Loading [Contrib]/a11y/accessibility-menu.js

On Fitting Of Mathematical Models Of Cell Signaling Pathways Using Adjoint Systems

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 August 2005
  • MSC : 92C99.

  • This paper concerns the problem of fitting of mathematical models of cell signaling pathways. Such models frequently take the form of a set of nonlinear ordinary differential equations. While the model is continuous-time, the performance index, used in the fitting procedure, involves measurements taken only at discrete-time moments. Adjoint sensitivity analysis is a tool that can be used for finding a gradient of a performance index in the space of the model’s parameters. The paper uses a structural formulation of sensitivity analysis, especially dedicated for hybrid, continuous/discrete-time systems. A numerical example of fitting of the mathematical model of the NF-kB regulatory module is presented.

    Citation: Krzysztof Fujarewicz, Marek Kimmel, Andrzej Swierniak. On Fitting Of Mathematical Models Of Cell Signaling Pathways Using Adjoint Systems[J]. Mathematical Biosciences and Engineering, 2005, 2(3): 527-534. doi: 10.3934/mbe.2005.2.527

    Related Papers:

    [1] Ramesh Garimella, Uma Garimella, Weijiu Liu . A theoretic control approach in signal-controlled metabolic pathways. Mathematical Biosciences and Engineering, 2007, 4(3): 471-488. doi: 10.3934/mbe.2007.4.471
    [2] Jaroslaw Smieja, Marzena Dolbniak . Sensitivity of signaling pathway dynamics to plasmid transfection and its consequences. Mathematical Biosciences and Engineering, 2016, 13(6): 1207-1222. doi: 10.3934/mbe.2016039
    [3] Krzysztof Fujarewicz . Estimation of initial functions for systems with delays from discrete measurements. Mathematical Biosciences and Engineering, 2017, 14(1): 165-178. doi: 10.3934/mbe.2017011
    [4] Ronald Lai, Trachette L. Jackson . A Mathematical Model of Receptor-Mediated Apoptosis: Dying to Know Why FasL is a Trimer. Mathematical Biosciences and Engineering, 2004, 1(2): 325-338. doi: 10.3934/mbe.2004.1.325
    [5] K. Renee Fister, Jennifer Hughes Donnelly . Immunotherapy: An Optimal Control Theory Approach. Mathematical Biosciences and Engineering, 2005, 2(3): 499-510. doi: 10.3934/mbe.2005.2.499
    [6] Justin P. Peters, Khalid Boushaba, Marit Nilsen-Hamilton . A Mathematical Model for Fibroblast Growth Factor Competition Based on Enzyme. Mathematical Biosciences and Engineering, 2005, 2(4): 789-810. doi: 10.3934/mbe.2005.2.789
    [7] Floriane Lignet, Vincent Calvez, Emmanuel Grenier, Benjamin Ribba . A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties. Mathematical Biosciences and Engineering, 2013, 10(1): 167-184. doi: 10.3934/mbe.2013.10.167
    [8] Craig Collins, K. Renee Fister, Bethany Key, Mary Williams . Blasting neuroblastoma using optimal control of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 451-467. doi: 10.3934/mbe.2009.6.451
    [9] Ana I. Muñoz, José Ignacio Tello . Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences and Engineering, 2011, 8(4): 1035-1059. doi: 10.3934/mbe.2011.8.1035
    [10] H. Thomas Banks, W. Clayton Thompson, Cristina Peligero, Sandra Giest, Jordi Argilaguet, Andreas Meyerhans . A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays. Mathematical Biosciences and Engineering, 2012, 9(4): 699-736. doi: 10.3934/mbe.2012.9.699
  • This paper concerns the problem of fitting of mathematical models of cell signaling pathways. Such models frequently take the form of a set of nonlinear ordinary differential equations. While the model is continuous-time, the performance index, used in the fitting procedure, involves measurements taken only at discrete-time moments. Adjoint sensitivity analysis is a tool that can be used for finding a gradient of a performance index in the space of the model’s parameters. The paper uses a structural formulation of sensitivity analysis, especially dedicated for hybrid, continuous/discrete-time systems. A numerical example of fitting of the mathematical model of the NF-kB regulatory module is presented.


  • This article has been cited by:

    1. K Łakomiec, S Kumala, R Hancock, J Rzeszowska-Wolny, K Fujarewicz, Modeling the repair of DNA strand breaks caused by γ-radiation in a minichromosome, 2014, 11, 1478-3967, 045003, 10.1088/1478-3975/11/4/045003
    2. Tor Flå, Florian Rupp, Clemens Woywod, Bifurcation patterns in generalized models for the dynamics of normal and leukemic stem cells with signaling, 2015, 38, 01704214, 3392, 10.1002/mma.3345
    3. Andrzej Świerniak, Marek Kimmel, Jaroslaw Smieja, Krzysztof Puszynski, Krzysztof Psiuk-Maksymowicz, 2016, Chapter 6, 978-3-319-28093-6, 171, 10.1007/978-3-319-28095-0_6
    4. Fabian Fröhlich, Carolin Loos, Jan Hasenauer, 2019, Chapter 16, 978-1-4939-8881-5, 385, 10.1007/978-1-4939-8882-2_16
    5. Krzysztof Fujarewicz, Krzysztof Łakomiec, Adjoint sensitivity analysis of a tumor growth model and its application to spatiotemporal radiotherapy optimization, 2016, 13, 1551-0018, 1131, 10.3934/mbe.2016034
    6. Eugenio Cinquemani, Andreas Milias-Argeitis, Sean Summers, John Lygeros, 2009, Chapter 8, 978-3-642-00601-2, 105, 10.1007/978-3-642-00602-9_8
    7. Krzysztof Fujarewicz, Krzysztof Łakomiec, Spatiotemporal sensitivity of systems modeled by cellular automata, 2018, 41, 01704214, 8897, 10.1002/mma.5358
    8. Krzysztof Fujarewicz, Estimation of initial functions for systems with delays from discrete measurements, 2017, 14, 1551-0018, 165, 10.3934/mbe.2017011
    9. Eugenio Cinquemani, Andreas Milias-Argeitis, John Lygeros, Identification of Genetic Regulatory Networks: A Stochastic Hybrid Approach, 2008, 41, 14746670, 301, 10.3182/20080706-5-KR-1001.00051
    10. Leonard Schmiester, Yannik Schälte, Fabian Fröhlich, Jan Hasenauer, Daniel Weindl, Russell Schwartz, Efficient parameterization of large-scale dynamic models based on relative measurements, 2019, 1367-4803, 10.1093/bioinformatics/btz581
    11. Krzysztof Fujarewicz, Krzysztof Łakomiec, Parameter estimation of systems with delays via structural sensitivity analysis, 2014, 19, 1553-524X, 2521, 10.3934/dcdsb.2014.19.2521
    12. Eugenio Cinquemani, Riccardo Porreca, Giancarlo Ferrari-Trecate, John Lygeros, Subtilin Production byBacillus Subtilis: Stochastic Hybrid Models and Parameter Identification, 2008, 53, 0018-9286, 38, 10.1109/TAC.2007.911327
    13. K. Fujarewicz, M. Kimmel, T. Lipniacki, A. Swierniak, Adjoint Systems for Models of Cell Signaling Pathways and their Application to Parameter Fitting, 2007, 4, 1545-5963, 322, 10.1109/tcbb.2007.1016
    14. Jaroslaw Smieja, Mohammad Jamaluddin, Allan Brasier, Marek Kimmel, DETERMINISTIC MODELING OF INTERFERON-BETA SIGNALING PATHWAY, 2006, 39, 14746670, 423, 10.3182/20060920-3-FR-2912.00076
    15. Michał Jakubczak, Krzysztof Fujarewicz, 2016, Chapter 11, 978-3-319-39903-4, 123, 10.1007/978-3-319-39904-1_11
    16. Krzysztof Łakomiec, Krzysztof Fujarewicz, 2014, Chapter 6, 978-3-319-05502-2, 59, 10.1007/978-3-319-05503-9_6
    17. Fabian Fröhlich, Barbara Kaltenbacher, Fabian J. Theis, Jan Hasenauer, Jorg Stelling, Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks, 2017, 13, 1553-7358, e1005331, 10.1371/journal.pcbi.1005331
    18. Tor Flå, Florian Rupp, Clemens Woywod, 2013, Chapter 11, 978-3-0348-0450-9, 221, 10.1007/978-3-0348-0451-6_11
    19. Krzysztof Łakomiec, Karolina Kurasz, Krzysztof Fujarewicz, 2019, Chapter 42, 978-3-319-91210-3, 481, 10.1007/978-3-319-91211-0_42
    20. Can Chen, Amit Surana, Anthony M. Bloch, Indika Rajapakse, Controllability of Hypergraphs, 2021, 8, 2327-4697, 1646, 10.1109/TNSE.2021.3068203
    21. Krzysztof Łakomiec, Agata Wilk, Krzysztof Psiuk-Maksymowicz, Krzysztof Fujarewicz, 2022, Chapter 41, 978-3-031-09134-6, 487, 10.1007/978-3-031-09135-3_41
    22. Agata Małgorzata Wilk, Krzysztof Łakomiec, Krzysztof Psiuk-Maksymowicz, Krzysztof Fujarewicz, Impact of government policies on the COVID-19 pandemic unraveled by mathematical modelling, 2022, 12, 2045-2322, 10.1038/s41598-022-21126-2
    23. S. Boccaletti, P. De Lellis, C.I. del Genio, K. Alfaro-Bittner, R. Criado, S. Jalan, M. Romance, The structure and dynamics of networks with higher order interactions, 2023, 1018, 03701573, 1, 10.1016/j.physrep.2023.04.002
    24. Anqi Dong, Xin Mao, Ram Vasudevan, Can Chen, Controllability and Observability of Temporal Hypergraphs, 2024, 8, 2475-1456, 2571, 10.1109/LCSYS.2024.3504393
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2967) PDF downloads(640) Cited by(24)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog