Loading [MathJax]/jax/output/SVG/jax.js
Research article

A second order numerical method for a Volterra integro-differential equation with a weakly singular kernel

  • Received: 27 May 2024 Revised: 05 July 2024 Accepted: 22 July 2024 Published: 24 July 2024
  • In this paper, a second finite difference method on a graded grid is proposed for a Volterra integro-differential equation with a weakly singular kernel. The proposed scheme is obtained by using the two-step backward differentiation formula (BDF2) to discretize the first derivative term and the first-order interpolation scheme to approximate the integral term. The analysis of stability is proved and used to prove the convergence of our presented numerical method in the discrete maximum norm. Finally, Numerical experiments are given to verify the theoretical results.

    Citation: Li-Bin Liu, Limin Ye, Xiaobing Bao, Yong Zhang. A second order numerical method for a Volterra integro-differential equation with a weakly singular kernel[J]. Networks and Heterogeneous Media, 2024, 19(2): 740-752. doi: 10.3934/nhm.2024033

    Related Papers:

    [1] Li-Bin Liu, Yige Liao, Guangqing Long . Error estimate of BDF2 scheme on a Bakhvalov-type mesh for a singularly perturbed Volterra integro-differential equation. Networks and Heterogeneous Media, 2023, 18(2): 547-561. doi: 10.3934/nhm.2023023
    [2] Hyunjin Ahn . Uniform stability of the Cucker–Smale and thermodynamic Cucker–Smale ensembles with singular kernels. Networks and Heterogeneous Media, 2022, 17(5): 753-782. doi: 10.3934/nhm.2022025
    [3] Zhi Mao, Dan Luo . A robust adaptive grid method for first-order nonlinear singularly perturbed Fredholm integro-differential equations. Networks and Heterogeneous Media, 2023, 18(3): 1006-1023. doi: 10.3934/nhm.2023044
    [4] Shenglun Yan, Wanqian Zhang, Weiyuan Zou . Multi-cluster flocking of the thermodynamic Cucker-Smale model with a unit-speed constraint under a singular kernel. Networks and Heterogeneous Media, 2024, 19(2): 547-568. doi: 10.3934/nhm.2024024
    [5] Yongqiang Zhao, Yanbin Tang . Approximation of solutions to integro-differential time fractional wave equations in $ L^{p}- $space. Networks and Heterogeneous Media, 2023, 18(3): 1024-1058. doi: 10.3934/nhm.2023045
    [6] Yin Yang, Aiguo Xiao . Dissipativity and contractivity of the second-order averaged L1 method for fractional Volterra functional differential equations. Networks and Heterogeneous Media, 2023, 18(2): 753-774. doi: 10.3934/nhm.2023032
    [7] Eiman, Kamal Shah, Muhammad Sarwar, Thabet Abdeljawad . On rotavirus infectious disease model using piecewise modified $ ABC $ fractional order derivative. Networks and Heterogeneous Media, 2024, 19(1): 214-234. doi: 10.3934/nhm.2024010
    [8] Jie Gu, Lijuan Nong, Qian Yi, An Chen . Two high-order compact difference schemes with temporal graded meshes for time-fractional Black-Scholes equation. Networks and Heterogeneous Media, 2023, 18(4): 1692-1712. doi: 10.3934/nhm.2023074
    [9] Zhe Pu, Maohua Ran, Hong Luo . Effective difference methods for solving the variable coefficient fourth-order fractional sub-diffusion equations. Networks and Heterogeneous Media, 2023, 18(1): 291-309. doi: 10.3934/nhm.2023011
    [10] Simone Göttlich, Camill Harter . A weakly coupled model of differential equations for thief tracking. Networks and Heterogeneous Media, 2016, 11(3): 447-469. doi: 10.3934/nhm.2016004
  • In this paper, a second finite difference method on a graded grid is proposed for a Volterra integro-differential equation with a weakly singular kernel. The proposed scheme is obtained by using the two-step backward differentiation formula (BDF2) to discretize the first derivative term and the first-order interpolation scheme to approximate the integral term. The analysis of stability is proved and used to prove the convergence of our presented numerical method in the discrete maximum norm. Finally, Numerical experiments are given to verify the theoretical results.



    This article aims to study a second-order numerical method for the following Volterra integro-differential equation (VIDE) with a weakly singular kernel

    {Lu:=u(x)+a(x)u(x)+x0(xt)αb(t)u(t)dt=f(x), xΩ:=(0,L],u(0)=μ, (1.1)

    where α(0,1). a(x),b(x), and f(x) are smooth functions, and μ is an initial data. We assume that there exist two positive constants β1,β2 such that

    |a(x)|β1,|b(x)|β2,x[0,L]. (1.2)

    To simplify the presentation, we assume that β1,β2β, where β is a positive constant. Based on the above assumptions, the problem (1.1) has a unique solution, u(x), which satisfies the following lemma:

    Lemma 1.1. [1, Theorem 4.1] If f can be written f(x)=f1(x)+xβf2(x), where β>0 and β1,2,,N. Then there exist positive constants C,d such that

    |uk(x)|CdkΓ(k+1)xδk,x>0,k=1,2,,N, (1.3)

    where δ=min(2α,1+β).

    It is well known that Volterra integro-differential equations widely exist in biology, finance, population growth models and other fields (see, e.g., [2,3]). In recent years, there has been tremendous interest in developing finite difference [4,5,6], finite element [7,8], and spectral methods [9,10,11] for first-order and second-order Volterra integro-differential equations. Among the existing numerical methods, most of the researchers focus their attention on high-accuracy finite element methods and spectral methods. Therefore, it is very necessary to study a class of high-order finite difference methods for VIDE(s).

    As far as we know, linear multi-step methods with a uniform time grid are widely used in discretizing the first-order time derivative of partial differential equations (see [12,13], for example). It should be pointed out that the variable step-size linear multi-step methods allow us to take different step-sizes for different scales, i.e., small step-sizes for the domain with solution rapidly varying and large for the domain with solution slowly changing. Therefore, the variable step-size linear multi-step methods demonstrate the prominent advantages of high accuracy compared to the constant step-size linear multi-step methods. Recently, Liao and Zhang [14] developed the variable two-step backward differentiation formula (BDF2) to discretize the time derivative of diffusion equations and gave a new theoretical framework by using the positive semi-definiteness of BDF2 convolution kernels and a class of orthogonal convolution kernels for the first time. Furthermore, Liao et al. [15] derived the stability and convergence analysis of the second-order backward difference formula (BDF2) with variable steps for the molecular beam epitaxial model without slope selection. Wang et al. [16] gave stability and error estimates for time discretizations of linear and semi-linear parabolic equations by the two-step backward differentiation formula (BDF2) method with variable step sizes. In [17], the authors proposed linearly implicit backward differentiation formulas with variable step sizes to solve the two-dimensional incompressible Navier Stokes equations.

    Inspired by the above references [14,15,16,17], the main purpose of this paper is to develop a second-order finite difference scheme for VIDE (1.1). This paper is organized as follows: In Section 2, we proposes a finite difference scheme on a graded mesh by using the variable step-size BDF2 to discretize the first derivative term and the linear interpolation technique to approximate the integral term and prove the stability of our proposed numerical method. In Section 3, we will show how to improve the point-wise accuracy to second order by selecting appropriate graded mesh parameters. Finally, the theoretical results are verified by numerical experiments in Section 4.

    Let ˉΩN:={0=x0<x1<<xN=L} be a graded mesh (see [18]), where the grid points are given by xi=L(iN)γ,i=0,1,,N and γ[1,) is a given real number. For i=1,2,,N, let hi=xixi1 be the ith mesh step and h=max1iNhi be the corresponding maximum step size. Furthermore, we denote the ith step-size ratios by ri=hihi1,i=2,,N. Obviously, rmax=max2iN1ri=2γ1. Throughout this paper, for any continuous function g(x), let gi=g(xi), and C represents a positive constant independent of the mesh parameter N.

    Let Pi,kg be the Lagrange interpolating polynomial of a function g over points xi,xi1,,xik. Then the BDF2 formula can be given by

    D2gi:=(Pi,2g)(xi)=1+2rihi(1+ri)gir2ihi(1+ri)gi1fori2, (2.1)

    where gi:=gigi1. In addition, denote D2g1:=g1/h1. Then, on the above graded mesh ˉΩN, we construct the following discretization scheme to approximate problem (1.1):

    {LNuNi:=D2uNi+aiuNi+ik=1xkxk1(xis)α(¯bu)(s)ds=fi,uN0=μ, (2.2)

    where uNi is the approximation solution of u(x) at point x=xi and

    (¯bu)(x):=bkuNk+(xxk)bkuNkbk1uNk1hk,x(xk1,xk).

    In the following numerical analysis, the method of the discrete orthogonal convolution (DOC) kernels θiij will play an important role. Firstly, we rewrite the BDF2 formula (2.1) into the following formal

    D2gi=ik=1biikgkfori1, (2.3)

    where biik are defined by b10:=1/h1, and

    bi0:=1+2rihi(1+rn),bi1:=r2ihi(1+ri)andbij:=0for2ji1. (2.4)

    The DOC kernels θiij have the following the property (see [14])

    ij=kθiijbjjk=δikfor1ki,

    where δik is the Kronecker delta symbol. Furthermore, we have

    ij=1θiijD2uj=il=1uiij=lθiijbjjl=uiui1,1iN. (2.5)

    We now introduce the following lemma for the DOC kernels θiij.

    Lemma 2.1. [14, Lemma 2.3] For i1, the DOC kernels θiij satisfy the following formula

    θiij>0,1jiandij=1θiij=hi. (2.6)

    Next, the stability result of the discretization scheme (2.2) is given as follows:

    Lemma 2.2. Assume that h(1α)/(16β). Then the discrete solution uNi of the discretization scheme (2.2) satisfies the following formula

    |uNn|C(|uN0|+ni=1ij=1θiij|fj|),n1.

    Proof. Firstly, for the integral term of (2.2), we have

    |jk=1xkxk1(xjs)α(¯bu)(s)ds||jk=1bkuNkxkxk1(xjs)αds|+|jk=1bkuNkhkxkxk1(xjs)α(sxk)ds|βmax1kj|uNk|xj0(xjs)αds+jk=1|bkuNk|xkxk1(xjs)αdsβ1αmax1kj|uNk|+2βmax1kj|uNk|xj0(xjs)αds3β1αmax1kj|uNk|. (2.7)

    For i1, multiplying both sides of the discretization scheme (2.2) by the DOC kernels θiij and summing j from 1 to i yields,

    ij=1θiij(D2uNj+ajuNj+jk=1xkxk1(xjs)α(¯bu)(s)ds)=ij=1θiijfj. (2.8)

    Applying Eq (2.5) to Eq (2.8), one has

    uNiuNi1+ij=1θiijajuNj+ij=1θiijjk=1xkxk1(xjs)α(¯bu)(s)ds=ij=1θiijfj. (2.9)

    Multiplying both sides of the above equation (2.9) by 2uNi and summing the resulting equality from 1 to n, one has

    ni=1(uNiuNi1)2+|uNn|2|uN0|2=ni=12uNiij=1θiijfjni=12uNiij=1θiijajuNjni=12uNiij=1θiijjk=1xkxk1(xjs)α(¯bu)(s)ds.

    Furthermore, we have

    |uNn|2|uN0|2+ni=1|2uNi|ij=1θiij|fj|+βni=1|2uNi|ij=1θiij|uNj|+ni=1|2uNi|ij=1θiij|jk=1xkxk1(xjs)α(¯bu)(s)ds||uN0|2+ni=1|2uNi|ij=1θiij|fj|+βni=1|2uNi|ij=1θiij|uNj|+3β1αni=1|2uNi|ij=1θiij|max1kjuNk|. (2.10)

    Set |uNm|:=max0in|uNi|, letting n=m in the inequality (2.10), we get

    |uNm|2|uN0||uNm|+|2uNm|mi=1ij=1θiij|fj|+β|uNm|mi=1|2uNi|ij=1θiij+3β1α|uNm|mi=1|2uNi|ij=1θiij. (2.11)

    Using Lemma 2.1 to Eq (2.11), one has

    |uNn||uNm||uN0|+2mi=1ij=1θiij|fj|+2βmi=1|uNi|hi+6β1αmi=1|uNi|hi|uN0|+2ni=1ij=1θiij|fj|+(8β1α)ni=1|uNi|hi. (2.12)

    If h(1α)/(16β), we have

    |uNn|2|uN0|+4ni=1ij=1θiij|fj|+(16β1α)n1i=1|uNi|hi. (2.13)

    Based on the discrete Grönwall inequality [19, Lemma 3.2], we have

    |uNn|(2|uN0|+4ni=1ij=1θiij|fj|)exp(1+(16β1α)n1i=1hi)C(|uN0|+ni=1ij=1θiij|fj|),

    which completes the proof.

    For i=0,1,,N, let ei=uiuNi be the absolution error between numerical solution uNi and exact solution u(x) at point x=xi. Then the error equation can be written by

    LN(uiuNi)=R1,i+R2,i,i=1,2,3,,N, (3.1)

    where R1,i,R2,i are characterized by

    R1,i=D2uiu(xi), (3.2)
    R2,i=ik=1xkxk1(xis)α[(¯bu)(s)(bu)(s)]ds. (3.3)

    Lemma 3.1. The truncation error R1,i and R2,i estimations can be given by the following inequality:

    |R1,i|CNγγδ,i=1,2,|R1,i|C(h2ixδ3i1+h2i1xδ3i2),i3,|R2,i|Cmax{Nγδ,N2},i1.

    Proof. For the truncation error R1,1, it follows from Taylor's expansion formula and Lemma 1.1 that

    |R1,1|=|1h1x10tu(t)dt|x10tδ2dtChδ11CNγγδ. (3.4)

    Similarly, for i2, based on [14], one has

    |R1,i|=|1+2ri2(1+ri)hixixi1(txi1)2u(t)dtr2i2hi(1+ri)xi1xi2(txi2)2u(t)dtri2(1+ri)xixi1(2(txi1)+hi1)u(t)dt|. (3.5)

    Furthermore, based on Eq (3.5), yields,

    |R1,2|1+2r22(1+r2)h22xδ31+r22h1(1+r2)x10tδ1dt+r2+12(1+r2)h22xδ31Ch22hδ31+Chδ11Chδ11(r22+1)Chδ11 (3.6)

    and

    |R1,i|1+2ri2(1+ri)h2ixδ3i1+ri2(1+ri)h2i1xδ3i2+ri+12(1+ri)h2ixδ3i1C(h2ixδ3i1+h2i1xδ3i2),i3. (3.7)

    For R2,i, 1iN, it is easy to obtain

    |R2,i|=|ik=1xkxk1(xis)α[xkshkxkxk1(txk1)u(t)dt+xks(ts)u(t)dt]ds|ik=1xkxk1(xis)α[xkxk1(txk1)|u(t)|dt+xks(ts)|u(t)|dt]dsik=1xkxk1(xis)α2xkxk1(txk1)|u(t)|dtds2max1kixkxk1(txk1)|u(t)|dtik=1xkxk1(xis)αdsCmax1ki(xkxk1tδ/21dt)2Cmax1ki(xδ/2kxδ/2k1)2, (3.8)

    where we have used the following inequality:

    baϕ(s)(sa)ds12[baϕ(s)ds]2,

    for any decreasing function ϕ>0 on [a,b], see [20]. When graded mesh parameter γ2/δ, Eq (3.8), the following estimates can be given:

    |R2,i|Cmax1ki[(kN)γδ/2(k1N)γδ/2]2CNγδ, (3.9)

    where the following inequality is used

    apbp(ab)p,0<p<1,0ba.

    Conversely, if γ>2/δ,

    |R2,i|Cmax1ki[(kN)γδ/2(k1N)γδ/2]2Cmax1ki(γδ2Nξγδ/21k)2CN2, (3.10)

    where ξk(k1N,kN). To sum up, this lemma is proved.

    Now, we derive the main result of this paper as follows:

    Theorem 3.1. Let un be the exact solution of problem (1.1) at the point x=xn and uNn be the solution of problem (2.2) on the mesh ˉΩN. Then, under the condition h(1α)/(16β), we have

    max0nN|unuNn|{CNγδ,γ<2/δ,CN2logN,γ=2/δ,CN2,γ>2/δ. (3.11)

    Proof. For n1, Lemma 2.2 and Eq (3.1) imply that

    |unuNn|Cni=1ij=1θiij|R1,j+R2,j|C(Pn+Qn), (3.12)

    where

    Pn=ni=1ij=1θiij|R1,j|,Qn=ni=1ij=1θiij|R2,j|.

    Based on Lemma 2.2 and Lemma 3.1, it is easy to obtain

    QnCmax{Nγδ,N2}ni=1ij=1θiijCmax{Nγδ,N2},n1. (3.13)

    Next, for Pn, the following estimate can be obtained by exchanging the summation order

    Pnnj=1|R1,j|ni=jθiijnj=1|R1,j|hj2j=1|R1,j|hj+nj=3|R1,j|hj, (3.14)

    where the fact ni=jθiijChj is used. Then it is easy to get the following estimations:

    2j=1|R1,j|hjCNγγδ2j=1hjCNγγδx2CNγγδ(2/N)γCNγδ, (3.15)

    and

    nj=3|R1,j|hjCnj=3(h3jxδ3j1+hjh2j1xδ3j2). (3.16)

    Furthermore, by using hjTγN1(j/N)γ1, yields,

    nj=3|R1,j|hjCN3nj=3[(jN)3(γ1)(j1N)γ(δ3)+(jN)3(γ1)(j2N)γ(δ3)]Cnj=3j3(γ1)Nγδ[(j1)γδ3γ+(j2)γδ3γ]jγδ3γjγδ3γCnj=3jγδ3Nγδ[(11/j)γδ3γ+(12/j)γδ3γ]Cnj=3jγδ3Nγδ[(2/3)γδ3γ+(1/3)γδ3γ]Cnj=3jγδ3Nγδ. (3.17)

    If γ<2/δ, we have

    nj=3jγδ3NγδCNγδ. (3.18)

    If γ=2/δ, by using nj=3j1n11xdxlnN, yields,

    nj=3jγδ3NγδCN2n3j1dtCN2lnN. (3.19)

    If γ>2/δ, the following estimation will be obtained through the definition of the definite integral

    nj=3jγδ3Nγδ=N2nj=31N(jN)γδ3N210xγδ3dxCN2. (3.20)

    According to Eqs (3.14)–(3.20), the estimation of Pn in Eq (3.12) can be obtained. The desirable result can be followed by Eq (3.13).

    In order to verify our theoretical results, we consider the following test problem [1]

    u(x)+u(x)+x0(xt)αetu(t)dt=f(x), xΩ:=(0,L], (4.1)
    u(0)=μ, (4.2)

    where f=(2α)x1α+Γ(1α)Γ(3α)Γ(42α)x32α. The exact solution of this problem is u(x)=x2αex. Since the exact solution is given, the maximum absolute error and the convergence order are calculated as follows:

    EN:=max0iN|uNiui|,ρ=log2(ENE2N).

    For different mesh parameters γ, N and α, Table 1 shows the maximum absolute errors and convergence orders. It is shown from these numerical experiments that they complement the theoretical results given in Theorem 3.1.

    Table 1.  The maximum errors and convergence orders.
    α N γ=1 γ=2 γ=3
    EN ρ EN ρ EN ρ
    0.1 29 8.7481e-06 1.88 2.0699e-06 2.00 3.5185e-06 2.00
    210 2.3645e-06 1.89 5.1713e-07 2.00 8.7881e-07 2.00
    211 6.3633e-07 1.89 1.2924e-07 2.00 2.1960e-07 2.00
    212 1.7087e-07 1.89 3.2304e-08 2.00 5.4887e-08 2.00
    213 4.5833e-08 - 8.0754e-09 - 1.3720e-08 -
    γδ 1.90 3.8 5.7
    0.3 29 2.1574e-05 1.68 1.9564e-06 2.00 2.8607e-06 2.00
    210 6.6875e-06 1.69 4.8865e-07 2.00 7.1450e-07 2.00
    211 2.0656e-06 1.69 1.2210e-07 2.00 1.7854e-07 2.00
    212 6.3687e-07 1.69 3.0518e-08 2.00 4.4626e-08 2.00
    213 1.9619e-07 - 7.6284e-09 - 1.1155e-08 -
    γδ 1.70 3.40 5.10
    0.5 29 4.9960e-05 1.48 1.9545e-06 2.00 2.2527e-06 2.00
    210 1.7808e-05 1.49 4.8840e-07 2.00 5.6267e-07 2.00
    211 6.3214e-06 1.49 1.2205e-07 2.00 1.4062e-07 2.00
    212 2.2394e-06 1.49 3.0503e-08 2.00 3.5152e-08 2.00
    213 7.9251e-07 - 7.6243e-09 - 8.7881e-09 -
    γδ 1.50 3.00 4.50
    0.7 29 9.9815e-05 1.28 2.0758e-06 1.98 1.5693e-06 2.00
    210 4.0911e-05 1.29 5.2525e-07 1.99 3.9187e-07 2.00
    211 1.6689e-05 1.29 1.3231e-07 1.99 9.7955e-08 2.00
    212 6.7922e-06 1.29 3.3236e-08 1.99 2.4496e-08 2.00
    213 2.7614e-06 - 8.3348e-09 - 6.1268e-09 -
    γδ 1.30 2.60 3.90
    0.9 29 1.0708e-04 1.05 1.6942e-06 1.86 5.9577e-07 2.00
    210 5.1652e-05 1.07 4.6535e-07 1.89 1.4805e-07 2.00
    211 2.4483e-05 1.08 1.2550e-07 1.91 3.6917e-08 2.00
    212 1.1510e-05 1.09 3.3382e-08 1.92 9.2226e-09 2.00
    213 5.3894e-06 - 8.7848e-09 - 2.3062e-09 -
    γδ 1.10 2.20 3.30

     | Show Table
    DownLoad: CSV

    Based on the variable step size BDF2, this paper proposes a second-order numerical method on the graded mesh to solve a Volterra integro-differential equation with a weak singular kernel and gives rigorous stability and convergence analysis for our presented numerical method. In the further work, by using the analysis of BDF3 given in [21], we shall study a third-order numerical method for the Volterra integro-differential equation with a weakly singular kernel.

    Li-Bin Liu: Methodolog, writing review and editing; Limin Ye: software and writing original draft preparation; Xiaobing Bao: software, formal analysis and writing review and editing; Yong Zhang: numerical analysis and check the English writing. Further, all the authors have checked and approved the final version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare there is no conflict of interest.

    This work was supported by the National Science Foundation of China (12361087), the Guangxi Science Technology Base and special talents (Guike AD20238065, Guike AD23023003), the projects of Excellent Young Talents Fund in Universities of Anhui Province (gxyq2021225) and Innovation Project of Guangxi Graduate Education (YCSW2024463).



    [1] H. Brunner, D. Schötzau, hp-Discontinuous galerkin time-stepping for Volterra integro differential equattions, SIAM J Numer Anal, 44 (2006), 224–245. https://doi.org/10.1137/040619314 doi: 10.1137/040619314
    [2] A. M. Wazwaz, Volterra Integro-Differential Equations, Berlin Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-21449-3_5
    [3] B. Hermann, Volterra integral equations: an introduction to theory and applications, Cambridge: Cambridge University Press, 2017. https://doi.org/10.1017/9781316162491
    [4] I. Amirali, B. Fedaka, G. M. Amiraliyev, On the second-order neutral Volterra integro-differential equation and its numerical solution, Appl. Math. Comput., 476 (2024), 128765. https://doi.org/10.1016/j.amc.2024.128765 doi: 10.1016/j.amc.2024.128765
    [5] H. Chen, W. Qiu, M. A. Zaky, A. S. Hendy, A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel, Calcolo, 60 (2023), 13–42. https://doi.org/10.1007/s10092-023-00508-6 doi: 10.1007/s10092-023-00508-6
    [6] I. Amirali, H. Acar, Stability inequalities and numerical solution for neutral Volterra delay integro-differential equation, J. Comput. Appl. Math., 436 (2024), 115343. https://doi.org/10.1016/j.cam.2023.115343 doi: 10.1016/j.cam.2023.115343
    [7] M. Kassem, A superconvergent discontinuous Galerkin method for Volterra integro-differential equations, smooth and non-smooth kernels, Math. Comput., 82 (2013), 1987–2005. http://doi:10.1090/s0025-5718-2013-02689-0 doi: 10.1090/s0025-5718-2013-02689-0
    [8] Z. Wang, Y. Guo, L. Yi, An hp-version Legendre-Jacobi spectral collocation method for Volterra integro-differential equations with smooth and weakly singular kernels, Math. Comput., 86 (2017), 2285–2324. https://doi.org/10.1090/mcom/3183 doi: 10.1090/mcom/3183
    [9] Y. X. Wei, Y. P. Chen, Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions, Adv Appl Math Mech, 4 (2012), 1–20. https://doi.org/10.4208/aamm.10-m1055 doi: 10.4208/aamm.10-m1055
    [10] C. L. Wang, B. Y. Chen, An hp-version spectral collocation method for nonlinear Volterra integro-differential equation with weakly singular kernels, AIMS. Math, 8 (2023), 19816–19841. http://doi.org/10.3934/math.20231010 doi: 10.3934/math.20231010
    [11] H. L. Jia, Y. Yang, Z. Q. Wang, An hp-version Chebyshev spectral collocation method for nonlinear Volterra integro-differential equations with weakly singular kernels, Numer. Math. Theor. Meth. Appl., 12 (2019), 969–994. http://doi.org/10.4208/nmtma.OA-2018-0104 doi: 10.4208/nmtma.OA-2018-0104
    [12] X. M. Wang, An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations, Numer. Math., 121 (2012), 753–779. http://doi.org/10.1007/s00211-012-0450-3 doi: 10.1007/s00211-012-0450-3
    [13] K. L. Cheng, C. Wang, Long time stability of high order multistep numerical schemes for two-dimensional incompressible Navier-Stokes equations, SIAM. J. Numer. Anal., 54 (2016), 3123–3144. http://doi.org/10.1137/16M1061588 doi: 10.1137/16M1061588
    [14] H. L. Liao, Z. Zhang, Analysis of adaptive BDF2 scheme for diffusion equations, Math. Comp., 90 (2020), 1207–1226. https://doi.org/10.1090/mcom/3585 doi: 10.1090/mcom/3585
    [15] H. Liao, X. Song, T. Tang, T. Zhou, Analysis of the second order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection, Sci. China Math., 64 (2021), 887–902. https://doi.org/10.1007/s11425-020-1817-4 doi: 10.1007/s11425-020-1817-4
    [16] W. S. Wang, M. L. Mao, Z. Wang, Stability and error estimates for the variable step-size BDF2 method for linear and semilinear parabolic equations, Adv. Comput. Math., 47 (2021), 8–35. https://doi.org/10.1007/s10444-020-09839-2 doi: 10.1007/s10444-020-09839-2
    [17] W. Wang, Z. Wang, M. Mao, Linearly implicit variable step-size BDF schemes with Fourier pseudospectral approximation for incompressible Navier-Stokes equations, Appl. Numer. Math., 172 (2022), 393–412. https://doi.org/10.1016/j.apnum.2021.10.019 doi: 10.1016/j.apnum.2021.10.019
    [18] Y. L. Zhao, X. M. Gu, A. A. Ostermann, A preconditioning technique for an all-at-once system from Volterra subdiffusion equations with graded time steps, J Sci Comput, 88 (2021), 11. https://doi.org/10.1007/s10915-021-01527-7 doi: 10.1007/s10915-021-01527-7
    [19] C. P. Li, Q. Yi, A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316 (2016), 614–631. https://doi.org/10.1016/j.jcp.2016.04.039 doi: 10.1016/j.jcp.2016.04.039
    [20] T. Linß, Error expansion for a first-order upwind difference scheme applied to a model convection-diffusion problem, IMA. J. Numer. Anal., 24 (2004), 239–253. http://doi.org/10.1093/imanum/24.2.239
    [21] H. L. Liao, T. Tang, T. Zhou, Discrete energy analysis of the third-order variable-step BDF time-stepping for diffusion equation, J. Comput. Math. 41 (2023), 325–344. https://doi.org/10.4208/jcm.2207-m2022-0020 doi: 10.4208/jcm.2207-m2022-0020
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1061) PDF downloads(64) Cited by(0)

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog