In this paper, we investigate the abstract integro-differential time-fractional wave equation with a small positive parameter $ \varepsilon $. The $ L^{p}-L^{q} $ estimates for the resolvent operator family are obtained using the Laplace transform, the Mittag-Leffler operator family, and the $ C_{0}- $semigroup. These estimates serve as the foundation for some fixed point theorems that demonstrate the local-in-time existence of the solution in weighted function space. We first demonstrate that, for acceptable indices $ p\in[1, +\infty) $ and $ s\in(1, +\infty) $, the mild solution of the approximation problem converges to the solution of the associated limit problem in $ L^{p}((0, T), L^{s}({\bf R}^{n})) $ as $ \varepsilon\rightarrow 0^{+} $. The resolvent operator family and a set of kernel $ k(t) $ assumptions form the foundation of the proof's primary methodology for evaluating norms. Moreover, we consider the asymptotic behavior of solutions as $ \alpha\rightarrow 2^{-} $.
Citation: Yongqiang Zhao, Yanbin Tang. Approximation of solutions to integro-differential time fractional wave equations in $ L^{p}- $space[J]. Networks and Heterogeneous Media, 2023, 18(3): 1024-1058. doi: 10.3934/nhm.2023045
In this paper, we investigate the abstract integro-differential time-fractional wave equation with a small positive parameter $ \varepsilon $. The $ L^{p}-L^{q} $ estimates for the resolvent operator family are obtained using the Laplace transform, the Mittag-Leffler operator family, and the $ C_{0}- $semigroup. These estimates serve as the foundation for some fixed point theorems that demonstrate the local-in-time existence of the solution in weighted function space. We first demonstrate that, for acceptable indices $ p\in[1, +\infty) $ and $ s\in(1, +\infty) $, the mild solution of the approximation problem converges to the solution of the associated limit problem in $ L^{p}((0, T), L^{s}({\bf R}^{n})) $ as $ \varepsilon\rightarrow 0^{+} $. The resolvent operator family and a set of kernel $ k(t) $ assumptions form the foundation of the proof's primary methodology for evaluating norms. Moreover, we consider the asymptotic behavior of solutions as $ \alpha\rightarrow 2^{-} $.
[1] | J. Prüss, Evolutionary Integral Equations and Applications, Basel: Birkhäuser Verlag, 87 (1993). https://doi.org/10.1007/978-3-0348-0499-8 |
[2] | A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Basel: Birkhäuser, 16 (1995). |
[3] | E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, 2001. |
[4] | X. Yang, Y. Tang, Decay estimates of nonlocal diffusion equations in some particle systems, J. Math. Phys., 60 (2019), 043302. https://doi.org/10.1063/1.5085894 doi: 10.1063/1.5085894 |
[5] | C. Gu, Y. Tang, Chaotic characterization of one dimensional stochastic fractional heat equation, Chaos Solitons Fractals, 145 (2021), 110780. https://doi.org/10.1016/j.chaos.2021.110780 doi: 10.1016/j.chaos.2021.110780 |
[6] | C. Gu, Y. Tang, Global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity, Netw. Heterog. Media, 18 (2023), 109–139. https://doi.org/10.3934/nhm.2023005 doi: 10.3934/nhm.2023005 |
[7] | J. P. C. Dos Santos, S. M. Guzzo, M. N. Rabelo, Asymptotically almost periodic solutions for abstract partial neutral integro-differential equation, Adv. Differ. Equ., 2010 (2010), 1–26. https://doi.org/10.1155/2010/310951 doi: 10.1155/2010/310951 |
[8] | J. P. C. Dos Santos, H. Henr${\rm{\acute{i}}}$quez, Existence of $s-$asymptotically $\omega-$periodic solutions to abstract integro-differential equations, Appl. Math. Comput., 256 (2015), 109–118. https://doi.org/10.1016/j.amc.2015.01.005 doi: 10.1016/j.amc.2015.01.005 |
[9] | R. C. Grimmer, A. J. Prichard, Analytic resolvent operators for integral equations in Banach space, J. Differ. Equ., 50 (1983), 234–259. https://doi.org/10.1016/0022-0396(83)90076-1 doi: 10.1016/0022-0396(83)90076-1 |
[10] | C. C. Kuo, S. Y. Shaw, $C-$cosine functions and the abstract Cauchy problem, Ⅰ, J. Math. Anal. Appl., 210 (1997), 632–646. https://doi.org/10.1006/jmaa.1997.5420 doi: 10.1006/jmaa.1997.5420 |
[11] | C. C. Kuo, S. Y. Shaw, $C-$cosine functions and the abstract Cauchy problem, Ⅱ, J. Math. Anal. Appl., 210 (1997), 647–666. https://doi.org/10.1006/jmaa.1997.5421 doi: 10.1006/jmaa.1997.5421 |
[12] | A. Lorenzi, F. Messina, Approximation of solutions to linear integro-differential parabolic equations in $L^{p}-$spaces, J. Math. Anal. Appl., 333 (2007), 642–656. https://doi.org/10.1016/j.jmaa.2006.11.042 doi: 10.1016/j.jmaa.2006.11.042 |
[13] | A. Lorenzi, F. Messina, Approximation of solutions to non-linear integro-differential parabolic equations in $L^{p}-$spaces, Differ. Integral Equ., 20 (2007), 693–720. https://doi.org/10.57262/die/1356039433 doi: 10.57262/die/1356039433 |
[14] | R. N. Wang, D. H. Chen, T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differ. Equ., 252 (2012), 202–235. https://doi.org/10.1016/j.jde.2011.08.048 doi: 10.1016/j.jde.2011.08.048 |
[15] | A. El-Sayed, M. Herzallah, Continuation and maximal regularity of an arbitrary (fractional) order evolutionary integro-differential equation, Appl. Anal., 84 (2005), 1151–1164. https://doi.org/10.1080/0036810412331310941 doi: 10.1080/0036810412331310941 |
[16] | R. Ponce, Hölder continuous solutions for fractional differential equations and maximal regularity, J. Differ. Equ., 255 (2013), 3284–3304. https://doi.org/10.1016/j.jde.2013.07.035 doi: 10.1016/j.jde.2013.07.035 |
[17] | M. Conti, V. Pata, M. Squassina, Singular limit of differential systems with memory, Indiana Univ. Math. J., 55 (2006), 169–215. http://www.jstor.org/stable/24902350 |
[18] | R. Agarwal, J. P. C. Dos Santos, C. Uevas, Analytic resolvent operator and existence results for fractional integro-differential equations, J. Abstr. Differ. Equ. Appl., 2 (2012), 26–47. |
[19] | J. P. C Dos Santos, H. Henr${\rm{\acute{i}}}$quez, E. Hen$\acute{a}$andez, Existence results for neutral integro-differential equations with unbounded delay, J. Integral Equ. Appl., 23 (2011), 289–330. http://www.jstor.org/stable/26163698 |
[20] | N. Tatar, Mittag-Leffler stability for a fractional Euler-Bernoulli problem, Chaos Solitons Fractals, 149 (2021), 1110777. https://doi.org/10.1016/j.chaos.2021.111077 doi: 10.1016/j.chaos.2021.111077 |
[21] | N. Tatar, Mittag-Leffler stability for a fractional viscoelastic telegraph problem, Math. Methods Appl. Sci., 44 (2021), 14184–14205. https://doi.org/10.1002/mma.7689 doi: 10.1002/mma.7689 |
[22] | P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, J. Gomez-Aguilar, Mild solutions of coupled hybrid fractional order system with caputo-hadamard derivatives, Fractals, 29 (2021), 2150158. https://doi.org/10.1142/S0218348X21501589 doi: 10.1142/S0218348X21501589 |
[23] | H. Khan, T. Abdeljawad, J. Gomez-Aguilar, H. Tajadodi, A. Khan, Fractional order Volterra integro-differential equation with Mittag-Leffler kernel. Fractals, 29 (2021), 2150154. https://doi.org/10.1142/S0218348X2150153X doi: 10.1142/S0218348X2150153X |
[24] | O. Martnez-Fuentes, F. Melndez-Vzquez, G. Fernndez-Anaya, J.F. Gómez-Aguilar, Analysis of fractional-order nonlinear dynamic systems with general analytic kernels: Lyapunov stability and inequalities, Mathematics, 9 (2021), 2084. https://doi.org/10.3390/math9172084 doi: 10.3390/math9172084 |
[25] | J. Asma, G. Rahman, M. Javed, Stability analysis for fractional order implicit $\psi-$Hilfer differential equations, Math. Methods Appl. Sci., 45 (2022), 2701–2712. https://doi.org/10.1002/mma.7948 doi: 10.1002/mma.7948 |
[26] | R. Dhayal, J. F. Gómez-Aguilar, J. Jimenez, Stability analysis of Atangana-Baleanu fractional stochastic differential systems with impulses, Int. J. Syst. Sci., 53 (2022), 3481–3495. https://doi.org/10.1080/00207721.2022.2090638 doi: 10.1080/00207721.2022.2090638 |
[27] | A. Gónzacutealez-Calderóna, L. X. Vivas-Cruzb, M. A. Taneco-Hernandezc, J. F. Gómezmez-Aguilar, Assessment of the performance of the hyperbolic-NILT method to solve fractional differential equations, Math. Comput. Simul., 206 (2023), 375–390. https://doi.org/10.1016/j.matcom.2022.11.022 doi: 10.1016/j.matcom.2022.11.022 |
[28] | A. Al-Omari, H. Al-Saadi, Existence of the classical and strong solutions for fractional semilinear initial value problems, Bound. Value Probl., 157 (2018), 1–13. https://doi.org/10.1186/s13661-018-1054-3 doi: 10.1186/s13661-018-1054-3 |
[29] | M. Benchohra, S. Litimein, J. J. Nieto, Semilinear fractional differential equations with infinite delay and non-instantaneous impulses, J. Fixed Point Theory Appl., 21 (2019), 1–16. https://doi.org/10.1007/s11784-019-0660-8 doi: 10.1007/s11784-019-0660-8 |
[30] | R. Chaudhary, M. Muslim, D. N. Pandey, Approximation of solutions to fractional stochastic integro-differential equations of order $\alpha\in (1, 2]$, Stochastics, 92 (2020), 397–417. https://doi.org/10.1080/17442508.2019.1625904 doi: 10.1080/17442508.2019.1625904 |
[31] | J. V. da C. Sousa, D. F. Gomes, E. C. de Oliveira, A new class of mild and strong solutions of integro-differential equation of arbitrary order in Banach space, arXiv, 2018. https://doi.org/10.48550/arXiv.1812.11197 |
[32] | M. Li, Q. Zheng, On spectral inclusions and approximations of $\alpha-$times resolvent families, Semigroup Forum, 69 (2004), 356–368. https://doi.org/10.1007/s00233-004-0128-y doi: 10.1007/s00233-004-0128-y |
[33] | K. Li, J. Peng, Fractional resolvents and fractional evolution equations, Appl. Math. Lett., 25 (2012), 808–812. https://doi.org/10.1016/j.aml.2011.10.023 doi: 10.1016/j.aml.2011.10.023 |
[34] | B. Li, H. Gou, Weak solutions nonlinear fractional integrodifferential equations in nonreflexive Banach spaces, Bound. Value Probl., 209 (2016), 1–13. https://doi.org/10.1186/s13661-016-0716-2 doi: 10.1186/s13661-016-0716-2 |
[35] | Z. D. Mei, J. G. Peng, J. H. Gao, General fractional differential equations of order $\alpha\in (1, 2)$ and type $\beta\in[0, 1]$ in Banach spaces, Semigroup Forum, 94 (2017), 712–737. https://doi.org/10.1007/s00233-017-9859-4 doi: 10.1007/s00233-017-9859-4 |
[36] | S. A. Qasem, R. W. Ibrahim, Z. Siri, On mild and strong solutions of fractional differential equations with delay, AIP Conf. Proc., 1682 (2015), 020049. https://doi.org/10.1063/1.4932458 doi: 10.1063/1.4932458 |
[37] | H. Henrquez, J. Mesquita, J. Pozo, Existence of solutions of the abstract Cauchy problem of fractional order, J. Funct. Anal., 281 (2021), 109028. https://doi.org/10.1016/j.jfa.2021.109028 doi: 10.1016/j.jfa.2021.109028 |
[38] | I. Kim, K. H. Kim, S. Lim, An $L^{q}(L^{p})-$theory for the time fractional evolution equations with variable coefficients, Adv. Math., 306 (2017), 123–176. https://doi.org/10.1016/j.aim.2016.08.046 doi: 10.1016/j.aim.2016.08.046 |
[39] | P. Quittner, P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Basel: Birkhäuser Verlag, 2007. https://doi.org/10.1007/978-3-7643-8442-5 |
[40] | T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations, Commun. Pure Appl. Math., 33 (1980), 501–505. https://doi.org/10.1002/cpa.3160330403 doi: 10.1002/cpa.3160330403 |
[41] | M. D'Abbicco, M. R. Ebert, T. H. Picon, The critical exponent(s) for the semilinear fractional diffusive equation, J. Fourier Anal. Appl., 25 (2019), 696–731. https://doi.org/10.1007/s00041-018-9627-1 doi: 10.1007/s00041-018-9627-1 |
[42] | B. T. Yordanov, Q. S. Zhang, Finite time blow-up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361–374. https://doi.org/10.1016/j.jfa.2005.03.012 doi: 10.1016/j.jfa.2005.03.012 |
[43] | B. de Andrade, G. Siracusa, A. Viana, A nonlinear fractional diffusion equation: well-posedness, comparison results and blow-up, J. Math. Anal. Appl., 505 (2022), 125524. https://doi.org/10.1016/j.jmaa.2021.125524 doi: 10.1016/j.jmaa.2021.125524 |
[44] | P. M. de Carvalho-Neto, G. Planas, Mild solutions to the time fractional Navier-Stokes equations in ${\bf R}^{n}$, J. Differ. Equ., 259 (2015), 2948-2980. https://doi.org/10.1016/j.jde.2015.04.008 doi: 10.1016/j.jde.2015.04.008 |
[45] | V. Keyantuo, M. Warma, On the interior approximate controllability for fractional wave equations, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 3719–3739. https://doi.org/10.3934/dcds.2016.36.3719 doi: 10.3934/dcds.2016.36.3719 |
[46] | E. Alvarez, C. G. Gal, V. Keyantuo, M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations, Nonlinear Anal., 181 (2019), 24–61. https://doi.org/10.1016/j.na.2018.10.016 doi: 10.1016/j.na.2018.10.016 |
[47] | J. P. C. Dos Santos, Fractional resolvent operator with $\alpha\in(0, 1)$ and applications, Frac. Differ. Calc., 9 (2019), 187–208. https://doi.org/10.7153/fdc-2019-09-13 doi: 10.7153/fdc-2019-09-13 |
[48] | Y. Li, H. Sun, Z. Feng, Fractional abstract Cauchy problem with order $\alpha\in(1, 2)$, Dyn. Partial Differ. Equ., 13 (2016), 155–177. https://dx.doi.org/10.4310/DPDE.2016.v13.n2.a4 doi: 10.4310/DPDE.2016.v13.n2.a4 |
[49] | Y. Li, Regularity of mild Solutions for fractional abstract Cauchy problem with order $\alpha\in(1, 2)$, Z. Angew. Math. Phys., 66 (2015), 3283–3298. https://doi.org/10.1007/s00033-015-0577-z doi: 10.1007/s00033-015-0577-z |
[50] | Q. Zhang, Y. Li, Global well-posedness and blow-up solution of the Cauchy problem for a time-fractional superdiffusion equation, J. Evol. Equ., 19 (2019), 271–303. https://doi.org/10.1007/s00028-018-0475-x doi: 10.1007/s00028-018-0475-x |
[51] | S. I. Piskarev, Evolution Equations in Banach Spaces. Theory of Cosine Operator Functions, Internet Notes, (2004), 122. |
[52] | K. Boukerrioua, D. Diabi, B. Kilani, Some new Gronwall-bihari type inequalities and its application in the analysis for solutions to fractional differential equations, Int. J. Comput. Methods, 5 (2020), 60–68. |
[53] | I. Bihari, A generalisation of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Hung., 7 (1956), 81–94. https://doi.org/10.1007/bf02022967 doi: 10.1007/bf02022967 |
[54] | V. V. Vasilev, S. I. Piskarev, Differential equations in Banach spaces Ⅱ. Theory of cosine operator functions, J. Math. Sci., 122 (2004), 3055–3174. https://doi.org/10.1023/B:JOTH.0000029697.92324.47 doi: 10.1023/B:JOTH.0000029697.92324.47 |
[55] | A. Carpinteri, F. Mainardi, Fractional calculus, some basic problems in continuumand statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics (eds. A. Carpinteri, F. Mainardi), Vienna: Springer-Verlag, 378 (1997), 291–348. https://doi.org/10.1007/978-3-7091-2664-6-7 |
[56] | F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, London: Imperial College Press, 2010. |
[57] | W. R. Schnrider, W. Wyss, Fractional diffusionand and wave equations, J. Math. Phys., 30 (1989), 134–144. https://doi.org/10.1063/1.528578 doi: 10.1063/1.528578 |