In this paper, a robust adaptive grid method is developed for solving first-order nonlinear singularly perturbed Fredholm integro-differential equations (SPFIDEs). Firstly such SPFIDEs are discretized by the backward Euler formula for differential part and the composite numerical quadrature rule for integral part. Then both a prior and an a posterior error analysis in the maximum norm are derived. Based on the prior error bound and the mesh equidistribution principle, it is proved that there exists a mesh gives optimal first-order convergence which is robust with respect to the perturbation parameter. Finally, the posterior error bound is used to choose a suitable monitor function and design a corresponding adaptive grid generation algorithm. Numerical results are given to illustrate our theoretical result.
Citation: Zhi Mao, Dan Luo. A robust adaptive grid method for first-order nonlinear singularly perturbed Fredholm integro-differential equations[J]. Networks and Heterogeneous Media, 2023, 18(3): 1006-1023. doi: 10.3934/nhm.2023044
In this paper, a robust adaptive grid method is developed for solving first-order nonlinear singularly perturbed Fredholm integro-differential equations (SPFIDEs). Firstly such SPFIDEs are discretized by the backward Euler formula for differential part and the composite numerical quadrature rule for integral part. Then both a prior and an a posterior error analysis in the maximum norm are derived. Based on the prior error bound and the mesh equidistribution principle, it is proved that there exists a mesh gives optimal first-order convergence which is robust with respect to the perturbation parameter. Finally, the posterior error bound is used to choose a suitable monitor function and design a corresponding adaptive grid generation algorithm. Numerical results are given to illustrate our theoretical result.
[1] | D. O'Regan, M. Meehan, Existence theory for nonlinear integral and integrodifferential equations. mathematics and its applications, Springer, Dordrecht, (1998), 14–36. https://doi.org/10.1007/978-94-011-4992-1 |
[2] | K. Alexander, P. Lukas, Modeling infectious diseases using integro-differential equations: optimal control strategies for policy decisions and applications in COVID-19, Researchgate, preprint (2022). https://doi.org/10.13140/RG.2.2.10845.44000 |
[3] | Z. Guo, Z. T. Guo, L. Y. Yi, Analysis of multicrack problems with eigen COD boundary integral equations, Appl. Math. Mech. (in Chinese), 40 (2019), 200–209. https://doi.org/10.21656/1000-0887.390183 |
[4] | L. Prandtl, Motion of fluids with very little viscosity, 1928. Available from: https://ntrs.nasa.gov/citations/19930090813 |
[5] | Y. L. Zhao, X. M. Gu, A. Ostermann, A preconditioning technique for an all-at-once system from Volterra subdiffusion equations with graded time steps, J. Sci. Comput., 88 (2021). https://doi.org/10.1007/s10915-021-01527-7 doi: 10.1007/s10915-021-01527-7 |
[6] | X. M. Gu, S. L. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2022), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576 |
[7] | H. Badawi, N. Shawagfeh, O. A. Arqub, Fractional conformable stochastic integrodifferential equations: existence, uniqueness, and numerical simulations utilizing the shifted Legendre spectral collocation algorithm, Math. Probl. Eng., (2022). https://doi.org/10.1155/2022/5104350 doi: 10.1155/2022/5104350 |
[8] | H. Badawi, O. A. Arqub, N. Shawagfeh, Well-posedness and numerical simulations employing Legendre-shifted spectral approach for Caputo–Fabrizio fractional stochastic integrodifferential equations, Int. J. Mod. Phys. C, (2023). https://doi.org/10.1142/S0129183123500705 doi: 10.1142/S0129183123500705 |
[9] | H. Sweis, O. A. Arqub, N. Shawagfeh, Fractional delay integrodifferential equations of nonsingular kernels: existence, uniqueness, and numerical solutions using Galerkin algorithm based on shifted Legendre polynomials, Int. J. Mod. Phys. C, (2023). https://doi.org/10.1142/S0129183123500523 doi: 10.1142/S0129183123500523 |
[10] | M. A. Aal, S. Djennadi, O. A. Arqub, H. Alsulami On the recovery of a conformable time-dependent inverse coefficient problem for diffusion equation of periodic constraints type and integral over-posed data Math. Probl. Eng., (2022). https://doi.org/10.1155/2022/5104725 doi: 10.1155/2022/5104725 |
[11] | M. Mandal, A. Kayal, G. Nelakanti, Projection methods for approximate solution of a class of nonlinear Fredholm integro-differential equations, Appl. Numer. Math., 184 (2023), 49–76. https://doi.org/10.1016/j.apnum.2022.09.019 doi: 10.1016/j.apnum.2022.09.019 |
[12] | J. Chen, M. He, Y. Huang, A fast multiscale Galerkin method for solving second order linear Fredholm integro-differential equation with Dirichlet boundary conditions, J. Comput. Appl. Math., 364 (2020), 112352. https://doi.org/10.1016/j.cam.2019.112352 doi: 10.1016/j.cam.2019.112352 |
[13] | J. Huang, Z. Cen, A. Xu, L. B. Liu, A posteriori error estimation for a singularly perturbed Volterra integro-differential equation, Numer. Algor., 83 (2020), 549–563. https://doi.org/10.1007/s11075-019-00693-y doi: 10.1007/s11075-019-00693-y |
[14] | S. Kumar, J. Vigo-Aguiar, Analysis of a nonlinear singularly perturbed Volterra integro-differential equation, J. Comput. Appl. Math., 404 (2021), 113410. https://doi.org/10.1016/j.cam.2021.113410 doi: 10.1016/j.cam.2021.113410 |
[15] | L. B. Liu, Y. P. Chen, Y. Liang, Numerical analysis of a nonlinear singularly perturbed delay Volterra integro-differential equation on an adaptive grid, J. Comp. Math., 40 (2022), 258–274. https://doi.org/10.4208/jcm.2008-m2020-0063 doi: 10.4208/jcm.2008-m2020-0063 |
[16] | Y. Liang, L. B. Liu, Z. D. Cen, A posteriori error estimation in maximum norm for a system of singularly perturbed Volterra integro-differential equations, Comp. Appl. Math., 39 (2020), 255. https://doi.org/10.1007/s40314-020-01303-7 doi: 10.1007/s40314-020-01303-7 |
[17] | E. Cimen, M. Cakir, A uniform numerical method for solving singularly perturbed Fredholm integro-differential problem, Comput. Appl. Math., 40 (2021), 42. https://doi.org/10.1007/s40314-021-01412-x doi: 10.1007/s40314-021-01412-x |
[18] | G. M. Amiraliyev, M. E. Durmaz, M. Kudu, A numerical method for a second order singularly perturbed Fredholm integro-differential equation, Miskolc Math. Notes, 22 (2021), 37–48. https://doi.org/10.18514/MMN.2021.2930 doi: 10.18514/MMN.2021.2930 |
[19] | M. E. Durmaz, M. Cakir, I. Amirali, G. M. Amiraliyev, Numerical solution of singularly perturbed Fredholm integro-differential equations by homogeneous second order difference method, J. Comput. Appl. Math., 412 (2022), 114327. https://doi.org/10.1016/j.cam.2022.114327 doi: 10.1016/j.cam.2022.114327 |
[20] | M. E. Durmaz, I. Amirali, G. M. Amiraliyev, An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition, J. Appl. Math. Comput., preprint (2022). https://doi.org/10.1007/s12190-022-01757-4 |
[21] | D. Kumar, K. Deswal, S. Singh, Wavelet-based approximation with non-standard finite difference scheme for singularly perturbed partial integro-differential equation, Comp. Appl. Math., 41 (2022), 341. https://doi.org/10.1007/s40314-022-02053-4 doi: 10.1007/s40314-022-02053-4 |
[22] | M. Cakir, Y. Ekinci, E. Cimen, A numerical approach for solving nonlinear Fredholm integro-differential equation with boundary layer, Comp. Appl. Math., 41 (2022), 259. https://doi.org/10.1007/s40314-022-01933-z doi: 10.1007/s40314-022-01933-z |
[23] | M. Brdar, H. Zarin, A singularly perturbed problem with two parameters on a Bakhvalov-type mesh, J. Comput. Appl. Math., 292 (2016), 307–319. https://doi.org/10.1016/j.cam.2015.07.011 doi: 10.1016/j.cam.2015.07.011 |
[24] | M. Cakir, B. Gunes, Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations, Georgian Math. J., 29 (2022), 193–203. https://doi.org/10.1515/gmj-2021-2130 doi: 10.1515/gmj-2021-2130 |
[25] | N. Kopteva, Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem, SIAM J. Numer. Anal. S, 39 (2001), 423–441. https://epubs.siam.org/doi/10.1137/S0036142900368642 |
[26] | N. Kopteva, M. Stynes, A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem, SIAM J. Numer. Anal. S, 39 (2001), 1446–1467. https://epubs.siam.org/doi/10.1137/S003614290138471X |
[27] | Z. Mao, L. B. Liu, A moving grid algorithm for a strongly coupled system of singularly perturbed convection-diffusion problems, Math. Appl. (Wuhan), 31 (2018), 653–660. https://10.13642/j.cnki.42-1184/o1.2018.03.048 doi: 10.13642/j.cnki.42-1184/o1.2018.03.048 |
[28] | L. B. Liu, C. W. Zhu, G. Q. Long, Numerical analysis of a system of semilinear singularly perturbed first-order differential equations on an adaptive grid, Math. Methods Appl. Sci., 45 (2022), 2042–2057. https://doi.org/10.1002/mma.7904 doi: 10.1002/mma.7904 |
[29] | Y. Qiu, D. M. Sloan, T. Tang, Numerical solution of a singularly perturbed two point boundary value problem using equidistribution: analysis of convergence, J. Comput. Appl. Math., 116 (2000), 121–143. https://doi.org/10.1016/S0377-0427(99)00315-5 doi: 10.1016/S0377-0427(99)00315-5 |
[30] | N. Kopteva, N. Madden, M. Stynes, Grid equidistribution for reaction–diffusion problems in one dimension, Numer. Algorithms, 40 (2005), 305–322. https://doi.org/10.1007/s11075-005-7079-6 doi: 10.1007/s11075-005-7079-6 |
[31] | X. M. Gu, H. W. Sun, Y. L. Zhao, X. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270 |