Research article

Two high-order compact difference schemes with temporal graded meshes for time-fractional Black-Scholes equation

  • Received: 05 August 2023 Revised: 27 September 2023 Accepted: 07 October 2023 Published: 12 October 2023
  • In this paper, two high-order compact difference schemes with graded meshes are proposed for solving the time-fractional Black-Scholes equation. We first eliminate the convection term in the equivalent form of the considered equation by using exponential transformation, then combine the sixth-order/eighth-order compact difference method with a temporal graded meshes-based trapezoidal formulation for the temporal integral term to obtain the fully discrete high-order compact difference schemes. The stability and convergence analysis of the two proposed schemes are studied by applying Fourier analysis. Finally, the effectiveness of the proposed schemes and the correctness of the theoretical results are verified by two numerical examples.

    Citation: Jie Gu, Lijuan Nong, Qian Yi, An Chen. Two high-order compact difference schemes with temporal graded meshes for time-fractional Black-Scholes equation[J]. Networks and Heterogeneous Media, 2023, 18(4): 1692-1712. doi: 10.3934/nhm.2023074

    Related Papers:

  • In this paper, two high-order compact difference schemes with graded meshes are proposed for solving the time-fractional Black-Scholes equation. We first eliminate the convection term in the equivalent form of the considered equation by using exponential transformation, then combine the sixth-order/eighth-order compact difference method with a temporal graded meshes-based trapezoidal formulation for the temporal integral term to obtain the fully discrete high-order compact difference schemes. The stability and convergence analysis of the two proposed schemes are studied by applying Fourier analysis. Finally, the effectiveness of the proposed schemes and the correctness of the theoretical results are verified by two numerical examples.



    加载中


    [1] N. Abdi, H. Aminikhah, A. R. Sheikhani, High-order compact finite difference schemes for the time-fractional Black-Scholes model governing European options, Chaos Solitons Fractals, 162 (2022), 112423. https://doi.org/10.1016/j.chaos.2022.112423 doi: 10.1016/j.chaos.2022.112423
    [2] Z. Cen, J. Huang, A. Xu, A. Le, Numerical approximation of a time-fractional Black–Scholes equation, Comput. Math. Appl., 75 (2018), 2874–2887. https://doi.org/10.1016/j.camwa.2018.01.016 doi: 10.1016/j.camwa.2018.01.016
    [3] C. M. Chen, F. Liu, I. Turner, V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227 (2007), 886–897. https://doi.org/10.1016/j.jcp.2007.05.012 doi: 10.1016/j.jcp.2007.05.012
    [4] W. Chen, X. Xu, S. P. Zhu, Analytically pricing double barrier options based on a time-fractional Black–Scholes equation, Comput. Math. Appl., 69 (2015), 1407–1419. https://doi.org/10.1016/j.camwa.2015.03.025 doi: 10.1016/j.camwa.2015.03.025
    [5] H. Ding, C. Li, High‐order compact difference schemes for the modified anomalous subdiffusion equation, Numer. Methods Partial Differ. Equ., 32 (2016), 213–242. https://doi.org/10.1002/num.21992 doi: 10.1002/num.21992
    [6] R. L. Du, Z. Z. Sun, H. Wang, Temporal second-order finite difference schemes for variable-order time-fractional wave equations, SIAM J. Numer. Anal., 60 (2022), 104–132. https://doi.org/10.1137/19m1301230 doi: 10.1137/19m1301230
    [7] J. Gu, L. Nong, Q. Yi, A. Chen, Compact difference schemes with temporal uniform/non-uniform meshes for time-fractional Black–Scholes equation, Fractal Fract., 7 (2023), 340. https://doi.org/10.3390/fractalfract7040340 doi: 10.3390/fractalfract7040340
    [8] Y. Huang, Q. Li, R. Li, F. Zeng, L. Guo, A unified fast memory-saving time-stepping method for fractional operators and its applications, Numer. Math. Theor. Meth. Appl., 15 (2022), 679–714. https://doi.org/10.4208/nmtma.oa-2022-0023 doi: 10.4208/nmtma.oa-2022-0023
    [9] B. Jin, R. Lazarov, Z. Zhou, Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview, Comput. Methods Appl. Mech. Engrg., 346 (2019), 332–358. https://doi.org/10.1016/j.cma.2018.12.011 doi: 10.1016/j.cma.2018.12.011
    [10] K. Kazmi, A second order numerical method for the time-fractional Black–Scholes European option pricing model, J. Comput. Appl. Math., 418 (2023), 114647. https://doi.org/10.1016/j.cam.2022.114647 doi: 10.1016/j.cam.2022.114647
    [11] C. Li, Q. Yi, A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316 (2016), 614–631. https://doi.org/10.1016/j.jcp.2016.04.039 doi: 10.1016/j.jcp.2016.04.039
    [12] J. R. Liang, J. Wang, W. J. Zhang, W. Y. Qiu, F. Y. Ren, Option pricing of a bi-fractional Black–Merton–Scholes model with the Hurst exponent H in $[\frac{1}{2}, 1]$, Appl. Math. Lett., 23 (2010) 859–863. https://doi.org/10.1016/j.aml.2010.03.022 doi: 10.1016/j.aml.2010.03.022
    [13] Y. Liu, J. Roberts, Y. Yan, Detailed error analysis for a fractional Adams method with graded meshes, Numer. Algorithms, 78 (2018), 1195–1216. https://doi.org/10.1007/s11075-017-0419-5 doi: 10.1007/s11075-017-0419-5
    [14] P. Lyu, S. Vong, A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin–Bona–Mahony equation, J. Sci. Comput., 80 (2019), 1607–1628. https://doi.org/10.1007/s10915-019-00991-6 doi: 10.1007/s10915-019-00991-6
    [15] H. Mesgarani, M. Bakhshandeh, Y. E. Aghdam, J. F. Gómez-Aguilar, The convergence analysis of the numerical calculation to price the time-fractional Black–Scholes model, Comput. Econ., 2022. https://doi.org/10.1007/s10614-022-10322-x doi: 10.1007/s10614-022-10322-x
    [16] L. Nong, A. Chen, Numerical schemes for the time-fractional mobile/immobile transport equation based on convolution quadrature, J. Appl. Math. Comput., 68 (2022), 199–215. https://doi.org/10.1007/s12190-021-01522-z doi: 10.1007/s12190-021-01522-z
    [17] L. Nong, A. Chen, J. Cao, Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data, Math. Model. Nat. Phenom., 16 (2021), 12. https://doi.org/10.1051/mmnp/2021007 doi: 10.1051/mmnp/2021007
    [18] H. Qin, D. Li, Z. Zhang, A novel scheme to capture the initial dramatic evolutions of nonlinear subdiffusion equations, J. Sci. Comput., 89 (2021), 65. https://doi.org/10.1007/s10915-021-01672-z doi: 10.1007/s10915-021-01672-z
    [19] P. Roul, A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options, Appl. Numer. Math., 151 (2020), 472–493. https://doi.org/10.1016/j.apnum.2019.11.004 doi: 10.1016/j.apnum.2019.11.004
    [20] P. Roul, Design and analysis of a high order computational technique for time‐fractional Black–Scholes model describing option pricing, Math. Methods Appl. Sci., 45 (2022), 5592–5611. https://doi.org/10.1002/mma.8130 doi: 10.1002/mma.8130
    [21] F. Soleymani, S. Zhu, Error and stability estimates of a time-fractional option pricing model under fully spatial–temporal graded meshes, J. Comput. Appl. Math., 425 (2023) 115075. https://doi.org/10.1016/j.cam.2023.115075 doi: 10.1016/j.cam.2023.115075
    [22] M. Stynes, E. O'Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. https://doi.org/10.1137/16m1082329 doi: 10.1137/16m1082329
    [23] Z. Tian, S. Zhai, H. Ji, Z. Weng, A compact quadratic spline collocation method for the time-fractional Black–Scholes model, J. Appl. Math. Comput., 66 (2021), 327–350. https://doi.org/10.1007/s12190-020-01439-z doi: 10.1007/s12190-020-01439-z
    [24] S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA J. Numer. Anal., 24 (2004), 699–720. https://doi.org/10.1093/imanum/24.4.699 doi: 10.1093/imanum/24.4.699
    [25] X. Xu, M. Chen, Discovery of subdiffusion problem with noisy data via deep learning, J. Sci. Comput., 92 (2022), 23. https://doi.org/10.1007/s10915-022-01879-8 doi: 10.1007/s10915-022-01879-8
    [26] B. Yin, Y. Liu, H. Li, F. Zeng, A class of efficient time-stepping methods for multi-term time-fractional reaction-diffusion-wave equations, Appl. Numer. Math., 165 (2021), 56–82. https://doi.org/10.1016/j.apnum.2021.02.007 doi: 10.1016/j.apnum.2021.02.007
    [27] W. Yuan, D. Li, C. Zhang, Linearized transformed $L1$ Galerkin FEMs with unconditional convergence for nonlinear time fractional Schrödinger equations, Numer. Math. Theory Methods Appl., 16 (2023), 348–369. https://doi.org/10.4208/nmtma.oa-2022-0087 doi: 10.4208/nmtma.oa-2022-0087
    [28] W. Yuan, C. Zhang, and D. Li, Linearized fast time-stepping schemes for time-space fractional Schrödinger equations, Physica D, 454 (2023), 133865. https://doi.org/10.1016/j.physd.2023.133865 doi: 10.1016/j.physd.2023.133865
    [29] H. Zhang, F. Liu, I. Turner, Q. Yang, Numerical solution of the time fractional Black–Scholes model governing European options, Comput. Math. Appl., 71 (2016), 1772–1783. https://doi.org/10.1016/j.camwa.2016.02.007 doi: 10.1016/j.camwa.2016.02.007
    [30] J. Zhou, X. M. Gu, Y. L. Zhao, H. Li, A fast compact difference scheme with unequal time-steps for the tempered time-fractional Black–Scholes model, Int. J. Comput. Math., (2023), 1–23. https://doi.org/10.1080/00207160.2023.2254412 doi: 10.1080/00207160.2023.2254412
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1118) PDF downloads(113) Cited by(3)

Article outline

Figures and Tables

Figures(2)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog