
MATHEMATICAL BIOSCIENCES http://www.mbejournal.org/
AND ENGINEERING
Volume 2, Number 3, August 2005 pp. 527–534

ON FITTING OF MATHEMATICAL MODELS OF CELL
SIGNALING PATHWAYS USING ADJOINT SYSTEMS

Krzysztof Fujarewicz

Institute of Automatic Control, Silesian University of Technology
Akademicka 16, 44-101 Gliwice, Poland

Marek Kimmel

Department of Statistics, Rice University

P.O. Box 1892, Houston, TX 77251, USA and
Institute of Automatic Control, Silesian University of Technology

Akademicka 16, 44-101 Gliwice, Poland

Andrzej Swierniak

Institute of Automatic Control, Silesian University of Technology

Akademicka 16, 44-101 Gliwice, Poland

Abstract. This paper concerns the problem of fitting of mathematical mod-
els of cell signaling pathways. Such models frequently take the form of a set of

nonlinear ordinary differential equations. While the model is continuous-time,

the performance index, used in the fitting procedure, involves measurements
taken only at discrete-time moments. Adjoint sensitivity analysis is a tool

that can be used for finding a gradient of a performance index in the space of

the model’s parameters. The paper uses a structural formulation of sensitivity
analysis, especially dedicated for hybrid, continuous/discrete-time systems. A

numerical example of fitting of the mathematical model of the NF-κB regula-
tory module is presented.

1. Introduction. Mathematical models of cell signaling pathways frequently take
the form of a set of nonlinear ordinary differential equations [3, 6, 7]. To compare
different models and to test their ability to model processes, for which experimental
data are given, an effective method of parameter fitting is needed. Unfortunately,
although the model is continuous-time, all available measuring techniques, such
as Western blot expression analysis, electrophoretic mobility shift assays, or gene
expression microarrays, give measurements only at discrete moments. As a conse-
quence, the whole problem has a hybrid, continuous/discrete nature. Until now,
no computationally effective algorithms could solve the problem for large nonlinear
models; a common approach is to fit the parameters manually [6]. In [9], a simi-
lar problem was solved by using Hartley’s modulating function, but the approach
may be applied only for some simple nonlinear models under the assumption that
measurements are relatively dense in time. In this paper, we propose the approach
that depends on adjoint sensitivity analysis.
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Adjoint sensitivity analysis is a technique frequently used in practical optimiza-
tion problems, such as identification or optimal control tasks. It calculates the
gradient of a performance index very effectively and decreases computational costs
when compared to straight (tangent linearized) sensitivity analysis. In a study re-
lated to adjoint systems, such systems are defined for continuous-time systems or
discrete-time systems and cannot be directly applied to solve the problem of pa-
rameter fitting presented above, because of its hybrid, continuous/discrete nature.

There are also methods that give rules for construction of the adjoint system,
when the original system is given as a block diagram. In [8], such rules have
been formulated for discrete-time neural networks. Using these rules, a non-casual
system (containing z operators) is constructed. In [1], similar rules were proposed
for construction of a so-called modified adjoint system [4]. The modified adjoint
system is more convenient in practical application (simulation), because it is a
casual system solved forward in time.

In our previous work [2], rules for creating the modified adjoint systems for
continuous/discrete systems (i.e., systems containing continuous- and discrete-time
parts, pulsers, and samplers) have been presented and used to extend the back-
propagation through time algorithm, well known in neural-networks theory. As a
result, a generalized backpropagation through time (GBPTT) algorithm for train-
ing continuous-time neural networks based on discrete-time measurements has been
formulated. In the present paper, it is used for the first time for a biological model.
The approach is tested on a mathematical model of NF-κB regulatory module re-
cently proposed in literature by Tomasz Lipniacki et al. [6]. As mentioned above,
the parameters of the model have been fitted manually based on measurements—
images of blots. Here, we treat the model with fitted parameters as a plant, and we
choose discrete-time values of the outputs for the fitting procedure. The numerical
computations show that the sum-quadratic performance index is minimized while
continuous-time signals obtained in the model are convergent with signals obtained
in the plant.

2. Adjoint systems. Let a given nonlinear dynamical system be denoted in the
state space using equations{

ẋ(t) = f (x(t), u(t))
y(t) = g (x(t)) , t ∈ [0, T ], (1)

where x(t), u(t), and y(t) are state, input, and output signals having appropriate
dimensions. Functions f(·) and g(·) are multidimensional nonlinear functions that
are differentiable with respect to their arguments, and T is a final time.

A sensitivity model (tangent linearized) for the given initial state x(0) and nom-
inal trajectories of the input unom(t) and the for state xnom(t) is defined for varia-
tions x̄(t), ū(t) and ȳ(t) as follows:{

˙̄x(t) = A(t)x̄(t) + B(t)ū(t)
ȳ(t) = C(t)x̄(t) , t ∈ [0, T ], (2)

where matrices A(t), B(t), and C(t) have been created by the differentiation of
functions f(·) and g(·) with respect to x(t) and u(t) along nominal trajectories

A(t) =
∂f

∂x

∣∣∣∣xnom(t)
unom(t)

, B(t) =
∂f

∂u

∣∣∣∣xnom(t)
unom(t)

, C(t) =
∂g

∂x

∣∣∣∣xnom(t)
unom(t)

, t ∈ [0, T ]. (3)
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The adjoint system for systems (1) and (2) is denoted as{ ˙̃x(t) = −AT (t)x̃(t) + CT (t)ũ(t)
ỹ(t) = BT (t)x̃(t)

, t ∈ [0, T ], (4)

and in practice is simulated backward in time for given final condition.
A time-reversed representation, the so-called modified adjoint system [4], is de-

fined as follows:{ ˙̂x(t) = AT (T − t)x̂(t) + CT (T − t)û(t)
ŷ(t) = BT (T − t)x̂(t)

, t ∈ [0, T ]. (5)

It is more convenient from the computational point of view, because it is solved
forward in time, unlike the adjoint system (4), for which a final condition usually
is given.

In the case of discrete-time systems, the sensitivity model and the adjoint systems
can be defined in a similar way.

Under zero initial conditions, systems (2) and (5) may be denoted using integral
operators:

ȳ(t) =

t∫
0

K̄(t, τ)ū(τ)dτ (6)

ŷ(t) =

t∫
0

K̂(t, τ)û(τ)dτ , (7)

where K̄(t, τ) and K̂(t, τ) are their kernels.
The fundamental property that allows us to use the modified adjoint system (5)

instead of the sensitivity model (2) is as follows:

K̄(t2, t1) = K̂(T − t1, T − t2). (8)

For example, when systems (2) and (5) are single-input-single-output (SISO) and
they are stimulated by Dirac pulses ū(t) = δ(t − t1), û(t) = δ(t − T + t2) then
outputs satisfy the relation ȳ(t2) = ŷ(T − t1).

An alternate approach to obtaining the adjoints is a structural one, where the
adjoint system is constructed based on a structural representation of the original
system. Both approaches, analytical and structural, are fully equivalent. The latter
is particularly convenient if the original system is already given in a block-diagram
form, or if the obtained adjoint system is modeled in a simulation software that
uses structural representation, for example, in the Matlab-Simulink.

A diagrammatic description is most often used in the case of continuous/discrete
systems, because in such a case, an analytical description using a set of differential
and difference equations combined with an additional set of equations describing
jumps of state variables in sampling time is complicated and illegible.

Recently we proposed a special formulation of structural sensitivity analysis, suit-
able for hybrid, continuous/discrete-time systems [2]. The method, called GBPTT,
specifies the set of rules for creating the modified sensitivity model and describes
how to stimulate it to obtain a so-called input-output sensitivity function.
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3. Mathematical model of the NF-κB regulatory module. The transcrip-
tion factor NF-κB regulates many genes that play important roles in intra- and
extracellular signaling. It governs many cell processes, such as cellular stress re-
sponses and cell growth, survival, and apoptosis. This section presents a model
proposed in [6], which is presented schematically in Figure 1. Upon TNF stimula-

Figure 1. Schematic depiction of the the model of NF-κB regu-
latory module.

tion, neutral IKKn is transformed into its active form, IKKa. Active IKKa forms
complexes with IκBα and (IκBα|NF-κB) and strongly catalyses IκBα degradation.
Liberated NF-κB enters the nucleus, where it binds to κB motifs in A20, IκBα, or
other gene promoters. The newly synthetized IκBα enters the nucleus and leads
NF-κB again to cytoplasm, while newly synthetized A20 triggers transformation
of IKKa into inactive IKKi. Readers interested in biological details are referred to
articles [3, 5, 6].

The model takes the form of 15 first-order nonlinear differential equations:
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ẋ1 = kprod − kdegx1 − k1ux1

ẋ2 = k1ux1 − k3x2 − k2ux2x8 − kdegx2 − a2x2x10 + t1x4 − a3x2x13 + t2x5

ẋ3 = k3x3 + k2ux2x8

ẋ4 = a2x2x10 − t1x4

ẋ5 = a3x2x13 − t2x5

ẋ6 = c6ax13 − a1x6x10 + t2x5 − i1x6

ẋ7 = i1kvx6 − a1x7x11

ẋ8 = c4x9 − c5x8

ẋ9 = c2 + c1x7 − c3x9

ẋ10 = −a2x2x10 − a1x6x10 + c4ax12 − c5ax10 − i1ax10 + e1ax11

ẋ11 = −a1x7x11 + i1akvx10 − e1akvx11

ẋ12 = c2a + c1ax7 − c3ax12

ẋ13 = a1x6x10 − c6ax13 − a3x2x13 + e2ax14

ẋ14 = a1x7x11 − e2akvx14

ẋ15 = c2c + c1cx7 − c3cx15.

(9)

In model (9), state variables are concentrations of proteins, complexes of pro-
teins, or their transcripts: x1, IKK kinase in the neutral state; x2, IKK kinase in
the active state; x3, IKK kinase in the inactive state; x4, complexes of proteins
(IKKa|IκBα); x5, complexes of proteins (IKKa|IκBα|NFκB); x6, protein NFκB;
x7, protein NFκB in the nucleus; x8, protein A20; x9, protein A20 transcript; x10,
free IκBα protein; x11, free nuclear IκBα protein; x12, IκBα transcript; x13, com-
plexes of proteins (IκBα|NFκB); x14, nuclear complexes of proteins (IκBα|NFκB);
x15, control gene transcript. All concentrations are specified for cell cytoplasm,
except those indicated as nuclear. The input signal u is a logical variable 1 or
0 and is equal to 1 when the signaling pathway is stimulated by an extracellular
signal (TNF or IL-1). State variables and input signals are time-dependent; thus to
simplify the notation it is not indicated in the model. The rest of the variables in
the model (9) are parameters. In [6] some of these parameters have been assumed
to be known and 10 parameters have been fitted manually on the basis of the data
from [3] and [5].

4. Adjoint system and fitting of the parameters. To test the approach, we
used the model with parameters taken from [6] as a plant. We simulated this model
for a period of seven hours (25,200 seconds), with step stimulation by TNF starting
at one-hour moment. The “measurements” were taken at t1 = 5, 000, t2 = 7, 500,
t3 = 10, 000, t4 = 15, 000 and t5 = 20, 000 time moments (in seconds). It was
assumed that all 15 state variables (9) are measured, so we obtained 75 scalar
discrete-time measurements: mi(tn); i = 1, 2, . . . , I;n = 1, 2, . . . , N ; I = 15;N = 5.
The performance index was defined as follows:

J =
1
2

I∑
i=1

qi

N∑
n=1

[xi(tn)−mi(tn)]2, (10)

where qi are weights that take into account different scales for different state vari-
ables. We fitted 10 parameters (the same that were fitted in [6]), assuming the
same values of remaining parameters. The mathematical model (9) is presented in
block-diagram form in Figure 2.
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Figure 2. The block diagram of the mathematical model of an
NF-κB regulatory module, with additional elements concerning the
performance index.

The block diagram contains several additional elements. There is a discrete-time
part where we use notation x(n) instead of x(tn). One may see on the output the
signal J̃(N), which at final discrete time N is equal to the performance index (10).
The matrix Q is a diagonal matrix composed of weights qi: Q = diag(q1, q2, . . . , q15).
The constant signal p is generated by passing the signal p̃(t) = pδ(t) (where δ(t)
is a Dirac pulse) through the integrator. As a result, the problem of finding the
gradient of the performance index (10) may be treated as a problem of finding the
so called input-output sensitivity function [1, 2],

S
J̃(N)
p̃(0) . (11)

We used the gradient of the performance index obtained with the modified ad-
joint system which block diagram is presented in Fig. 3.

Figure 3. The modified adjoint system generating the gradient
of the performance index.

This block diagram has been constructed using the GBPTT method presented
in [2]. In the modified adjoint system, there is an ideal pulser that gives Dirac
pulses proportional to the discrete-time signal e(N − n). The system from Figure
3, stimulated at discrete time N = 0 by the Kronecker pulse, generates on its
output the signal β(t). This signal at final time T is equal to the input-output
sensitivity function (11), and at the same time it is equal to the searched gradient
of the performance index:

∇pJ = β(T ). (12)
The model and the adjoint system were modeled in Matlab-Simulink. Results of

fitting of 10 parameters for 100 iterations are presented in Figure 4.
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Figure 4. Values of 10 fitted parameters during 100 iterations of
the algorithm. Dashed lines indicate values used for generation the
data.

Dashed lines indicate proper (known to us) values used during generation of
the data. The performance index, starting from a value of about 2000, reached
a value of 0.042 in the 100th iteration. Moreover, all 15 trajectories fitted the
“real” trajectories, obtained as well during generation of the data. Nevertheless,
one may observe that not all parameters reached values used during generation of
the data. At least two reasons may explain this phenomenon. The solution in the
space of fitted parameters may not be unique, or the performance index may be
much less sensitive to a part of the parameters, and this sensitivity is comparable
to the sensitivity with respect to numerical errors. This phenomenon needs further
investigation.

5. Conclusion. In this paper the application of the adjoint systems to fitting of
parameters of the mathematical models of cell signaling pathways is proposed. The
model of the biological system takes the form of a set of nonlinear ordinary equa-
tions. The data coming from experiments are given only at discrete-time moments.
To construct an adjoint system, the structural formulation on sensitivity analysis
for hybrid, continuous/discrete-time systems is utilized. The adjoint system gives
the gradient of a quadratic performance index and is used for fitting of parameters
of the model. The approach proposed in this article needs further investigation
concerning convergence properties, and it will be tested on real noisy experimental
data. The algorithm can also give the gradient of the performance index in a space
of input signals, which can be used for optimization of signals that stimulate the
biological system.
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