Quasistatic evolution for Cam-Clay plasticity: The spatially homogeneous case

  • Received: 01 July 2009 Revised: 01 December 2009
  • 74C05, 74L10, 49L25, 34E10.

  • We study the spatially uniform case of the quasistatic evolution in Cam-Clay plasticity, a relevant example of small strain nonassociative elastoplasticity. Introducing a viscous approximation, the problem reduces to determine the limit behavior of the solutions of a singularly perturbed system of ODE's in a finite dimensional Banach space. Depending on the sign of two explicit scalar indicators, we see that the limit dynamics presents, under quite generic assumptions, the alternation of three possible regimes: the elastic regime, when the limit equation is just the equation of linearized elasticity; the slow dynamics, when the stress evolves smoothly on the yield surface and plastic flow is produced; the fast dynamics, which may happen only in the softening regime, when viscous solutions exhibit a jump determined by the heteroclinic orbit of an auxiliary system. We give an iterative procedure to construct a viscous solution.

    Citation: Gianni Dal Maso, Francesco Solombrino. Quasistatic evolution for Cam-Clay plasticity: The spatiallyhomogeneous case[J]. Networks and Heterogeneous Media, 2010, 5(1): 97-132. doi: 10.3934/nhm.2010.5.97

    Related Papers:

  • We study the spatially uniform case of the quasistatic evolution in Cam-Clay plasticity, a relevant example of small strain nonassociative elastoplasticity. Introducing a viscous approximation, the problem reduces to determine the limit behavior of the solutions of a singularly perturbed system of ODE's in a finite dimensional Banach space. Depending on the sign of two explicit scalar indicators, we see that the limit dynamics presents, under quite generic assumptions, the alternation of three possible regimes: the elastic regime, when the limit equation is just the equation of linearized elasticity; the slow dynamics, when the stress evolves smoothly on the yield surface and plastic flow is produced; the fast dynamics, which may happen only in the softening regime, when viscous solutions exhibit a jump determined by the heteroclinic orbit of an auxiliary system. We give an iterative procedure to construct a viscous solution.


    加载中
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3451) PDF downloads(86) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog