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Abstract: In this paper, two high-order compact difference schemes with graded meshes are proposed
for solving the time-fractional Black-Scholes equation. We first eliminate the convection term in the
equivalent form of the considered equation by using exponential transformation, then combine the
sixth-order/eighth-order compact difference method with a temporal graded meshes-based trapezoidal
formulation for the temporal integral term to obtain the fully discrete high-order compact difference
schemes. The stability and convergence analysis of the two proposed schemes are studied by applying
Fourier analysis. Finally, the effectiveness of the proposed schemes and the correctness of the
theoretical results are verified by two numerical examples.
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1. Introduction

Fractional differential equations, which can be regarded as the generalization of classical
differential equations that involve non-integer order derivatives, have emerged as a powerful tool in
modeling and describing many complex phenomena that may not be captured by classical differential
equations. These significant applications in a wide range of scientific and engineering fields include
anomalous diffusion process, viscoelastic materials, chemistry, economics and finance. Especially for
the application in finance, e.g., the modeling of stock prices and financial derivatives, it seems that
fractional differential equations have more potential for the description of memory and hereditary
properties in the market, see [4, 12] and the references therein for more discussions.

In this paper, we study efficient numerical schemes for solving one of the fractional models applied
in finance, namely the time-fractional Black-Scholes (B-S) equation [4], which is described as follows.
For the option price C (S , t̃) with S being the underlying stock price at the current time t̃, we have the
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time-fractional B-S equation:
∂αC (S ,t̃)
∂t̃α + 1

2σ
2S 2 ∂2C (S ,t̃)

∂S 2 + rS ∂C (S ,t̃)
∂S − rC (S , t̃) = 0, (S , t̃) ∈ R+ × [0,T ),

C (S ,T ) = h̃(S ), S ∈ R+,

C (0, t̃) = φ̃(t̃), C (+∞, t̃) = ν̃(t̃), t̃ ∈ [0,T ),

(1.1)

where r is the risk-free rate and σ is the volatility of the underlying asset. The fractional operator ∂
α

∂t̃α

is defined by
∂αC (S , t̃)
∂t̃α

=
1

Γ(1 − α)
∂

∂t̃

∫ T

t̃

C (S , η) − C (S ,T )
(η − t̃)α

dη, α ∈ (0, 1).

We remark that the model (1.1) recovers the classical B-S equation when α = 1.
The time-fractional B-S equation (1.1), which can be derived by assuming that the change in the

option price with time is a fractal transmission system, has been extensively studied in recent years [7].
One can see that the time-fractional B-S Eq (1.1) becomes degenerate at the underlying asset price S =
0, which will lead to the failure of applying classical numerical methods. There are some numerical
studies on this topic, see [24] and references therein for the corresponding treatment and discussion.
So, instead of directly solving the original form of Eq (1.1), we first consider an equivalent form by
using the following transformation technique and then solve the resulting equation in a truncated space
interval.

Letting x = ln S and t = T − t̃ in model (1.1), and denoting V (x, t) = C (ex,T − t), we get the
following equivalent form of the time-fractional B-S equation after simple calculation:

CDα0,tV (x, t) =
1
2
σ2∂

2V (x, t)
∂x2 + (r −

1
2
σ2)
∂V (x, t)
∂x

− rV (x, t) + f (x, t), (1.2)

with the boundary and initial value conditions given by V (−∞, t) = φ(t), V (+∞, t) = ν(t) and
V (x, 0) = h(x), respectively. Without loss of generality, we have added the source term f to the above
Eq (1.2). The Caputo derivative CDα0,tV (x, t) is defined by

CDα0,tV (x, t) =
1

Γ(1 − α)

∫ t

0
(t − ξ)−α

∂V (x, ξ)
∂ξ

dξ.

For more details of the above procedure, the readers are referred to our recent paper [7].
Generally speaking, finding an analytical solution to the fractional differential equation is hard or

even impossible. So, one needs to resort to a numerical solution for solving fractional differential
equation. Until now, there have been extensive studies on numerical methods for fractional partial
differential equations, see [6, 9, 18, 25, 27, 28], just to name a few. Some main numerical studies for
the time-fractional B-S Eq (1.1) are listed below. In [29], Zhang et al. constructed a discrete implicit
numerical scheme with convergent order O(τ2−α + h2) for solving Eq (1.2). Here and in what follows,
unless otherwise noting, the notations τ and h denote the temporal and spatial step sizes, respectively.
Roul designed a high order numerical approach which was shown to be unconditionally stable and
O(τ2−α + h4) accurate [19]. In [10], Kazmi proposed a stable and accurate finite difference scheme for
an equivalent integro-differential form of Eq (1.2) and proved that the convergent order is O(τ2 + h2)
by Fourier analysis. Other relevant results can be found in [15, 23].
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The above numerical schemes are obtained under the assumption that the problem solution is
sufficiently smooth. Generally speaking, the solution of the time-fractional model always has weak
singularity near t = 0. Thus, the accuracy and numerical theory of those above mentioned numerical
schemes may not hold when solving Eq (1.2) with non-smooth initial conditions. There are some
strategies to deal with such issue, e.g., the non-uniform meshes [2,11,14,21], the adding of correction
terms [16, 17, 26], etc. We will focus on the first one in this paper. Besides, to the best of our
knowledge, it seems that the numerical studies with temporal non-uniform meshes for the
time-fractional B-S Eq (1.1), specially with high-order accuracy, are still limited.

We note that Abdi et. al. introduced two high-order finite difference schemes with accuracies of
O(τ3−α+h6) and O(τ3−α+h8) based on the L1-2 formula and compact difference schemes [1]. However,
the accuracy of their numerical schemes will be heavily affected by the insufficient smoothness of the
problem solution. This motivates us to derive high-order and stable numerical schemes for solving the
time-fractional B-S Eq (1.1) efficiently.

The main purpose of this paper is to develop the efficient finite difference schemes with temporal
graded meshes for solving the model (1.1). The contributions are listed below. First, we apply the
variable transformation technique to overcome the degeneration of the original Eq (1.1). Then based
on a equivalent form, we succeed in designing two high-order and stable finite difference schemes with
convergence orders of O(N−2+h6) and O(N−2+h8) for solving time-fractional B-S Eq (1.1) by choosing
the grading parameter γ = 1/α. Here, N denotes the total number of temporal grid points. Second, the
corresponding stability and error estimates are derived rigorously based on Fourier stability analysis.
Third, the numerical examples, including the numerical comparison with the existing methods, are
presented to support our numerical finding. It is worth mentioning that the proposed two high-order
compact difference schemes can efficiently solve the fractional model (1.2) with weak singularity of
solution near t = 0, and can achieve higher accuracy by applying fewer grid points. This means that our
derived schemes are more competitive compared to existing numerical schemes, since one can obtain
a high-order accuracy and reliable numerical solution of the time-fractional B-S Eq (1.1) using less
computational time and cost.

The rest of the paper is organized as follows. In Section 2, we show how to obtain the fully discrete
high-order compact difference scheme with temporal graded meshes. The stability and error estimates
of the two proposed schemes are given by the Fourier method in Sections 3 and 4, respectively. In
Section 5, two numerical examples are given to demonstrate the accuracy and adaptability of our
proposed schemes. The conclusions are given in Section 6.

2. The derivation of the schemes

For the purpose of numerical simulation, the time-fractional B-S Eq (1.2) is considered to be solved
on a finite domain (xl, xr) = (0, L) instead of the whole domainR. In order to get spatial sixth and eighth
order accuracy for the schemes, we use variable substitution V (x, t) = e

1
2ρxu(x, t) with ρ = 1 − 2r

σ2 to
obtain the following equivalent form of Eq (1.2):

CDα0,tu(x, t) = p∂
2u(x,t)
∂x2 − qu(x, t) + F(x, t), x ∈ (xl, xr) , t ∈ (0,T ),

u(xl, t) = e−
1
2ρxlφ(t), u(xr, t) = e−

1
2ρxrν(t),

u(x, 0) = e−
1
2ρxh(x),

(2.1)
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where p = 1
2σ

2, q = r + 1
8ρ

2σ2 and F(x, t) = e−
1
2ρx f (x, t).

It is well-known that the time-fractional Eq (2.1) is equivalent to the following Volterra integro-
differential equation:

u(x, t) = u(x, 0) +
1
Γ(α)

∫ t

0
(t − s)α−1(Lxu(x, s) + F(x, s)) ds (2.2)

where Lxu(x, s) = p∂
2u(x,s)
∂x2 − qu(x, s).

In order to perform the derivation of the numerical schemes for the above Eq (2.2), here we make
the following assumption on the solution as follows. From here on, we denote the capital letter C as a
positive constant which is independent of the temporal and spatial stepsizes τ and h in this paper.

Assumption 2.1. Assume that the solution in Eq (2.2) satisfies |∂
nu
∂tn (x, t)| ≤ C(1 + tα−n) for n = 0, 1, 2.

We remark that a similar assumption is mentioned in some existing literature, e.g.,
see [22, Theorem 2.1], [13, Assumption 1] or [30, Theorem A.2].

Next, we discretize the Eq (2.2) in space to get spatial sixth and eighth order accuracy.
For a given positive integer M, let ωh ≡ {xm = xl + mh | 0 ⩽ m ⩽ M} be a uniform mesh on the finite

interval [xl, xr], where the spatial step size h = (xr − xl)/M. By utilizing the Taylor expansion, one can
obtain the following sixth and eighth order compact difference approximations for the second-order
spatial partial derivative ∂

2u
∂x2 in Eq (2.2)(see, e.g. [5, Lemma 1]):

∂2u(xm, t)
∂x2 = H1u(xm, t) + O(h6), (2.3)

and
∂2u(xm, t)
∂x2 = H2u(xm, t) + O(h8). (2.4)

Here,

H1 =
δ2

x

(
1 − 1

12δ
2
x

)
h2

(
1 − 1

90δ
4
x

) , H2 =
δ2

x

(
1 − 1

12δ
2
x +

1
90δ

4
x

)
h2

(
1 + 1

560δ
6
x

) ,

and the central difference operator δ2
xu(xm, t) = u(xm−1, t) − 2u(xm, t) + u(xm+1, t).

So, applying the two compact difference formulas (2.3) and (2.4) to (2.2), we obtain

um(t) = um(0) +
1
Γ(α)

∫ t

0
(t − s)α−1(Lkum(s) + Fm(s)) ds + Rm,k(t), (2.5)

where um(s) = u(xm, s), Fm(s) = F(xm, s), Lkum(s) = (pHk − q)um(s) and the local truncation error
Rm,k(t) = 1

Γ(α)

∫ t

0
(∂

2u(xm,s)
∂x2 −Hku(xm, s)) ds. Here, k = 1, 2.

For the temporal discretization, we divide the interval [0,T ] into 0 = t0 < t1 < · · · < tk < tk+1 <

· · · < tN = T , with graded meshes t j = T ( j/N)γ( j = 0, 1, 2, . . . ,N, and γ ≥ 1). Here, N is a positive
integer. Denote τ j+1 = t j+1 − t j(0 ≤ j ≤ N − 1). For the sake of discussion, we denote

φm,k(s) = Lkum(s) + Fm(s),

and
Π1φm,k(s) =

s − t j+1

t j − t j+1
φm,k(s j) +

s − t j

t j+1 − t j
φm,k(s j+1),
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with s ∈ [t j, t j+1] and k = 1, 2.
Using the piecewise linear interpolation Π1φm,k(s) for the approximation of φm,k(s) on the each

subinterval [t j, t j+1], we can obtain from Eq (2.5) that

un
m = u0

m +
1
Γ(α)

n−1∑
j=0

∫ t j+1

t j

(tn − s)α−1φm,k(s) ds + Rm,k(tn)

= u0
m +

1
Γ(α)

n−1∑
j=0

∫ t j+1

t j

(tn − s)α−1Π1φm,k(s) ds + Rn
m,k

= u0
m +

n∑
j=0

w(n)
j φm,k(t j) + Rn

m,k, (k = 1, 2), (2.6)

where un
m = u(xm, tn), the truncation error Rn

m,k will be given by Lemma 4.1 and the weights w(n)
j are

described as

w(n)
j =

1
Γ(α + 2)


1
t1

A0, if j = 0,
1
τ j+1

A j −
1
τ j

B j, if j = 1, 2, · · · , n − 1,
(tn − tn−1)α , if j = n,

and 
A0 = (tn − t1)α+1

− tα+1
n + (α + 1)t1tαn ,

A j =
(
tn − t j+1

)α+1
−

(
tn − t j

)α+1
+ (α + 1)

(
t j+1 − t j

) (
tn − t j

)α
,

B j =
(
tn − t j

)α+1
−

(
tn − t j−1

)α+1
+ (α + 1)

(
t j − t j−1

) (
tn − t j

)α
.

Remark 2.2. Some strategies on how to reduce the rounding error in the calculation of the weights
are proposed in [30]. One may refer to these strategies to improve the accuracy of the computation in
practice.

Replacing un
m with the numerical solution Un

m in Eq (2.6) and omitting the small term Rn
m,k, we obtain

the following fully discrete high-order compact difference schemes

Un
m = U0

m +

n∑
j=0

w(n)
j (LkU j

m + F j
m), (2.7)

with k = 1, 2. Here, m = 1, 2, · · · ,M − 1 and n = 1, 2, · · · ,N. The corresponding initial and boundary
conditions are given by U0

j = e−
1
2ρx jh(x j), j = 0, 1, · · · ,M, and Un

0 = e−
1
2ρxlφ(tn),Un

M = e−
1
2ρxrν(tn), n =

1, 2, · · · ,N.
By the definitions in Eqs (2.3) and (2.4), we respectively have the sixth-order compact difference

scheme:

A2Un
m = A2U0

m +

n∑
j=0

w(n)
j A1U j

m +

n∑
j=0

w(n)
j A2F j

m, (2.8)

and the eighth-order compact difference scheme:

Ã2Un
m = Ã2U0

m +

n∑
j=0

w(n)
j Ã1U j

m +

n∑
j=0

w(n)
j Ã2F j

m, (2.9)
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where

A1 =
p
h2 δ

2
x

(
1 −

1
12
δ2

x

)
− qA2, A2 =

(
1 −

1
90
δ4

x

)
,

Ã1 =
p
h2 δ

2
x

(
1 −

1
12
δ2

x +
1

90
δ4

x

)
− qÃ2, Ã2 =

(
1 +

1
560
δ6

x

)
.

For ease of implementation in practice, in the following we present the concrete matrix forms of the
two compact difference schemes (2.8) and (2.9).

By the definition ofA1, we have

(−
1
90
+ aµ(α))Un

m−2 + (
2

45
− bµ(α))Un

m−1 + (
14
15
+ cµ(α))Un

m

+(
2
45
− bµ(α))Un

m+1 + (−
1

90
+ aµ(α))Un

m+2

= −
1
90

U0
m−2 +

2
45

U0
m−1 +

14
15

U0
m +

2
45

U0
m+1 −

1
90

U0
m+2

+

n−1∑
j=0

w(n)
j
[
− aU j

m−2 + bU j
m−1 − cU j

m + bU j
m+1 − aU j

m+2
]

+

n∑
j=0

w(n)
j
[
−

1
90

F j
m−2 +

2
45

F j
m−1 +

14
15

F j
m +

2
45

F j
m+1 −

1
90

F j
m+2

]
,

where
µ(α) =

ταn
Γ(2 + α)

,

a =
p

12h2 −
q

90
, b =

p
h2 +

4p
12h2 −

4q
90
,

and
c =

2p
h2 +

6p
12h2 + q −

6q
90
.

Denote by
un =

(
Un

1 ,U
n
2 , · · · ,U

n
M−1

)T

and
Fn =

(
Fn

1 , F
n
2 , · · · , F

n
M−1

)T ,

then the sixth-order compact difference scheme (2.8) can be expressed in the matrix form:

(D − µ(α)E)un = Du0 + E
n−1∑
j=0

w(n)
j u j + D

n∑
j=0

w(n)
j F j +Gn,

where the matrices D and E are all (M − 1) × (M − 1) five-diagonal matrices given by

D = diag
(
−

1
90
,

2
45
,

14
15
,

2
45
,−

1
90

)
Networks and Heterogeneous Media Volume 18, Issue 4, 1692–1712.
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and
E = diag(−a, b,−c, b,−a).

The column vector Gn with (M − 1)-entries is given by

Gn =
[
−

1
90

(
U0
−1 − Un

−1

)
−

n∑
j=0

w(n)
j

(
aU j
−1 +

1
90

F j
−1

)

+
2

45
(U0

0 − Un
0) +

n∑
j=0

w(n)
j

(
bU j

0 +
2
45

F j
0

)
,

−
1

90

(
U0

0 − Un
0

)
−

n∑
j=0

w(n)
j

(
aU j

0 +
1

90
F j

0

)
,

0, · · · , 0,

−
1

90

(
U0

M − Un
M

)
−

n∑
j=0

w(n)
j

(
aU j

M +
1

90
F j

M

)
,

2
45

(
U0

M − Un
M

)
+

n∑
j=0

w(n)
j

(
bU j

M +
2

45
F j

M

)

−
1

90

(
U0

M+1 − Un
M+1

)
−

n∑
j=0

w(n)
j

(
aU j

M+1 +
1

90
F j

M+1

) ]T
.

Similarly, the eighth-order compact difference scheme (2.9) has the following matrix from.

(D̃ − µ(α)Ẽ)un = D̃u0 + Ẽ
n−1∑
j=0

w(n)
j u j + D̃

n∑
j=0

w(n)
j F̃ j + G̃n,

where the two (M − 1) × (M − 1) seven-diagonal matrices D̃ and Ẽ are given by

D̃ = diag
(

1
560
,−

3
280
,

3
112
,

27
28
,

3
112
,−

3
280
,

1
560

)
,

Ẽ = diag(ã,−b̃, c̃,−d̃, c̃,−b̃, ã),

with
ã =

p
90h2 −

q
560
,

b̃ =
p

12h2 +
6p

90h2 −
6q

560
, c̃ =

p
h2 +

4p
12h2 +

15p
90h2 −

15q
560
,

and
d̃ =

2p
h2 +

6p
12h2 +

20p
90h2 + q −

20q
560
.

The column vector G̃n with (M − 1)-entries is defined by

G̃n =
[ 1
560

(
U0
−2 − Un

−2

)
+

n∑
j=0

w(n)
j

(
ãU j
−2 +

1
560

F j
−2

)
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−
3

280

(
U0
−1 − Un

−1

)
−

n∑
j=0

w(n)
j

(
b̃U j
−1 +

3
280

F j
−1

)

+
3

112

(
U0

0 − Un
0

)
+

n∑
j=0

w(n)
j

(
c̃U j

0 +
3

112
F j

0

)
,

1
560

(
U0
−1 − Un

−1

)
+

n∑
j=0

w(n)
j

(
ãU j
−1 +

1
560

F j
−1

)

−
3

280

(
U0

0 − Un
0

)
−

n∑
j=0

w(n)
j

(
b̃U j

0 +
3

280
F j

0

)
,

1
560

(
U0

0 − Un
0

)
+

n∑
j=0

w(n)
j

(
ãU j

0 +
1

560
F j

0

)
,

0, · · · , 0,
1

560

(
U0

M − Un
M

)
+

n∑
j=0

w(n)
j

(
ãU j

M +
1

560
F j

M

)
,

−
3

280

(
U0

M − Un
M

)
−

n∑
j=0

w(n)
j

(
b̃U j

M +
3

280
F j

M

)

+
1

560

(
U0

M+1 − Un
M+1

)
+

n∑
j=0

w(n)
j

(
ãU j

M+1 +
1

560
F j

M+1

)
,

3
112

(
U0

M − Un
M

)
+

n∑
j=0

w(n)
j

(
c̃U j

M +
3

112
F j

M

)

−
3

280

(
U0

M+1 − Un
M+1

)
−

n∑
j=0

w(n)
j

(
b̃U j

M+1 +
3

280
F j

M+1

)
1

560

(
U0

M+2 − Un
M+2

)
+

n∑
j=0

w(n)
j

(
ãU j

M+2 +
1

560
F j

M+2

) ]T
.

We remark that the ghost-point values in the sixth-order and eighth-order compact difference
schemes (2.8) and (2.9) can be computed by the following extrapolation formulas [5].

Un
−1 = 6Un

0 − 15Un
1 + 20Un

2 − 15Un
3 + 6Un

4 − Un
5 + O(h6),

Un
M+1 = 6Un

M − 15Un
M−1 + 20Un

M−2 − 15Un
M−3 + 6Un

M−4 − Un
M−5 + O(h6),

for the compact difference scheme (2.8), and

Un
−1 = 8Un

0 − 28Un
1 + 56Un

2 − 70Un
3 + 56Un

4 − 28Un
5 + 8Un

6 − Un
7 + O(h8),

Un
−2 = 36Un

0 − 168Un
1 + 378Un

2 − 504Un
3 + 420Un

4 − 216Un
5 + 63Un

6 − 8Un
7 + O(h8),

Un
M+1 = 8Un

M − 28Un
M−1 + 56Un

M−2 − 70Un
M−3 + 56Un

M−4 − 28Un
M−5

+8Un
M−6 − Un

M−7 + O(h8),
Un

M+2 = 36Un
M − 168Un

M−1 + 378Un
M−2 − 504Un

M−3 + 420Un
M−4
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−216Un
M−5 + 63Un

M−6 − 8Un
M−7 + O(h8),

for the compact difference scheme (2.9).

3. Stability analysis

We now present the stability of the two high-order compact difference schemes (2.8) and (2.9) by
Fourier method (cf., e.g. [3]), respectively.

3.1. Stability analysis of the scheme (2.8)

Let Ûn
m be the solution of Eq (2.8). Define εn

m = Un
m − Ûn

m,m = 1, · · · ,M − 1, n ≥ 0. It follows from
Eq (2.8) that the round off error equation has the following form:

(−
1

90
+ aµ(α))εn

m−2 + (
2

45
− bµ(α))εn

m−1 + (
14
15
+ cµ(α))εn

m

+(
2

45
− bµ(α))εn

m+1 + (−
1
90
+ aµ(α))εn

m+2

= −
1

90
ε0

m−2 +
2

45
ε0

m−1 +
14
15
ε0

m +
2

45
ε0

m+1 −
1

90
ε0

m+2

+

n−1∑
j=0

w(n)
j

[
−aε j

m−2 + bε j
m−1 − cε j

m + bε j
m+1 − aε j

m+2

]
, (3.1)

where m = 1, · · · ,M − 1 and n ≥ 1.
Define the following grid function:

εn(x) =

εn
m, x ∈ (xm −

h
2 , xm +

h
2 ],m = 1, 2, · · · ,M − 1,

0, x ∈ [x0, x0 +
h
2 ] ∪ [xM −

h
2 , xM],

from which we have the following Fourier series expansion of εn(x):

εn(x) =
∞∑

k=−∞

ξn(k)ei 2πkx
L ,

where the Fourier coefficient ξn(k) is given by

ξn(k) =
1
L

∫ L

0
εn(x)e−i 2πkx

L dx.

Denote εn = (εn
1, ε

n
2, · · · , ε

n
M−1)T . Using the definition of the discrete L2-norm:

∥εn∥22 =

M−1∑
m=1

h|εn
m|

2 =

∫ L

0
|εn(x)|2dx,

and Parseval’s identity: ∫ L

0
|εn(x)|2dx = L

∞∑
k=−∞

|ξn(k)|2,
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we deduce that

∥εn∥22 = L
∞∑

k=−∞

|ξn(k)|2.

So, letting εn
m = ξneiℓmh with ℓ = 2πk/L and substituting it into the Eq (3.1), we have

ξn
[
2(−

1
90
+ aµ(α)) cos 2ℓh + 2(

2
45
− bµ(α) cos ℓh) +

14
15
+ cµ(α)

]
= ξ0

(
−

1
45

cos 2ℓh +
4
45

cos ℓh +
14
15

)
+

n−1∑
j=0

w(n)
j (−2a cos 2ℓh + 2b cos ℓh − c) ξ j,

where we have used the two identifies cos 2ℓh = e2iℓh+e−2iℓh

2 and cos ℓh = eiℓh+e−iℓh

2 . It follows that

ξn =
B1

B1 + µ(α)B2
ξ0 +

n−1∑
j=0

w(n)
j

−B2

B1 + µ(α)B2
ξ j, (3.2)

where the coefficients B j( j = 1, 2) are defined by

B1 = 1 −
8

45
sin4 ℓh

2
, B2 = q + sin2 ℓh

2

(
16a sin2 ℓh

2
+

4p
h2

)
. (3.3)

Lemma 3.1. For the coefficients B j( j = 1, 2) given in Eq (3.3), one has the following two inequalities:∣∣∣∣∣ B1

B1 + µ(α)B2

∣∣∣∣∣ < 1,
∣∣∣∣∣ −B2

B1 + µ(α)B2

∣∣∣∣∣ < K1,

where K1 =
∣∣∣∣15(3q+4ℓ2 p)

37

∣∣∣∣.
Proof. The first inequality is obvious in view of p > 0, q > 0, h > 0 and 0 < α < 1. For the second
inequality, we have

∣∣∣∣∣ −B2

B1 + µ(α)B2

∣∣∣∣∣ < ∣∣∣∣∣B2

B1

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
q + sin2 ℓh

2

(
16a sin2 ℓh

2 +
4p
h2

)
1 − 8

45 sin4 ℓh
2

∣∣∣∣∣∣∣∣
<

∣∣∣∣∣∣∣∣
q + sin2 ℓh

2

(
16( p

12h2 −
q
90 ) sin2 ℓh

2 +
4p
h2

)
1 − 8

45 sin4 ℓh
2

∣∣∣∣∣∣∣∣
<

∣∣∣∣∣∣∣∣
q + sin2 ℓh

2

(
4p
3h2 +

4p
h2

)
1 − 8

45

∣∣∣∣∣∣∣∣ <
∣∣∣∣∣∣15(3q + 4ℓ2 p)

37

∣∣∣∣∣∣ ,
where the last inequality holds for sufficiently small h. Thus, the proof is completed.

Lemma 3.2. Suppose that ξn(n ≥ 1) is the solution of Eq (3.2), we have

|ξn| ≤ C|ξ0|. (3.4)
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Proof. First, applying Lemma 3.1 to Eq (3.2), one has

|ξn| ≤

∣∣∣∣∣ B1

B1 + µ(α)B2

∣∣∣∣∣ |ξ0| + n−1∑
j=0

w(n)
j

∣∣∣∣∣ −B2

B1 + µ(α)B2

∣∣∣∣∣ |ξ j|

≤ |ξ0| + K1

n−1∑
j=0

w(n)
j |ξ j|.

Noting that the property of weights w(n)
j ≤ Cτ j+1(tn− t j)α−1 holds (see [11, Lemma 3.1]). So, the desired

result then follows from the modified Gronwall inequality (see [11, Lemma 3.3]).

We are now in a position to give the stability of the sixth-order compact difference scheme (2.8).

Theorem 3.3. The sixth-order compact difference scheme (2.8) is stable.

Proof. In view of the estimate result (3.4), we obtain

∥εn∥22 = L
∞∑

k=−∞

|ξn(k)|2 ≤ C
∞∑

k=−∞

|ξ0(k)|2 = C∥ε0∥22,

which implies that the scheme (2.8) is stable.

3.2. Stability analysis of the scheme (2.9)

Similar to the discussion in the previous subsection for Eq (2.8), we assume that Ũn
m is the

approximate solution of Un
m and define ε̃n

m = Un
m − Ũn

m, m = 0, 1, · · · ,M, n = 0, 1, · · · ,N. So, we can
get the roundoff error equation for Eq (2.9):

(
1

560
− ãµ(α))ε̃n

m−3 + (−
3

280
+ b̃µ(α))ε̃n

m−2 + (
3

112
− c̃µ(α))ε̃n

m−1

+(
27
28
+ d̃µ(α))ε̃n

m + (
3

112
− c̃µ(α))ε̃n

m+1 + (−
3

280
+ b̃µ(α))ε̃n

m+2 + (
1

560
− ãµ(α))ε̃n

m+3

=
1

560
ε̃0

m−3 −
3

280
ε̃0

m−2 +
3

112
ε̃0

m−1 +
27
28
ε̃0

m +
3

112
ε̃0

m+1 −
3

280
ε̃0

m+2 +
1

560
ε̃0

m+3

+

n−1∑
j=0

w(n)
j

(
ãε̃ j

m−3 − b̃ε̃ j
m−2 + c̃ε̃ j

m−1 − d̃ε̃ j
m + c̃ε̃ j

m+1 − b̃ε̃ j
m+2 + ãε̃ j

m+3

)
,

where m = 1, · · ·M − 1 and n ≥ 1.
Here, we similarly define ε̃n

m = ξ̃neiℓmh with ℓ = 2πk/L. Substituting it into the above equation, one
has

ξ̃n
[
2(

1
560
− ãµ(α)) cos 3ℓh + 2(−

3
280
+ b̃µ(α)) cos 2ℓh

+2(
3

112
− c̃µ(α)) cos ℓh + (

27
28
+ d̃µ(α))

]
= ξ̃0

(
2

560
cos 3ℓh −

6
280

cos 2ℓh +
6

112
cos ℓh +

27
28

)
Networks and Heterogeneous Media Volume 18, Issue 4, 1692–1712.



1703

+

n−1∑
j=0

w(n)
j

(
2ã cos 3ℓh − 2b̃ cos 2ℓh + 2c̃ cos ℓh − d̃

)
ξ̃ j,

from which we obtain

ξ̃n
(
C1 + µ

(α)C2

)
= C1ξ̃0 − C2

n−1∑
j=0

w(n)
j ξ̃ j, (3.5)

where

C1 = 1 −
4

35
sin6 ℓh

2
,

C2 = q +
4p
h2 sin2 ℓh

2
+

4p
3h2 sin4 ℓh

2
+ 64ã sin6 ℓh

2
.

Since C1 + µ
(α)C2 , 0, we divide the Eq (3.5) by this coefficient to get

ξ̃n =
C1

C1 + µ(α)C2
ξ̃0 −

n−1∑
j=0

w(n)
j

C2

C1 + µ(α)C2
ξ̃ j. (3.6)

One can obtain the following lemmas in a similar way of the proof presented in the stability of the
sixth-order compact difference scheme (2.8). Thus the proofs are omitted.

Lemma 3.4. The following estimates hold.∣∣∣∣∣ C1

C1 + µ(α)C2

∣∣∣∣∣ < 1,
∣∣∣∣∣ −C2

C1 + µ(α)C2

∣∣∣∣∣ < K2,

where K2 =
∣∣∣∣7(45q+68ℓ2 p)

279

∣∣∣∣.
Lemma 3.5. Assume that ξ̃n(n ≥ 1) is the solution of Eq (3.6), we have

|ξ̃n| ≤ C|ξ̃0|.

Theorem 3.6. The eighth-order compact difference scheme (2.9) is stable.

Proof. The proof is analogous to the proof of Theorem 3.3, so the details are omitted for the sake of
brevity.

4. Convergence analysis

Lemma 4.1. Under Assumption (2.1), the truncation error in the high-order compact difference
schemes (2.7) has the following form:

|Rn
m,k| ≤ C(N−2 max{1,γα} + h†),

where † = 6 for k = 1 and † = 8 for k = 2.

Proof. Applying the error estimates presented in [5, Lemma 1] and [13, Lemma 2.1] to Eqs (2.5)
and (2.6), respectively, one can readily obtain the desired result. The proof is thereby finished.

From here on, unless otherwise noting, we always choose the grading parameter γ = 1/α in order
to obtain the highest possible rate of convergence O(N−2 + h†).
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4.1. Convergence analysis of the scheme (2.8)

Denote the error en
m = u(xm, tn)−Un

m. Here, Un
m is the numerical solution of the sixth-order compact

difference scheme (2.8). By Eqs (2.6) and (2.8), we have the following error equation:

(−
1

90
+ aµ(α))en

m−2 + (
2

45
− bµ(α))en

m−1 + (
14
15
+ cµ(α))en

m

+(
2

45
− bµ(α))en

m+1 + (−
1

90
+ aµ(α))en

m+2

=

n−1∑
j=0

w(n)
j

(
−ae j

m−2 + be j
m−1 − ce j

m + be j
m+1 − ae j

m+2

)
+ Rn

m,1, (4.1)

where m = 1, 2, · · · ,M − 1, and n = 1, 2, · · · ,N.
Similar to the stability analysis in the previous section, we define the grid functions as follow:

en(x) =

en
m, x ∈ (xm −

h
2 , xm +

h
2 ],m = 1, 2, · · · ,M − 1,

0, x ∈ [xl, xl +
h
2 ] ∪ [xr −

h
2 , xr],

and

Rn
1(x) =

Rn
m,1, x ∈ (xm −

h
2 , xm +

h
2 ],m = 1, 2, · · · ,M − 1,

0, x ∈ [xl, xl +
h
2 ] ∪ [xr −

h
2 , xr].

So, we expand en(x) and Rn
1(x) into the following Fourier series:

en(x) =
∞∑

k=−∞

ζn(k)ei 2πkx
L ,

and

Rn
1(x) =

∞∑
k=−∞

ηn(k)ei 2πkx
L .

The Fourier coefficients ζn(k) and ηn(k) are given by

ζn(k) =
1
L

∫ L

0
en(x)e−i 2πkx

L dx,

and

ηn(k) =
1
L

∫ L

0
Rn

1(x)e−i 2πkx
L dx.

In a similar way, we have

∥en∥22 = L
∞∑

k=−∞

|ζn(k)|2,

and

∥Rn
1∥

2
2 = L

∞∑
k=−∞

|ηn(k)|2. (4.2)
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So, we define en
m = ζneiℓmh and Rn

m,1 = ηneiℓmh with ℓ = 2πk/L. It follows from Eqs (4.1) that

ζn
(
B1 + µ

(α)B2

)
= −B2

n∑
j=0

w(n)
j ζ j + ηn, (4.3)

where the definitions of B j( j = 1, 2) are given by Eq (3.3).
Next, we show that the solution ζn of Eq (4.3) is bounded.

Lemma 4.2. Suppose that ζn(n ≥ 1) is the solution of Eq (4.3), we have

|ζn| ≤ C|η1|.

Proof. Using Lemma 4.1, we have

∥Rn
1∥

2
2 =

M−1∑
m=1

h|Rn
m,1|

2 ≤ C(M − 1)h|(N−2 + h6)|2 ≤ C(N−2 + h6)2.

It follows that the term
∑∞

k=−∞ |ηn(k)|2 in Eq (4.2) converges. We conclude that there exists a positive
constant C such that

|ηn| = |ηn(k)| ≤ C|η1(k)| = C|η1|,

for n ≥ 1.
So, by Eq (4.3), one has

|ζn||(B1 + µ
(α)B2)| ≤

n−1∑
j=0

w(n)
j |B2||ζ j| + |ηn|

≤

n−1∑
j=0

w(n)
j |B2||ζ j| +C|η1|.

Utilizing Lemma 3.1 and the property of the cofficient |B1 + µ
(α)B2| , 0, one gets

|ζn| ≤ K1

n−1∑
j=0

w(n)
j |ζ j| +C|η1|.

Since w(n)
j ≤ Cτ j+1(tn − t j)α−1 (see [11, Lemma 3.1]), applying the modified Gronwall inequality again

(see [11, Lemma 3.3]), we can obtain the desired estimate result. So, the proof is completed.

Now, we present the error estimate for the sixth-order compact difference scheme (2.8).

Theorem 4.3. Let Un
m and u(xm, tn) be solutions of the sixth-order compact difference scheme (2.8) and

the model problem (2.1), respectively. Under Assumption 2.1, we have the following error estimate:

∥Un
m − u(xm, tn)∥ = O(N−2 + h6).

Proof. In view of Lemma 4.4, we have

∥en∥
2
2 = L

∞∑
k=−∞

|ζn(k)|2 ≤ C
∞∑

k=−∞

|η1(k)|2 = C∥R1
1∥

2
2 ≤ C(N−2 + h6)2.

Thus, we complete the proof.
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4.2. Convergence analysis of the scheme (2.9)

Denote the error ẽn
m = u(xm, tn)−Un

m. Here, Un
m is the numerical solution of the eighth-order compact

difference scheme (2.9). By Eqs (2.6) and (2.9), we have the following error equation:

(
1

560
− ãµ(α))ẽn

m−3 + (−
3

280
+ b̃µ(α))ẽn

m−2 + (
3

112
− c̃µ(α))ẽn

m−1

+(
27
28
+ d̃µ(α))ẽn

m + (
3

112
− c̃µ(α))ẽn

m+1 + (−
3

280
+ b̃µ(α))ẽn

m+2 + (
1

560
− ãµ(α))ẽn

m+3

+

n−1∑
j=0

w(n)
n− j

(
ãẽ j

m−3 − b̃ẽ j
m−2 + c̃ẽ j

m−1 − d̃ẽ j
m + c̃ẽ j

m+1 − b̃ẽ j
m+2 + ãẽ j

m+3

)
+ Rn

m,2,

where m = 1, 2, · · · ,M − 1, and n = 1, 2, · · · ,N.
Similarly, we define ẽn

m = ζ̃neiℓmh and Rn
m,2 = η̃neiℓmh with ℓ = 2πk/L. So, we have

ζ̃n
(
C1 + µ

(α)C2

)
= −C2

n∑
j=0

w(n)
j ζ̃ j + η̃n, (4.4)

where C j( j = 1, 2) is given by Eq (3.6).
Analogous to the proofs of error estimate in the sixth-order compact difference scheme (2.8), we

only list here the lemma and theorem and without providing the corresponding proof details for the
sake of brevity.

Lemma 4.4. Suppose that ζ̃n(n ≥ 1) is the solution of Eq (4.4), we have

|ζ̃n| ≤ C|η̃1|.

Theorem 4.5. Let Un
m and u(xm, tn) be the solutions of eighth-order compact difference scheme (2.9)

and the model problem (2.1), respectively. Under Assumption 2.1, we have the following error
estimate:

∥Un
m − u(xm, tn)∥ = O(N−2 + h8).

5. Numerical examples

In this part, we provide numerical examples to verify the accuracy of the two high-order compact
difference schemes (2.8) and (2.9). Besides, the numerical simulation for the time-fractional B-S
model which describes the European options price are performed to illustrate the practicability of our
proposed schemes.

Example 5.1. Consider problem (2.1) with r = 0.5, σ =
√

2 and T = 1. The initial and boundary
conditions are given by u(x, 0) = x3 + x2 + 1 and u(0, t) = tα + 1, u(1, t) = 3(tα + 1). The source term f
is constructed such that the exact solution is u(x, t) = (tα + 1)(x3 + x2 + 1).

Since the fractional order α ∈ (0, 1), the problem solution is not sufficiently smooth, especially
near t = 0. The errors of the numerical solution in L2-norm are defined by
E(M,N) = max1≤ j≤N ∥U j − u

(
·, t j

)
∥2. The temporal and spatial convergence orders are computed by
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log N2
N1

(
E(M,N1)
E(M,N2)

)
and log M2

M1

(
E(M1,N)
E(M2,N)

)
, respectively. Here, N1 < N2 and M1 < M2. Numerical results are

shown in Tables 1 and 2.

Table 1. The L2-norm errors in time for Example 5.1 with M = ⌈ 3√N⌉.

Scheme N
α = 0.3 α = 0.5 α = 0.8
L2 error Rate L2 error Rate L2 error Rate

(2.8)

1536 8.9794E-08 - 9.0462E-08 - 9.1461E-08 -
2048 5.5919E-08 1.65 5.6331E-08 1.65 5.6948E-08 1.65
2560 3.6052E-08 1.97 3.6316E-08 1.97 3.6710E-08 1.97
3072 2.3950E-08 2.24 2.4124E-08 2.24 2.4384E-08 2.24

(2.9)

1536 6.5990E-11 - 6.6582E-11 - 6.7240E-11 -
2048 3.4871E-11 2.22 3.5222E-11 2.21 3.5970E-11 2.17
2560 1.9328E-11 2.64 1.9744E-11 2.59 2.0689E-11 2.48
3072 1.1221E-11 2.98 1.1848E-11 2.80 1.2591E-11 2.72

Table 2. The L2-norm errors in space for Example 5.1 with N = 2048.

Scheme M
α = 0.3 α = 0.5 α = 0.8
L2 error Rate L2 error Rate L2 error Rate

(2.8)

8 9.7994E-07 - 9.8762E-07 - 9.9908E-07 -
10 2.6356E-07 5.89 2.6556E-07 5.89 2.6855E-07 5.89
12 8.9794E-08 5.91 9.0463E-08 5.91 9.1461E-08 5.91
14 3.6052E-08 5.92 3.6316E-08 5.92 3.6710E-08 5.92

(2.9)

8 1.6634E-09 - 1.6757E-09 - 1.6940E-09 -
10 2.8183E-10 7.96 2.8379E-10 7.96 2.8668E-10 7.96
12 6.5987E-11 7.96 6.6464E-11 7.96 6.7389E-11 7.94
14 1.9340E-11 7.96 1.9655E-11 7.90 2.0266E-11 7.79

Notice that we have set M = ⌈
3√N⌉ in order to observe the temporal order more clearly when

testing the temporal convergence order, see Table 1. So, according to the convergence results, i.e.,
Theorems 4.3 and 4.5, the theoretical temporal convergence order would be no less than two. From the
numerical results, we indeed observe that the convergence orders of proposed schemes (2.8) and (2.9)
are consistent with the theoretical accuracy, which are almost O(N−2+h6) and O(N−2+h8), respectively.
This demonstrates that the proposed schemes (2.8) and (2.9) are robust and accurate when solving the
non-smooth solution problem.

Example 5.2. We consider the following European put option problem:
∂αC (S ,t̃)
∂t̃α + 1

2σ
2S 2 ∂2C (S ,t̃)

∂S 2 + rS ∂C (S ,t̃)
∂S − rC (S , t̃) = 0, (S , t̃) ∈ (S l, S r) × [0,T ),

C (S ,T ) = max{K − S , 0}, S ∈ (S l, S r),
C (S l, t̃) = Ke−r(T−t̃), C (S r, t̃) = 0, t̃ ∈ [0,T ),

(5.1)

with the parameters: σ = 0.25, r = 0.05, S l = 0.1, S r = 100 and K = 50. The final time is T = 1(year).
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In view of the relationship between the Eqs (1.1) and (2.1), we now test the accuracy of our derived
numerical schemes (2.8) and (2.9) for practical use. For sake of discussion, we only focus on the
temporal convergence order. The convergence order in time is computed by log2

(
E(M,N)

E(M,N/2)

)
with the

errors E(M,N) = ∥UN − UN/2∥2 and the numerical solution UN(x j) ≈ C (ex j ,T − tN). In practice, in
order for the spatial errors to not contaminate the temporal error, we will make the numbers of the
spatial nodes M large enough. The numerical results obtained by the two numerical schemes (2.8)
and (2.9), and the two ones (11) and (13) in paper [1], are shown in Table 3.

Table 3. The L2-norm errors in time for European put option problem (5.1) with M = 1024.

Scheme N
α = 0.3 α = 0.5 α = 0.8
L2 error Rate L2 error Rate L2 error Rate

(2.8)

16 - - - - - -
32 3.5677E-04 - 3.6490E-04 - 6.0996E-04 -
64 9.3159E-05 1.94 9.1875E-05 1.99 1.0811E-04 2.50
128 2.4109E-05 1.95 2.3071E-05 1.99 2.7460E-05 1.98
256 6.1951E-06 1.96 5.7845E-06 2.00 6.9606E-06 1.98

(2.9)

16 - - - - - -
32 3.5677E-04 - 3.6488E-04 - 6.1977E-04 -
64 9.3158E-05 1.94 9.1869E-05 1.99 1.0800E-04 2.52
128 2.4109E-05 1.95 2.3069E-05 1.99 2.7415E-05 1.98
256 6.1951E-06 1.96 5.7842E-06 2.00 6.9420E-06 1.98

[1, (11)]

16 - - - - - -
32 9.4797E-03 - 1.3509E-02 - 1.1575E-02 -
64 4.7537E-03 1.00 6.7771E-03 1.00 5.6930E-03 1.02
128 2.3767E-03 1.00 3.3893E-03 1.00 2.8243E-03 1.01
256 1.1874E-03 1.00 1.6933E-03 1.00 1.4064E-03 1.01

[1, (13)]

16 - - - - - -
32 9.4797E-03 - 1.3509E-02 - 1.1575E-02 -
64 4.7537E-03 1.00 6.7771E-03 1.00 5.6930E-03 1.02
128 2.3767E-03 1.00 3.3893E-03 1.00 2.8243E-03 1.01
256 1.1874E-03 1.00 1.6933E-03 1.00 1.4064E-03 1.01

The numerical results presented in Table 3 indicate that the numerical schemes (2.8) and (2.9)
can maintain the second-order accuracy in time, while the two ones (11) and (13) in paper [1] only
reach first-order accuracy. This implies that our schemes give better convergence results in time when
numerically solving the time-fractional B-S Eq (1.1).

Finally, we perform the numerical simulation for the time-fractional B-S model (1.1).

Example 5.3. Consider the numerical simulations of the European put option and the European call
option. The corresponding initial and boundary conditions are listed as follows.

• European put option: C (S ,T ) = max{K − S , 0},C (S l, t̃) = Ke−r(T−t̃), and C (S r, t̃) = 0.
• European call option: C (S ,T ) = max{S − K, 0},C (S l, t̃) = 0, and C (S r, t̃) = S r − Ke−r(T−t̃);

Networks and Heterogeneous Media Volume 18, Issue 4, 1692–1712.
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Here, the parameters are chosen as σ = 0.25, r = 0.05, S l = 0.1, S r = 100, and K = 50, which is
the same as in Eq (5.1). The final times are both chosen as T = 1(year). Notice that the numerical
schemes (2.8) and (2.9) still hold for solving the classical B-S model, i.e., the case α = 1 in time-
fractional B-S model (1.1), so by applying the sixth-order compact difference scheme (2.8) for α =
0.3, 0.8, and 1, we obtain the corresponding numerical simulations and present them in Figures 1
and 2.
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Figure 1. Curves of the European put option price (Computed by the scheme (2.8) with
N = 1024 and M = 256).
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Figure 2. Curves of the European call option price (Computed by the scheme (2.8) with
N = 1024 and M = 256).

From Figures 1 and 2, we can see that, close to the strike price (K = 50), the time-fractional
derivatives have a significant effect on the option price (see the zoomed parts in Figures 1 and 2)
which further verifies the conclusion of the numerical simulation in [20]. It seems that, compared
with the classical B-S model, the time-fractional B-S model has richer dynamical behaviour in the
characteristics of complex movements that appeared in the financial market, and the dynamical
mechanism behind it needs to be further studied.

Networks and Heterogeneous Media Volume 18, Issue 4, 1692–1712.



1710

6. Conclusions

In this paper, we construct two high-order compact finite difference schemes based on temporal
graded meshes for solving the time-fractional B-S equation. The stability and convergence of the
proposed schemes on the temporal graded meshes are proved by Fourier method. Finally, the numerical
examples demonstrate that the two proposed schemes are robust with the high-order accuracy (namely,
O(N−2+h6) and O(N−2+h8), by choosing the grading parameter γ = 1/α), even if the problem solution
has weak singularity near t = 0, which are in a good agreement with the theoretical results.

For the two high-order compact finite difference schemes proposed in this paper, one possible way
to further improve their computational efficiency is by employing the idea of sum-of-exponentials (see,
e.g., [8]) for the integral term appearing in the equivalent form (2.2) of the time-fractional B-S equation.
This will be one of our upcoming works.
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