamiltonian (23) is inconclusive and does
not determine the value of the control. However, in this case all derivatives of
the switching function also vanish identically on I. Typically the singular controls
can be computed by differentiating the switching function in time until the control
variable explicitly appears in the derivative, say in Φ(d)

i (t), and then solving the
resulting equation Φ(d)

i (t) ≡ 0 for the control. If the corresponding control value is
admissible (i.e., has a value in the interval [αi, βi]), this defines the singular control.
Otherwise the singular arc is not admissible. For a single-input system that is linear
in the control, it is well known [10] that d must be even, say d = 2k, and k is called
the order of the singular arc. In principle, this order can vary with time over the
interval I. If it is constant on the interval I, then it is a necessary condition for
minimality of a singular arc of order k, the so-called generalized Legendre-Clebsch
condition [10, 1], that

(−1)k ∂

∂u

d2k

dt2k

∂H

∂u
≥ 0 (30)

along the extremal. Note that the term ∂H
∂u = Φ in (30) represents the switching

function for the problem. The situation becomes more complicated in the multi-
input case, but in our model the controls are sufficiently decoupled so that the
single-input results suffice.

Differentiating (29) once more and looking for singular arcs of order 1, we com-
pute

∂

∂ui
Φ̈i =

(
∂

∂ui
µ̇i

)
fihi − s′′i (ci)

(
∂

∂ui
ċi

)
(hi − gici)λBiN (31)

+ s′i(ci)gi

(
∂

∂ui
ċi

)
λBiN − s′i(ci)(hi − gici)

∂

∂ui

(
d

dt
(λBiN)

)
.

For later use, we state the following formula that follows by a direct computation.

Lemma 4.1. For any n × n matrix R, the derivative of Ψ(t) = λ(t)RN(t) along
solutions N of (19) and λ of (21) is given by

Ψ̇ = λ

[
A +

m∑

i=1

si(ci)Bi, R

]
N − qRN (32)

where [A,B] = BA−AB denotes the commutator (or Lie-bracket) of A and B. ¤

Hence
d

dt
(λBiN) = λ[A +

∑

j 6=i

sj(cj)Bj , Bi]N − qBiN (33)

does not depend on the control. It therefore follows from the dynamics and adjoint
equations that

∂

∂ui
Φ̈i = µigifihi − s′′i (ci)(hi − gici)2λBiN + s′i(ci)gi(hi − gici)λBiN

= gi (µifihi + s′i(ci)(hi − gici)λBiN)− s′′i (ci)(hi − gici)2λBiN. (34)
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But Φ̇ ≡ 0 along the singular arc, and therefore using (29) we get

∂

∂ui
Φ̈i = (hi − gici)λBiN [gi(2s′i(ci) + cis

′′
i (ci))− his

′′
i (ci))] , (35)

and for the minimization problem, it is a necessary condition of optimality of the
singular arc that this quantity is nonpositive. Further analysis of this condition
depends on the signs of λBiN and the multiplier µi and needs to be done on a
case-by-case basis. Here, as an example, we consider the scenario when all entries
of Bi are nonpositive. This applies to both the two-compartment cancer model
defined by (5) and the model for bone-marrow depletion in (12). In this case, by
Propositions 4.1 and 4.2, it follows that both λBiN and µi are negative. Using
Φ̇ ≡ 0, this implies that hi − gici is positive along a singular arc. Summarizing, we
have the following proposition.

Proposition 4.3. Suppose (A) all entries of Bi are nonpositive and all the ma-
trices A +

∑m
i=1 siBi, s ∈ S̄ = [0, s̄1]× . . .× [0, s̄m], have nonnegative off-diagonal

entries. Then a singular control of order 1 satisfies the Legendre-Clebsch condition
(35) for minimality of a singular arc if and only if

gi (2s′i(ci) + cis
′′
i (ci)) ≥ his

′′
i (ci). (36)

For the case of a linear PK equation (gi = 0), singular controls are not optimal in
regions where si is strictly convex. ¤

In particular, under Assumption (A) with a linear PK model and a sigmoidal
PD equation for drug i, singular controls ui are not optimal for low concentrations,
but the Legendre-Clebsch condition is satisfied, and thus feasible singular arcs in
fact can be expected to be locally optimal at high concentrations. Singular controls
do always satisfy the Legendre-Clebsch condition for the Emax model in this case.

Corollary 4.1. Suppose (A) holds. For gi 6= 0 and a linear PD model, s(ci) =
sici, singular arcs are not optimal if gi < 0, but they satisfy (36) if gi > 0. ¤

A special case arises for a linear PK model (gi = 0) in combination with a
linear PD equation, si(ci) = sici, a case often considered in the literature. In
this case, (35) is satisfied trivially, and the singular arc is of higher order. While
having simple PK and PD, this case nevertheless becomes more involved now since
interactions between the drugs and their concentrations come into play. We briefly
give the relevant computations. Again, it is assumed that Φi and thus also all its
derivatives vanish on some open interval I:

Φi = `i + hiµi ≡ 0, Φ̇i = hi (µifi − siλBiN) ≡ 0, (37)

Φ̈i = fiΦ̇i − sihi

(
d

dt
λBiN

)
= −sihi

(
d

dt
λBiN

)

= −sihi


λ


A +

∑

j 6=i

sj(cj)Bj , Bi


 N − qBiN


 ≡ 0. (38)

Since the second derivative does not explicitly depend on the control ui, the singular
arc is of higher order. What makes the computation still manageable is that this
derivative also does not depend on the particular concentration ci of the drug dose
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ui, which is singular. Differentiating once more gives

Φ(3)
i = −sihi


λ


A +

m∑

k=1

sk(ck)Bk,


A +

∑

j 6=i

sj(cj)Bj , Bi





 N

+
∑

j 6=i

s′j(cj)ċjλ[Bj , Bi]N − q


A +

∑

j 6=i

sj(cj)Bj , Bi


 N (39)

−qBi


A +

m∑

j=1

sj(cj)Bj


 N


 .

In the fourth derivative formally, derivatives of the other controls uj , j 6= i, also are
needed, and we assume they exist (e.g., bang-bang or itself differentiable singular
controls). Differentiating once more, however, any term arising from the second
and third term in (39) does not depend on ui, and overall we get the following
necessary condition for optimality of the singular arc:

∂

∂ui
Φ(4)

i = −s2
i h

2
i


λ


Bi,


A +

∑

j 6=i

sj(cj)Bj , Bi





− qB2

i


N ≥ 0. (40)

For a single-input system this simplifies to
∂

∂u
Φ(4) = −s2h2

(
λ [B, [A,B]]− qB2

)
N ≥ 0. (41)

5. Simulations and comparisons. We include some brief simulations for the
two-compartment model in Example 1 and the bone-marrow model in Example
2 to show that the addition of linear PK and PD models does not change the
qualitative structure of solutions: solutions are bang-bang with one switching, and
linear PK and PD models only shift the location of the switching.

5.1. A two-compartment model for cancer cells. For this model, the original
control set is 0 ≤ u ≤ 1, and we therefore take s̄ ≤ 1. Hence, Assumption (A) of
Proposition 4.3 holds and singular controls are of order 2. From (5), we see that
B2 = 0 and [B, [A,B]] = −4a1a2B so that

∂

∂u
Φ(4) = 4s2h2a1a2λBN = 4sfh2a1a2µ < 0, (42)

violating (41). Thus, in this case, singular controls are not optimal, and optimal
controls still are bang-bang, as in the model without PK equations [11].

Using a version of the gradient method for the calculation of extremal bang-bang
controls developed by Duda [4], we computed the locally optimal controls shown
below. (The local optimality of each run can be established using the algorithm
developed in [11], but this will not be discussed here.) The length of the therapy
interval is T = 10, and as parameter values we used a1 = 0.197 and a2 = 0.356. In
the objective, we set r1 = r2 = 1, q1 = q2 = 1 and picked ` = 1; in the linear PD
equation, we set s = 1. The initial condition was chosen as the steady-state value
of the uncontrolled system. For these parameter values with the total number of
cells normalized to 1, about 70% of the cancer cells are in the first compartment
and about 30% are in the second compartment [14]. Figure 3a shows the control
and corresponding switching function for the model without PK while Figure 3b
show these data for runs with a linear PK equation of the form ċ = −c + u. By
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choosing h = f in this equation, we normalize the maximum concentration to 1
in agreement with the choice s = 1 for the model without PK and PD; otherwise
results are not comparable. In all the figures, the optimal controls are given by the
solid line, and the corresponding switching functions are given by a dashed line.
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Figure 3. Controls (a) without PK, τ = 5.48; (b) with PK, f = 1, τ = 5.25.
Optimal controls are bang-bang, with one switching from u = 1 to u = 0. As

linear PK and PD equations are added, the qualitative behavior of the solutions
remains the same, but the switching occurs slightly earlier, which is caused by the
delay type effect of PK. The slower the PK dynamics is, the more pronounced this
effect becomes.

5.2. A two-compartment model for bone-marrow cells. As in the example
above, Assumption (A) of Proposition 4.3 holds, and singular controls are of order
2. But since Example 2 is a maximization problem, the signs in the Legendre-
Clebsch condition are reversed, and now it is a necessary condition for optimality
of a singular arc that

∂

∂u
Φ(4) = −s2h2

(
λ [B, [A,B]]− qB2

)
N ≤ 0. (43)

Using (12), we have B2 = −B, and since also Φ̈ ≡ 0 along a singular arc, we get

qB2N = −qBN = −λs[A, B]N. (44)

Hence (all quantities are evaluated along the singular lift)

∂

∂u
Φ(4) = −s2h2λ ([B, [A,B]] + [A, B])N. (45)

Direct calculations show that

[A,B] =
(

0 −β
α 0

)
, [B, [A,B]] = −

(
0 β
α 0

)
. (46)

Thus
∂

∂u
Φ(4) = −s2h2λ

(
0 −2β
0 0

)
N = 2s2βλ1Q > 0 (47)

also violating the Legendre-Clebsch condition. Hence, all singular arcs locally min-
imize the objective.
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Again using the version of the gradient method for the calculation of extremal
bang-bang controls developed by Duda [4], we computed the locally optimal con-
trols shown below. (The local optimality of each run can be established using the
algorithm developed in [15] and is not discussed here.) The length of the therapy
interval is T = 10, and we used the following parameter values taken from [6]:
α = 5.643, β = 0.48, γ = 1.47, δ = 0, and ρ = 0.164. In the simulations, we set
s = 1, r1 = r2 = 1, and q1 = q2 = 1 and picked ` = 0.5. As above, the initial
condition was chosen as the steady-state value of the uncontrolled system when
about 10% of the bone-marrow cells are in their proliferating state [16]. Figures 4a
and 4b show optimal controls and corresponding switching functions for the models
without PK and a linear PK equation of the form ċ = −c + u, respectively. As
above, choosing h = f in this equation normalizes the maximum concentration to
1 in agreement with the choice s = 1.
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Figure 4. Controls (a) without PK, τ = 4.94; (b) with linear PK, f = 1, τ = 4.16.

In each case, the control is bang-bang with one switching from u = 0 to u = 1.
Since the objective now is maximized and the effect is described in terms of the
bone marrow, the negative effects of the drug are delayed by the PK equation,
and thus the optimal control now—contrary to the cancer model above—ends with
a full dose. This delay effect also accounts for the fact that the controls switch
earlier, since the negative effects lag behind. The faster the concentrations build
up, however, the smaller this effect is, and for f = 5 (not shown), it is almost
negligible.

6. Conclusion. In this paper, we initiated the analysis of optimal controls for a
class of models of cancer chemotherapy when pharmacokinetics and pharmacody-
namics of the drugs are included. Our results show that the geometric properties
of these models have a direct influence on the type of controls that are optimal.
For the examples considered here, singular arcs remain not optimal if linear PK
models and PD functions s are used and only small quantitative changes in the
switching times of bang-bang controls are generated, but no qualitative changes
occur. For more general PK models and PD functions s, this does not necessarily
hold. Although singular controls are still not optimal for regions where s is strictly
convex (typically this holds for low concentrations), the optimality status changes
as s becomes concave (as is typically the case for high concentrations). This sug-
gests a structure of optimal controls, which provide a quick initial boost in terms
of bang-bang controls and then regulate the concentration through slowly varying
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infusions. Similarly, in the case of a bilinear (or more generally nonlinear) PK
equation, the structure changes and singular controls representing protocols with
partial doses can be optimal. For the bilinear model, the sign of the parameter g
matters, and depending on whether the problem is formulated as minimization or
maximization for g > 0, respectively, g < 0 singular controls satisfy the necessary
conditions for optimality. Intuitively, in this case, once the drug’s concentration
is built up, the injection of smaller time-varying doses can be used to maintain a
high effectiveness of the drug, which by itself slowly decays. Although the model
is characterized through a number of cell-cycle-specific parameters, our analysis for
these examples does not depend on the actual values of these parameters, but it
is the type of PK and PD model that determines the class of optimal controls.
Research in the direction of analyzing the structure of optimal controls, especially
when singular arcs become candidates, is still ongoing.

In conclusion, although linear PK and PD models do not change the qualitative
structure of optimal controls and, at least in the models considered here, lead only to
small quantitative changes, allowing for more complex nonlinear forms for PK and
PD in the model introduces singular controls as viable candidates for optimality.
Their analysis, especially a synthesis with bang-bang controls, is a mathematically
much more difficult problem and still needs to be addressed in further research.
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