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Abstract. We study the spatially uniform case of the quasistatic evolution in
Cam-Clay plasticity, a relevant example of small strain nonassociative elasto-
plasticity. Introducing a viscous approximation, the problem reduces to de-
termine the limit behavior of the solutions of a singularly perturbed system
of ODE’s in a finite dimensional Banach space. Depending on the sign of
two explicit scalar indicators, we see that the limit dynamics presents, under
quite generic assumptions, the alternation of three possible regimes: the elastic
regime, when the limit equation is just the equation of linearized elasticity; the
slow dynamics, when the stress evolves smoothly on the yield surface and plas-
tic flow is produced; the fast dynamics, which may happen only in the softening
regime, when viscous solutions exhibit a jump determined by the heteroclinic
orbit of an auxiliary system. We give an iterative procedure to construct a
viscous solution.
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1. Introduction. The modified Cam-Clay model has been introduced in the en-
gineering literature on soil mechanics as a conceptual tool to understand the ir-
reversible deformations experienced by some fine grained soils (clays); one of the
interesting features of this model is that, depending on the loading conditions, the
stress-strain response may exhibit a hardening or a softening behavior. Further-
more, it is an important example of nonassociative plasticity.

A general approach to the instabilities due to the softening regime has been
developed in [3] using a vanishing viscosity approximation. The goal of the present
paper, however, is rather different. We study the spatially homogeneous case in
dimension N , with no volume forces. In this simplified setting we do not investigate
the well-posedness of the problem, which is the object of [3]. Instead we carry out a
qualitative study of the limit behavior of the solutions as the viscosity parameter ε
goes to 0. This is done using only differential equations techniques and disregarding
the variational structure of (part of) the problem. A similar study was done in [2]
for a particular loading program and for a very special yield surface. Here we extend
the results of that paper to a very general class of loading paths and yield surfaces,
subject only to minor restrictions.

To be definite, we assume that the system is driven by a time-dependent affine
boundary condition w(t, x), whose symmetrized spatial gradient Ew(t, x) is in-
dependent of the space variable x and is denoted by ξ(t). In this situation, the
displacement u(t, x) coincides with w(t, x) and the unknowns, independent of x ,
are the elastic part e(t) and the plastic part p(t) appearing in the additive decom-
position of the strain Eu(t, x) = e(t) + p(t), as well as a scalar internal variable
z(t), which describes the time evolving yield surface. The stress σ(t) is determined
by the elastic part of the strain through the usual relation σ(t) = Ce(t), where C

is the tensor of elastic moduli.
One ingredient of the model is a closed convex cone K ⊂ MN×N

sym ×[0, +∞), where

MN×N
sym is the space of symmetric N×N matrices. It is assumed that K contains the

half-line {0}×[0, +∞). The stress is constrained by the inclusion σ(t) ∈ K(z(t)),
where for every z ∈ [0, +∞) we define K(z) := {σ ∈ MN×N

sym : (σ, z) ∈ K} . The
interior of K(z) is the elastic domain corresponding to the value z of the internal
variable, while its boundary ∂K(z) is the yield surface. In the typical applications,
∂K(z) is a suitable ellipsoid in the space MN×N

sym . Due to mathematical reasons,
we shall impose some restrictions on K(z) (see (2.14)-(2.17)), even if most of the
results can be proved without these additional assumptions.

The other ingredients of the model are the evolution laws for p(t) and z(t),
resulting in the system















e(t) + p(t) = ξ(t) , σ(t) = Ce(t) ∈ K(z(t)) ,

ṗ(t) ∈ NK(z(t))(σ(t)) ,

ż(t) = tr(σ(t)) tr(ṗ(t)) ,

(1.1)

where NK(z)(σ) denotes the normal cone to K(z) at σ , in the sense of convex
analysis. The nonassociative nature of the problem is due to the fact that the
second equation in (1.1) does not depend on K . In view of the hypotheses on
K , we have the monotonicity condition z1 < z2 ⇒ K(z1) ⊂ K(z2). Therefore
if ż(t) > 0 the set K(z(t)) expands leading to a hardening response. On the
contrary, if ż(t) < 0 the set K(z(t)) shrinks leading to a softening response. We
shall assume that tr(σ) ≤ 0 for every σ ∈ K(z), which reflects the compressive
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conditions typical of soil mechanics. Therefore, by the second equation in (1.1), the
hardening or softening behavour is determined only by the sign of tr(ṗ).

To deal with the instabilities of the softening regime, we propose a viscosity
approximation to (1.1), in agreement with [3]. Denoting the minimal distance pro-
jection of σ onto K(z) by πK(z)(σ), for every ε > 0 we consider the unconstrained
system















eε(t) + pε(t) = ξ(t) , σε(t) = Ceε(t) ,

ṗε(t) = Nε
K(zε(t))(σε(t)) ,

żε(t) = tr(σε(t)) tr(ṗε(t)) ,

(1.2)

where Nε
K(z)(σ) := 1

ε
(σ − πK(z)(σ)) is the usual approximation of the normal to

K(z). A viscosity solution (e(t), p(t), σ(t), z(t)) to (1.1) is defined as a left con-
tinuous map which, for almost every time t , is the pointwise limit of a sequence
(eε(t), pε(t), σε(t), zε(t)) of solutions of (1.2). Notice that system (1.2) is slightly
different from the one considered in [2], where a particular case has been studied;
here indeed, in the equation for the internal variable, the term tr(πK(zε(t))(σε(t)))
is replaced by simply tr(σε(t)), in agreement with [3].

In this paper we study in detail the limit behavior as ε goes to 0 of the solutions
of (1.2). We will see that the limit dynamics presents, for a generic choice of the
initial data – some degenerate cases have indeed to be excluded – the alternation
of three possible regimes:

a) Elastic regime. This situation occurs in a time interval [t1, t2] when the
plastic part, and thus the internal variable, do not evolve, while the stress is
completely determined by the prescribed boundary displacement through the
relation σ(t) = C(ξ(t) − ξ(t1)), for every t ∈ [t1, t2] ; a necessary condition
for this behavior to occur is clearly (C(ξ(t) − ξ(t1)), z(t1)) ∈ K for every
t ∈ [t1, t2] .

b) Slow dynamics. In this situation the stress evolves smoothly on the yield
surface and the limit equation (3.1), called the equation of the slow dynamics,
takes into account the production of plastic flow. The evolution can be studied
using the standard time t ; during this regime both hardening and softening
behavior can occur.

c) Fast dynamics. In the softening regime, a singular behavior can occur, which
requires the use of a fast time s := 1

ε
t . The corresponding limit equation (4.1)

is called the equation of the fast dynamics. We will see that, at a jump time t ,
the right limit (σ(t+), z(t+)) of the solution is given by the asymptotic value
for s → +∞ of the heteroclinic solution of the equation of the fast dynamics
(4.1) issuing from the point (σ(t−), z(t−)) at s = −∞ .

As in the associative case, studied in [7] and in [1, Section 7], the alternation
of these three regimes is determined by the sign of two scalar indicators; the first
one, depending explicitly on time and on the state of the system, will be called the
elastic-inelastic indicator. It is given by

Φ(t, σ, z) := nK(z)(σ) · Cξ̇(t)

for every (t, σ, z) ∈ [0, +∞]× ∂K . Here nK(z)(σ) denotes the outward unit normal
to K(z) at σ . The second one, only depending on the state of the system, will be
called the slow-fast indicator ; its explicit expression is given by

Ψ(σ, z) := −nK(z)(σ) · CnK(z)(σ) − tr(σ) tr(nK(z)(σ))

z
[σ · nK(z)(σ)]
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for every (σ, z) ∈ ∂K . For mathematical reasons, both indicators will be suitably
extended to the whole space, but what only matters are their values on the yield
surface.

The main difference with the model studied in [7] is in the nonassociative nature
of the problem. Here indeed the inner variable does not follows to an associative
flow rule depending on K . It is governed by a different equation, which destroys
the variational structure of the problem. Moreover, this equation allows both for
hardening and softening behavior, while in [1] and [7] only softening is considered.
Therefore, the indicator Ψ has a different form and the limit equations (3.1) and
(4.1) are rather different from those studied in [7]. In particular, showing the
existence of a heteroclinic orbit joining two equilibrium points of (4.1) where the
indicator Ψ takes different signs is a harder task than in [7] and needs further
hypotheses on the yield surface (see Sections 2 and 4). Nevertheless, to show the
convergence of the viscoplastic solutions to a limit satisfying either (3.1) or (4.1)
we can use some methods developed in [7]. This is why the proof of some technical
lemmas needs only a slight adaptation of the corresponding results in [7].

We now briefly describe how the two indicators determine the limit dynamics.
We take an initial condition (σ0, z0) ∈ intK ; then initially the solution is following
the elastic regime, till it reaches the yield surface at a time t1 at a certain point
(σ1, z1). Here the elastic-inelastic indicator must be nonnegative. In a generic
situation it will be strictly positive, and this determines the appearance of a plastic
behavior after the time t1 . The choice between the slow and the fast dynamics
depends on the sign of the slow-fast indicator.

a) If Ψ(σ1, z1) < 0 the solution has no jump and is obtained by solving the
system of the slow dynamics

{

σ̇sl(t) = Φ(t,σsl(t),zsl(t))
Ψ(σsl(t),zsl(t))

C nK(zsl(t))(σsl(t)) + Cξ̇(t),

żsl(t) = −Φ(t,σsl(t),zsl(t))
Ψ(σsl(t),zsl(t))

tr(σsl(t)) tr(nK(zsl(t))(σsl(t))),
(1.3)

defined on ∂K , with Cauchy data (σ1, z1) at time t1 ; this situation is studied
in Section 3. This behavior persists as long as one of the two indicators does
not vanish along the motion.

If at a time t̄ we have that Φ(t̄, σsl(t̄), zsl(t̄)) = 0, while Ψ remains strictly
negative, elastic behavior may reappear starting from the point (σsl(t̄), zsl(t̄))
in presence of suitable higher order conditions. This situation is discussed in
Section 3.3.

If Φ remains stricly positive, the solution follows the equation of the slow
dynamics for all its maximal interval of existence, that is to say as long as Ψ
does not vanish.

b) If Ψ(σ1, z1) > 0 the solution is discontinuous at time t1 and jumps to the
limit as s → +∞ of the solution of the problem















σ̇f (s) = C(πK(zf (s))(σf (s)) − σf (s)),

żf (s) = tr(σf (s)) tr(σf (s) − πK(zf (s))(σf (s))),

lim
s→−∞

(σf (s), zf (s)) = (σ1, z1),

(1.4)

which is formally obtained by rescaling time in (1.2) according to s = t
ε
, and

neglecting all terms of order ε . This situation is studied in Section 4. We will
see that the internal variable is decreasing along the solution of (1.4), thus we
are in the softening regime in this case. At the end of the jump the slow-fast
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indicator is nonpositive (in some cases, see for instance Example 4.4, we can
prove that it is always strictly negative); excluding the degenerate case when it
vanishes, this means that the evolution is continuous in a right neighborhood
of t1 and follows the elastic regime or the slow dynamics equation, depending
on the sign of the elastic-inelastic indicator. Moreover in the latter case we
prove that softening behavior occurs after the end of the jump.

c) If, during a continuous evolution, the indicator Ψ vanishes at a time t2 in a
point (σ2, z2) on the yield surface (we will see that this situation can never
occur as long as we are in the hardening regime), the following higher order
condition must be satisfied

∇Ψ(σ2, z2) · ( −C nK(z2)(σ2)

tr(σ2) tr(nK(z2)(σ2)) , 1) ≤ 0; (1.5)

if strict inequality holds, this implies a transition from the slow dynamics to
the fast dynamics regime. Also this case will be discussed in Section 4. Then,
the viscous solution is discontinuous at time t2 and jumps to the limit as
s → +∞ of the solution of problem (1.4), with (σ2, z2) in place of (σ1, z1).
At the end of the jump, exactly as in case b), the evolution is continuous
and follows the elastic regime or the slow dynamics equation, with softening
behavior, depending on the sign of the elastic-inelastic indicator.

By repeating our arguments at each critical time, we can completely describe
the solution, except for some degenerate cases. The precise statement is given
in Theorem 5.2. It gives an iterative procedure to construct explicitly a viscous
solution, upon the verification of some nondegeneracy hypotheses at each step. If
these hypotheses are satisfied, the viscous solution is also unique.

2. Formulation of the problem and preliminary results. Let MN×N
sym be the

vector space of all symmetric N × N matrices with real entries, endowed with the
scalar product σ · ξ :=

∑

ij σijξij ; the norm of σ ∈ M
N×N
sym will be denoted by |σ| .

Let K be a closed convex cone in MN×N
sym ×[0, +∞). For every z ∈ [0, +∞) we

define

K(z) := {σ ∈ M
N×N
sym : (σ, z) ∈ K} .

Each set K(z) is closed and convex, and we have

K(z) = z K(1) for every z ∈ (0, +∞) . (2.1)

Throughout the paper, we shall assume that K(1) is a bounded domain of class C2

and that 0 ∈ ∂K(1), hence

0 ∈ ∂K(z) for every z ∈ [0, +∞) , (2.2)

and

|σ| ≤ MKz for every (σ, z) ∈ K (2.3)

for a suitable constant MK < +∞ . For every z > 0, we obviuosly have

σ ∈ ∂K(z) ⇐⇒ (σ, z) ∈ ∂K. (2.4)

For every σ ∈ ∂K(z), we will denote the outward unit normal to K(z) at σ by
nK(z)(σ), while nK(σ, z) will denote the outward unit normal to K at (σ, z).

We shall also assume that

tr(σ) ≤ 0 for every σ ∈ K(1); (2.5)

this reflects the compressive conditions typical of soil mechanics.
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For every closed convex set C ⊂ MN×N
sym let πC : MN×N

sym → C be the minimal
distance projection onto C . It follows from (2.1) that

πK(z)(σ) = zπK(1)(
1
z
σ) (2.6)

for every z > 0 and every σ ∈ MN×N
sym . We also define, for every (σ, z) ∈ MN×N

sym ×
(0, +∞), the function

̺(σ, z) = |σ − πK(z)(σ)|; (2.7)

it is a Lipschitz function, moreover it is C1 for every (σ, z) ∈ [MN×N
sym ×(0, +∞)]\K .

An elementary consequence of (2.6) is the following relation:

̺(σ, z) = z ̺(σ
z
, 1) for every (σ, z) ∈ M

N×N
sym × (0, +∞). (2.8)

The next proposition collects some elementary properties which will be useful in
what follows.

Proposition 2.1. Let K be a closed convex cone in MN×N
sym ×[0, +∞) , and let K(z)

be as in (2.1). Assume that K(1) is bounded and of class C2 and that 0 ∈ ∂K(1) .
Then, for every z > 0 and every σ ∈ MN×N

sym \ intK(z) , we have

nK(z)(πK(z)(σ)) = nK(1)(πK(1)(
1
z
σ)). (2.9)

Moreover, for every (σ, z) ∈ ∂K

nK(σ, z) = 1√
z2+|σ·nK(z)(σ))|2

(z nK(z)(σ),−σ · nK(z)(σ)). (2.10)

For every (σ, z) ∈ [MN×N
sym × (0, +∞)] \ K , we have

∇̺(σ, z) = 1
z
(z nK(z)(πK(z)(σ)), −πK(z)(σ) · nK(z)(πK(z)(σ))). (2.11)

Proof. To prove (2.9) it suffices to consider the case when σ /∈ K(z), which is
equivalent to say that σ

z
/∈ K(1). We then have, applying (2.6) and (2.8), that

nK(z)(σ) =
σ − πK(z)(σ)

̺(σ, z)

=
z(σ

z
− πK(1)(

σ
z
))

z ̺(σ
z
, 1)

= nK(1)(πK(1)(
1
z
σ)),

which proves (2.9).
For what concerns (2.11), it is well known that, for every (σ, z) ∈ [MN×N

sym ×
(0, +∞)] \ K , ∇σ ̺(σ, z) = nK(z)(πK(z)(σ)) so only the last component of the
gradient has to be calculated. Together with (2.8) this implies that

∂
∂z

̺(σ, z) = ∂
∂z

[z ̺(σ
z
, 1)] = 1

z
(̺(σ, z) − σ · nK(1)(πK(1)(

σ
z
))),

hence we get (2.11) by (2.9) and the equality

̺(σ, z) − σ · nK(z)(πK(z)(σ)) = −πK(z)(σ) · nK(z)(πK(z)(σ)).

This also implies (2.10); indeed, by the C2 regularity of the boundary, for every
fixed (σ̄, z̄) ∈ ∂K we may locally define an oriented distance function r form ∂K ,
which is a C1 -extension of ̺ to the interior of K . Then, locally we have that
K = {(σ, z)| r(σ, z) ≤ 0} . It follows that the outward unit normal to K at (σ̄, z̄)
must be parallel to ∇r(σ̄, z̄), which by continuity is obtained by extending the
right-hand side of (2.11) to ∂K , and this proves (2.10).
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Another useful property, which will be used in what follows, comes directly from
the characterization of the minimal distance projection and from the fact that 0 ∈
K(z) for every z ; we have indeed that, for every (σ, z) ∈ [MN×N

sym × (0, +∞)] \ K

πK(z)(σ) · nK(z)(πK(z)(σ))) ≥ 0. (2.12)

We shall often decompose σ ∈ M
N×N
sym in its spherical and deviatoric part through

the relation

σ = x I√
N

+ y (2.13)

where x ∈ R and y ∈ M
N×N
D are uniquely determined; here as usual M

N×N
D denotes

the space of trace-free symmetric matrices of order N . Notice that
√

Nx = tr(σ);
in particular, for every σ ∈ K(1), we shall have x ≤ 0. Similarly, η(t) and γ(t)
will denote the spherical and the deviatoric part, respectively, of the function ξ(t)
mentioned in the introduction.

For mathematical reasons, we shall make some additional hypotheses on the set
K(1), even if most of the results we are going to prove do not need them. Precisely,
we shall suppose that there exist a constant a > 0 and two not identically zero
functions g and h , defined on a bounded convex domain D of class C2 , satifying
g = h = 0 on ∂D and g, h ∈ C2(D) ∩ C(D̄) such that, decomposing σ ∈ MN×N

sym

as in (2.13), we have

K(1) = {σ ∈ M
N×N
sym |g(y) ≤ x + a ≤ h(y)} (2.14)

Convexity of the domain K(1) is then easily equivalent to the fact that g is
convex and h is concave; as they do not identically vanish on D and they are zero
on the boundary, this implies that

g(y) < 0 and h(y) > 0 for every y ∈ D.

Regularity of ∂K(1) implies, that, for every ω ∈ ∂D

lim
y→ω, y∈D

|∇g(y)| = lim
y→ω, y∈D

|∇h(y)| = +∞. (2.15)

Moreover, both (2.2) and (2.5) are satisfied, provided we have

max
x∈D

h = h(0) = a. (2.16)

We shall also suppose that

g2, h2 are concave . (2.17)

An example of set satisfying all these assumptions is, for instance, any ellipsoid of
the form

(x
a

+ 1)2 +

m
∑

i=1

y2
i

b2i
= 1,

where m = N(N+1)
2 − 1 and yi are the components of y with respect to an or-

thonormal basis of M
N×N
D . We then have the following Proposition.

Proposition 2.2. Assume that (2.14)-(2.17) are satisfied. Then, there exists a
constant F > 0 such that, for every σ ∈ ∂K(1)

|tr(nK(1)(σ))| ≤ F |x + a|, (2.18)

where x is defined as in (2.13). Moreover

tr(nK(1)(σ)) = 0 ⇐⇒ x = −a. (2.19)
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The proof of this proposition relies on the following Lemma, whose proof is left
to the reader.

Lemma 2.3. Let m ≥ 1 and let Ω a bounded convex open subset of Rm with C2

boundary. Let f ∈ C2(Ω) ∩ C(Ω̄) a concave function satifying

f(y) > 0 for every y ∈ Ω and f ≡ 0 on ∂Ω. (2.20)

Then, for every ω ∈ ∂Ω ,

lim inf
y→ω, y∈Ω

|∇f(y)| > 0.

We now prove Proposition 2.2.

Proof. Let σ̄ ∈ ∂K(1) and let x̄ ∈ R , ȳ ∈ M
N×N
D as in (2.13). First, we suppose

that ȳ ∈ D , which is equivalent to x̄ 6= −a . Then only one of the two is possible:
x̄+a = g(ȳ) or x̄+a = h(ȳ). Suppose the first is true, then locally K(1) = {(x, y) ∈
R × M

N×N
D |g(y) − x − a ≤ 0} ; recalling that tr(nK(1)(σ)) is obtained multiplying

by
√

N the first component of the outward unit normal to K(1) at σ̄ , we obtain

tr(nK(1)(σ̄)) = −
√

N√
1+|∇g(ȳ)|2

= −(x̄+a)
√

N

g(ȳ)
√

1+|∇g(ȳ)|2
< 0; (2.21)

in the other case we have with similar reasonings that

tr(nK(1)(σ̄)) =
√

N√
1+|∇h(ȳ)|2

= (x̄+a)
√

N

h(ȳ)
√

1+|∇h(ȳ)|2
> 0. (2.22)

in both the equations, the latter equalities are justified since g, h never vanish in
D .

This in particular proves that tr(nK(1)(σ̄)) 6= 0 when x̄ 6= −a . Conversely,
suppose that x̄ = −a , which is equivalent to saying that ȳ ∈ ∂D . Then take a
sequence (yn)n∈N ⊂ D converging to ȳ and put

σn := [g(yn) − a] I√
N

+ yn;

easily we have that σn ∈ ∂K(1) for every n and that σn converges to σ̄ . Then
(2.15), and (2.21), applied to σn , immediately imply that tr(nK(1)(σ̄)) = 0. This
concludes the proof of (2.19).

By (2.19), we see that, to prove (2.18), we may suppose that, given σ̄ ∈ ∂K(1)

and x̄ ∈ R , ȳ ∈ M
N×N
D in correspondance, one has ȳ ∈ D . By this fact, (2.21),

and (2.22), it clearly suffices to show that

inf
y∈D

|g(y)
√

1 + |∇g(y)|2| > 0 and inf
y∈D

|h(y)
√

1 + |∇h(y)|2| > 0.

We only prove the first of the two, the other being completely analogous. As g
never vanishes in D it suffices to show that, for every ω ∈ ∂D one has

lim inf
y→ω, y∈D

|g(y)
√

1 + |∇g(y)|2| > 0;

as g vanishes on the boundary,

lim inf
y→ω, y∈D

|g(y)
√

1 + |∇g(y)|2| = lim inf
y→ω, y∈D

|∇g2|
2

and conclusion follows applying Lemma 2.3 to the function f := g2

2 .
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Remark 2.4. Let σ ∈ ∂K(1) and let x ∈ R , y ∈ M
N×N
D as in (2.13). As g is

nonpositive and h is nonnegative, x + a > 0 is easily equivalent to x + a = h(y),
then (2.21) and (2.22) imply that

tr(nK(1)(σ)) > 0 ⇐⇒ x + a > 0. (2.23)

Let us fix ξ ∈ C1([0, +∞); MN×N
sym ). We introduce the elastic tensor C : MN×N

sym →
MN×N

sym and we suppose it is isotropic, that is to say

Cξ = 2µξD + κ(trξ)I , (2.24)

where the constant µ > 0 is the shear modulus , the constant κ > 0 is called modulus
of compression, and ξD denotes the projection of ξ onto the space of deviatoric
matrices. In particular, the quadratic form associated to C is positive definite. For
every ε > 0 system (1.2) is equivalent to

{

εėε(t) = εξ̇(t) − Ceε(t) + πK(zε(t))(Ceε(t)) ,

εżε(t) = tr(Ceε(t)) tr(Ceε(t) − πK(zε(t))(Ceε(t))) .
(2.25)

Lemma 2.5. For every ε > 0 and for every initial condition eε(0) = e0 and
zε(0) = z0 > 0 system (2.25) has a unique solution defined for every t ∈ [0, +∞) .
Moreover the solution (eε, zε) of (2.25) with initial condition eε(0) = e0 and
zε(0) = z0 > 0 satisfies zε(t) > 0 for every t ∈ [0, +∞) .

Proof. The first part of the statement can be proved as in [2, Lemma 2.2]; we also
have, in particular that for every ε > 0 and T > 0 there exists a positive constant
MT,ε such that |Ceε(t)| ≤ MT,ε for every t ∈ [0, T ] . Let now T be the first time

such that zε(T ) = 0 and suppose by contradiction that T < +∞ . Fix t̂ < T such
that T − t̂ < ε

2MT,εMK
, where MK is given by (2.3) and let a < T be a maximum

point for zε(t) in [t̂, T ] . We shall have, by (2.25) and (2.3)

0 = εzε(a) + ε

∫ T

a

żε(s) ds

= εzε(a) +

∫ T

a

[tr(Ceε(s))
2 − tr(Ceε(s)) tr(πK(zε(s))(Ceε(s)))] ds

≥ εzε(a) −
∫ T

a

|tr(Ceε(s))| |tr(πK(zε(s))(Ceε(s)))| ds

≥ εzε(a) − MT,εMK

∫ T

a

zε(s) ds

≥ zε(a)[ε − (T − a)MT,εMK ] ≥ ε
2zε(a),

a contradiction.

Introducing the dual variable σ , the system becomes
{

εσ̇ε(t) = εCξ̇(t) + C[πK(zε(t))(σε(t)) − σε(t)] ,

εżε(t) = tr(σε(t)) tr(σε(t) − πK(zε(t))(σε(t))) .
(2.26)

Since we want to consider a system which is initially in the elastic regime, for
every ε > 0 we will consider an initial condition satisfying (σ0, z0) ∈ intK; in
particular, we shall have z0 > 0. For every ε the solution of (2.26) is trivially
given, by

(σ(t), z(t)) = (σ0 + C(ξ(t) − ξ(0)), z0) (2.27)
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for t small; actually, this formula gives the solution in the time interval [0, t1] ,
where

t1 = inf{t > 0 : (σ0 + C(ξ(t) − ξ(0)), z0) ∈ ∂K}. (2.28)

In terms of the function ̺ defined by (2.7), for every t such that ̺(σε(t), zε(t)) >
0, equations (2.26) become

{

Cξ̇(t) − σ̇ε(t) = 1
ε
̺(σε(t), zε(t)) C nK(zε(t))(σε(t), zε(t)),

żε(t) = 1
ε
̺(σε(t), zε(t)) tr(σε(t)) tr(nK(zε(t))(πK(zε(t))(σε(t))).

(2.29)

Given the solution of (2.26) with the prescribed initial data we define

̺ε(t) := ̺(σε(t), zε(t)); (2.30)

notice that ̺ε(t) is Lipschitz continuous, thus differentiable, for almost every t ; in
particular it is differentiable for every t such that ̺ε(t) > 0, and we have, by a
direct computation, taking into account (2.29) and (2.11), that

d

dt
̺ε(t) = Φ(t, σε(t), zε(t)) +

̺ε(t)

ε
Ψ(σε(t), zε(t)) whenever ̺ε(t) > 0, (2.31)

where

Φ(t, σ, z) : = nK(z)(πK(z)(σ)) · Cξ̇(t), (2.32)

Ψ(σ, z) : = −nK(z)(πK(z)(σ)) · CnK(z)(πK(z)(σ))

− tr(σ) tr(nK(z)(πK(z)(σ)))

z
[πK(z)(σ) · nK(z)(πK(z)(σ))]. (2.33)

The function Φ is defined on [0, +∞)×{[MN×N
sym × (0, +∞)] \ intK} and is

continuous, while Ψ is defined on [MN×N
sym ×(0, +∞)] \ intK and is of class C1 .

In what follows, it is often convenient to consider extensions of Φ and Ψ to
[0, +∞)×M

N×N
sym × (0, +∞) and M

N×N
sym ×(0, +∞) of class C0 and C1, respectively.

Notice that the partial derivatives of Ψ at each point of ∂K do not depend on the
extension.

As in [7], we will see that the sign of Φ determines the transition from elastic
to inelastic regime at times when the stress meets the yield surface, while in case
of inelastic regime the sign of Ψ determines whether the quasistatic evolution fol-
lows the equation of the slow dynamics (continuous evolution) or jumps along the
trajectory of the fast dynamics. For these reasons, Φ will be called elastic-inelastic
indicator, while Ψ will be called slow-fast indicator. Even if, for mathematical rea-
sons, the two indicators are defined on the whole space, we will also see that what
only matters are the values they attain on the yield surface.

Remark 2.6. By positive definiteness of C and by (2.12) it is immediate to deduce
that, for every (σ, z) such that tr(σ) tr(nK(z)(πK(z)(σ))) ≥ 0, the indicator Ψ
is strictly negative; as we are going to see in what follows, this reflects the fact
that, as long as we are in the hardening regime, the evolution does not present
discontinuities.

In general, it is easy to verify, taking into account (2.24) and (2.3), that the follow-
ing bounds on Ψ hold: from above, we have, for every (σ, z) ∈ [MN×N

sym ×(0, +∞)] \
intK ,

Ψ(σ, z) ≤ −min{κ, 2µ} + MK

√
N |tr(σ)|, (2.34)

while from below

Ψ(σ, z) ≥ −max{κ, 2µ} − MK

√
N |tr(σ)| (2.35)
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where k, 2µ are defined by (2.24) and MK is as in (2.3); clearly we may assume
that any extension of Ψ we will consider preserves these bounds in the whole space.
Notice that, by (2.34) and (2.3), if z is sufficiently close to 0, and (σ, z) ∈ K , then
the indicator Ψ is strictly negative uniformly in σ ; according to what we shall see
in the following sections, this means that when the internal variable is sufficiently
small the evolution is continuous.

In what follows we shall define, for every σ ∈ M
N×N
sym ,

λ(σ) := max{κ, 2µ} + MK

√
N |tr(σ)|. (2.36)

3. Continuous evolution.

3.1. The equation of the slow dynamics. In this section we study in detail the
equation

{

σ̇sl(t) = Φ(t,σsl(t),zsl(t))
Ψ(σsl(t),zsl(t))

C nK(zsl(t))(σsl(t)) + Cξ̇(t),

żsl(t) = −Φ(t,σsl(t),zsl(t))
Ψ(σsl(t),zsl(t))

tr(σsl(t)) tr(nK(zsl(t))(σsl(t))),
(3.1)

defined on the open submanifold ∂K ∩ {Ψ(σ, z) 6= 0} \ {(0, 0)} . This will be called
the equation of the slow dynamics: observe that this is a well-defined equation,
since, for every t ∈ [0, +∞), the vector field

χt(σ, z) = (Cξ̇(t) + Φ(t,σ,z)
Ψ(σ,z) C nK(z)(σ), −Φ(t,σ,z)

Ψ(σ,z) tr(σ) tr(nK(z)(σ)))

is a tangent vector field to ∂K∩{Ψ(σ, z) 6= 0}\{(0, 0)} ; indeed, by (2.10), it suffices
to show that χt(σ, z) · (z nK(z)(σ),−σ · nK(z)(σ)) = 0, which follows by a direct
computation, recalling (2.32), and (2.33).

Remark 3.1. Let (σ(t), z(t)) a solution of (3.1) and define e(t), p(t) through the

constitutive relations in (1.1); we have that ṗ(t) = −Φ(t,σ(t),z(t))
Ψ(σ(t),z(t)) nK(z(t))(σ(t)), thus

the flow rule in (1.1) is satisfied as long as −Φ(t,σ(t),z(t))
Ψ(σ(t),z(t)) ≥ 0; that is, in our case,

as long as Φ does not become negative along the trajectory. We will see indeed
that equation (3.1) appears in the limit of (2.26) when the slow-fast indicator Ψ is
negative.

Viceversa, let (σ(t), z(t)) a C1 function with values on ∂K satisfying (1.1) in
a certain interval of time; if we suppose Ψ(σ(t), z(t)) 6= 0, the flow rule and the
condition

0 = nK((σ(t), z(t))) · (σ̇(t), ż(t)),

with the help of (2.10), easily imply that (σ(t), z(t)) satisfies (3.1) and that

−Φ(t,σ(t),z(t))
Ψ(σ(t),z(t)) ≥ 0.

We endow equation (3.1) with initial data (σ1, z1) ∈ ∂K at a time t1 > 0, with
z1 > 0 and Ψ(σ1, z1) 6= 0. We may thus apply all standard results about local
existence and uniqueness and the existence of a maximal interval where solutions
to (3.1) are defined. So, let (t1, t2) be the maximal interval of existence for the
Cauchy problem associated to (3.1) with datum (σ1, z1). As said in (2.13), we
denote the spherical and the deviatoric part of σsl(t) with xsl(t) and ysl(t), and
the spherical and the deviatoric part of ξ(t) with η(t) and γ(t). Using the identity
tr(Cσ) = κNtr(σ), from (3.1) we obtain

κżsl(t) = xsl(t)(κ Nη̇(t) − ẋsl(t)). (3.2)

The next Proposition shows an useful consequence of this equation.
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Proposition 3.2. Assume (2.1)-(2.5), and (2.24); let Φ , Ψ as in (2.32), and
(2.33), respectively. Let (σsl(t), zsl(t)) the unique solution to the Cauchy problem
associated to (3.1) with Cauchy data (σ1, z1) ∈ ∂K at a time t1 > 0 , with z1 > 0
and Ψ(σ1, z1) 6= 0 , and let [t1, t2) be its maximal interval of existence. If t2 < +∞ ,
there exists a positive constant M such that

|(σsl(t), zsl(t))| < M for every t ∈ [t1, t2) (3.3)

Proof. By (2.3), it suffices to show that zsl(t) is bounded. Let L > 0 such that
|η̇(t)| < L for every t ∈ [t1, t2] : by (3.2), and (2.3) we have, for every t ∈ [t1, t2)

κ(zsl(t) − zsl(t1)) = κ

∫ t

t1

żsl(s) ds

= −
∫ t

t1

xsl(s)ẋsl(s) ds + κN

∫ t

t1

η̇(s)xsl(s) ds

≤ 1
2 [x2

sl(t1) − x2
sl(t)] + κN

∫ t

t1

|η̇(s)||xsl(s)| ds

≤ 1
2x2

sl(t1) + κLNMK

∫ t

t1

zsl(s) ds

and conclusion follows by Gronwall’s inequality.

By the use of (3.2) we are also able to show that zsl(t) cannot vanish at t = t2 .

Proposition 3.3. Assume (2.1)-(2.5), and (2.24); let Φ , Ψ as in (2.32), and
(2.33), respectively. Let (σsl(t), zsl(t)) the unique solution to the Cauchy problem
associated to (3.1) with Cauchy data (σ1, z1) ∈ ∂K at a time t1 > 0 , with z1 > 0
and Ψ(σ1, z1) 6= 0 , and let [t1, t2) be its maximal interval of existence. If t2 < +∞ ,
then

lim inf
t→t2

zsl(t) > 0. (3.4)

Proof. Suppose by contradiction that lim inf
t→t2

zsl(t) = 0; we first show that this

liminf is a limit. Let L > 0 such that |η̇(t)| < L for every t ∈ (t1, t2), and MK as
in (2.3), and let c := lim sup

t→t2

zsl(t); if we suppose c > 0, we may fix t̂ < t2 such

that

1) LNMK(t2 − t̂) < 1
8 ;

2) zsl(t) < 2c for every t > t̂ ;
3) zsl(t̂) > c

2 .

We shall then have, by (3.2), (2.3), and the previous assumptions, that, for every
t > t̂

κzsl(t) = κzsl(t̂) +

∫ t

t̂

żsl(s) ds

= κzsl(t̂) −
∫ t

t̂

xsl(s)ẋsl(s) ds + κN

∫ t

t̂

η̇(s)xsl(s) ds

≥ κ c
2 + 1

2 [x2
sl(t̂) − x2

sl(t)] − κN

∫ t

t̂

|η̇(s)||xsl(s)| ds

≥ κ c
2 − 1

2x2
sl(t) − κNLMK

∫ t

t̂

zsl(s) ds

≥ κ c
2 − 1

2x2
sl(t) − κ c

4 .
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So, let tn a sequence converging to t2 realizing the liminf; by (2.3) we shall get
that lim

n→+∞
xsl(tn) = 0. As tn > t̂ for n sufficiently large, we shall have

κzsl(tn) ≥ κ c
4 − 1

2x2
sl(tn),

which in the limit yields c
4 ≤ 0, a contradiction. We thus have that limt→t2 zsl(t) =

0, which immediately implies, by (2.3), that lim
t→t2

xsl(t) = 0. We now fix t̄ < t2

such that LNMK(t2 − t̄) < 1
2 ; as zsl(t) > 0 in (t1, t2) and lim

t→t2
zsl(t) = 0, there

exists a maximum point t3 for zsl(t) in [t̄, t2). Repeating the previous estimates,
we shall have, for every t > t3 , that

κzsl(t) ≥ κzsl(t3) − 1
2x2

sl(t) − κNLMKzsl(t3)(t2 − t̄) ≥ κ zsl(t3)
2 − 1

2x2
sl(t),

which in the limit as t → t2 gives zsl(t3) ≤ 0, a contradiction.

Proposition 3.4. Assume (2.1)-(2.5), and (2.24); let Φ , Ψ as in (2.32), and
(2.33), respectively. Let (σsl(t), zsl(t)) the unique solution to the Cauchy problem
associated to (3.1) with Cauchy data (σ1, z1) ∈ ∂K at a time t1 > 0 , with z1 > 0
and such that Ψ(σ1, z1) 6= 0 , and let [t1, t2) be its maximal interval of existence. If
t2 < +∞ , then

lim
t→t

−
2

Ψ(σsl(t), zsl(t)) = 0 (3.5)

Proof. Suppose by contradiction that there exists a sequence tk → t2 such that

lim
k→+∞

Ψ(σsl(tk), zsl(tk)) 6= 0. (3.6)

By Proposition 3.2, we may assume that (σsl(tk), zsl(tk)) tends to a finite limit
(σ2, z2) as k → +∞ ; by Proposition 3.3 we have that z2 > 0. By continuity of Ψ,
(3.6) implies that Ψ(σ2, z2) 6= 0; it follows now from Lemma 3.5 below that

lim
t→t2

(σsl(t), zsl(t)) = (σ2, z2);

we may then solve the Cauchy problem associated to (3.1) with data (σ2, z2) at
time t2 , contradicting the maximality of [t1, t2).

In the previous Proposition we have used the following elementary Lemma about
differential equations, whose proof can be found in [4], Chapter 1, Lemma 3.1; we
state it for the reader’s convenience.

Lemma 3.5. Let E be a subset of R×R
n , let f : E → R

n a continuous function,
and let u(t) a solution of the ODE v̇(t) = f(t, v(t)) on an interval [a, δ) or (δ, a]
where |δ| < +∞ . If there exists a sequence tk converging to δ such that u(tk) →
ū ∈ Rn and f(t, v) is bounded on the intersection of E with an open neighborhood
of the point (δ, ū) , then

lim
t→δ

u(t) = ū.

In the next Proposition, we use Lemma 3.5 to prove that, if Ψ vanishes at time
t2 < +∞ , then (σsl(t), zsl(t)) have a limit at t = t2 ; the proof is obtained by zsl(t)
must be monotone in a neighborhood of t2 . We also need the additional hypothesis
that the elastic-inelastic indicator is not vanishing at t2 , that is to say

lim inf
t→t−2

|Φ(t, σsl(t), zsl(t))| > 0. (3.7)
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Proposition 3.6. Assume (2.1)-(2.5), and (2.24); let Φ , Ψ as in (2.32), and
(2.33), respectively. Let (σsl(t), zsl(t)) the unique solution to the Cauchy problem
associated to (3.1) with Cauchy data (σ1, z1) at a time t1 > 0 , with z1 > 0 and
such that Ψ(σ1, z1) 6= 0 , and let [t1, t2) be its maximal interval of existence. If
t2 < +∞ , and (3.7) holds, then there exists

lim
t→t

−
2

(σsl(t), zsl(t)) := (σ2, z2) ∈ ∂K. (3.8)

Proof. By Proposition 3.4 we have limt→t
−
2

Ψ(σsl(t), zsl(t)) = 0; as seen in Remark

2.6, this implies that

lim inf
t→t

−
2

xsl(t) < 0 and lim inf
s→t

−
2

tr(nK(zsl(t))(σsl(t))) > 0;

if not, in both cases we may find a sequence tn converging to t2 along which

lim sup
n→+∞

Ψ(σsl(tn), zsl(tn)) ≤ −min{κ, 2µ} < 0,

a contradiction. By (3.1), (3.5), and (3.7) we easily get that there exists a left
neighborhood of t2 , denoted with (t̂, t2), where żsl(t) 6= 0; thus zsl(t) is invertible
in this interval, with inverse t(z), and converges to a limit z2 , which is finite by
Proposition 3.2. We now suppose, for instance, that zsl(t) is strictly decreasing,
the proof in the other case being completely analogous. We put ẑ := zsl(t̂) and we
express σ in function of z ; by (3.1), we then get that

− σ′
sl(z) = 1

tr(σsl(z)) tr(nK(z)(σsl(z))) [C nK(z)(σsl(z)) − C χ(z) Ψ(σsl(z),z)
Φ(t(z),σsl(z),z) ] (3.9)

for every z ∈ (z2, ẑ); here we have put: χ(z) := ξ̇(t(z)). So, as

lim inf
z→z2

|tr(σsl(z)) tr(nK(z)(σsl(z)))| > 0

by the previous discussion, and taking into account (2.3) and (3.7), |σ′
sl(z)| remains

uniformly bounded in this interval. The conclusion follows.

Remark 3.7. We will see in the next subsection that the solutions of (2.26) uni-
formly converge to the solution of (3.1) in a right neighborhood of t1 if we suppose
that

Φ(t1, σ1, z1) > 0 (3.10)

and

Ψ(σ1, z1) < 0. (3.11)

In general, [t1, t2) may not be the maximal interval of convergence, as positivity
of Φ may fail before of t2 . We will show that this convergence holds on [t1, t2)
whenever

Φ(t, σsl(t), zsl(t)) > 0 for every t < t2. (3.12)

Assume this inequality, as well as (3.7), suppose that t2 < +∞ , and let (σ2, z2)
be as in (3.8); then

Ψ(σ2, z2) = 0. (3.13)

Let us prove that

∇Ψ(σ2, z2) · ( −C nK(z2)(σ2)

tr(σ2) tr(nK(z2)(σ2)) , 1) ≤ 0. (3.14)
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Indeed, as seen in Proposition 3.6 zsl(t) is strictly decreasing in a left neighborhood
of t2 , with inverse t(z). If we define σsl(z) := σsl(t(z)), we shall then have that
Ψ(σsl(z), z) < 0 in a right neighborhood of z2 , which yields

lim
z→z2

d

dz
Ψ(σsl(z), z) ≤ 0;

a direct computation involving (3.9) and (3.13) gives us condition (3.14).

We claim that the vector (
−C nK(z2)(σ2)

tr(σ2) tr(nK(z2)(σ2)) , 1) is tangent to ∂K at (σ2, z2).

To prove that, by (2.10), it suffices to show that

(
−C nK(z2)(σ2)

tr(σ2) tr(nK(z2)(σ2)) , 1) · (z2 nK(z2)(σ2),−σ2 · nK(z2)(σ2)) = 0.

Recalling (2.33), the left-hand side is equal to z2Ψ(σ2,z2)
tr(σ2) tr(nK(z2)(σ2)) , and the conclusion

follows by (3.13). Thus the left-hand side of (3.14) is a tangential derivative and
depends only on the values Ψ attains on ∂K .

Due to the presence of the forcing term Cξ̇(t), the sign of żsl(t) may change,
causing the alternance of hardening and softening regime; we end this subsection
by presenting a simple condition that prevents this phenomenon. To be definite,
we consider the case where the spherical part of ξ(t) is constant, as in [2]. Observe
that here we are assuming (2.14)-(2.17), in order to apply Proposition 2.2.

Proposition 3.8. Assume that (2.24), and (2.14)-(2.17) are satisfied; let Φ , Ψ as
in (2.32), and (2.33), respectively. Let (σsl(t), zsl(t)) the unique solution to (3.1)
with Cauchy data (σ1, z1) at a time t1 > 0 , with z1 > 0 and Ψ(σ1, z1) < 0 , and
let [t1, t2) be its maximal interval of existence. Let t̂ ∈ [t1, t2) such that

Φ(t, σsl(t), zsl(t)) > 0 for every t ∈ [t1, t̂] (3.15)

and suppose that η̇(t) = 0 for every t ∈ [t1, t̂] . If there exists t̄ ∈ (t1, t̂) such that
żsl(t̄) = 0 , then żsl(t) = 0 for every t ∈ [t1, t̂] .

Proof. As t̂ < +∞ , by the same arguments as in Proposition 3.2 and Proposition
3.3, we may assume that Z := inft∈[t1,t̂] zsl(t) > 0 and that |xsl(t)| is bounded by

a finite constant M . By (3.1) we have that

ẋsl(t) =
√

N Φ(t,σsl(t),zsl(t))
Ψ(σsl(t),zsl(t))

κ tr(nK(zsl(t))(σsl(t))), (3.16)

while (3.2) reduces to

κżsl(t) = −xsl(t)ẋsl(t). (3.17)

By (3.16), (3.15), (2.9), and (2.19), we have that

ẋsl(t) = 0 ⇐⇒ xsl(t) + a zsl(t) = 0, (3.18)

where a > 0 is as in (2.14). Let us prove that xsl(t) 6= 0 for every t ∈ (t1, t̂] ;
indeed, by (2.5), which is equivalent to (2.16), if the value 0 is assumed, it is a
maximum value for xsl(t), thus, if for some t ∈ (t1, t̂] we have xsl(t) = 0, it must
be also ẋsl(t) = 0, but this is excluded by (3.18), as zsl(t) > 0.

Suppose that there exists t̄ ∈ (t1, t̂) such that żsl(t̄) = 0; as xsl(t̄) 6= 0, by
(3.17) we must have ẋsl(t̄) = 0, that is to say xsl(t̄) + a zsl(t̄) = 0. Let f(t) :=
xsl(t) + a zsl(t); under our hypotheses, by (3.16) and (3.17) there exists a positive
constant W such that

|ḟ(t)| ≤ W |tr(nK(zsl(t))(σsl(t))| for every t ∈ [t1, t̂];
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(2.9) and (2.19) imply that

|tr(nK(zsl(t))(σsl(t))| ≤ F
Z
|xsl(t) + a zsl(t)|,

where F > 0 is as in (2.18). We conclude that

|ḟ(t)| ≤ W F
Z
|f(t)| for every t ∈ [t1, t̂];

as f(t̄) = 0, Gronwall’s inequality implies that f(t) = 0 for every t ∈ [t1, t̂] , which
in its turn entails that ẋsl(t) = 0 for every t ∈ [t1, t̂] , and conclusion follows by
(3.17).

3.2. Convergence to the slow dynamics. In this subsection we examine how
to recover equation (3.1) from (2.26) in the limit as ε goes to 0, under suitable
hypotheses on the sign of the indicators Φ and Ψ: as the arguments are essentially
the same as in [7, Section 3], some of the proofs will be only sketched.

Throughout this part of the paper, t̂ denotes a time such that there exist a left
continuous function t 7→ (σ(t), z(t)) defined on [0, t̂) with values in M

N×N
sym ×[0, +∞)

and an element (σ̂, ẑ) of M
N×N
sym × [0, +∞) satisfying the following properties:

(σε(t), zε(t)) → (σ(t), z(t)) for a.e. t ∈ [0, t̂), (3.19)

there exists t̂ε → t̂ such that (σε(t̂ε), zε(t̂ε)) → (σ̂, ẑ), (3.20)

(σ̂, ẑ) ∈ ∂K and ẑ > 0, (3.21)

Φ(t̂, σ̂, ẑ) > 0. (3.22)

For instance, we can take t̂ = t1 defined by (2.28), if t1 < +∞ and, setting

(σ1, z1) := (σ0 + C(ξ(t1) − ξ(0)), z0). (3.23)

we have

Φ(t1, σ1, z1) > 0; (3.24)

notice that in general we have Φ(t1, σ1, z1) ≥ 0, as the solution was in K at all
previous times, thus we are only excluding the degenerate case when equality holds.
The case Φ(t1, σ1, z1) = 0 will be discussed in the next subsection.

Lemma 3.9. Assume (2.1)-(2.5), and (2.24), and let Φ as in (2.32). Let t̂ > 0
satisfy (3.19)-(3.22), and let t̂ε be as in (3.20); then, for every t∗ > t̂ , the set
{̺ε(t) > 0} ∩ [t̂ε, t

∗] is nonempty, when ε is sufficiently small.

Proof. Assume on the contrary that along a suitable subsequence, that we shall not
relabel, one has ̺ε(t) = 0 for every t ∈ [t̂ε, t

∗] ; we then get

(σε(t), zε(t)) = (σε(t̂ε) + C(ξ(t) − ξ(t̂ε)), zε(tε)) ∈ K (3.25)

for every t ∈ [t̂ε, t
∗] . In the limit we obtain that (σ̂+C(ξ(t)− ξ(t̂)), ẑ) ∈ K for every

t ∈ [t̂, t∗] ; by (3.21) we easily deduce that it must be Φ(t̂, σ̂, ẑ) ≤ 0, contradicting
(3.22).

Remark 3.10. Notice that if t̂ = t1 , the statement of the Lemma holds with
t̂ε = t1 .

We fix an open neighborhood Uδ := (t̂ − δ, t̂ + δ) × Bδ(σ̂, ẑ), where Bδ(σ̂, ẑ)
denotes the open ball of radius δ > 0 centered at (σ̂, ẑ), in a way that there exists
a positive constant γ2 > 0 such that

Φ(t, σ, z) ≥ γ2 > 0 for every (t, σ, z) ∈ Uδ. (3.26)
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We may clearly assume that δ < max{κ,2µ}
2MK

√
N

, where k, 2µ are defined by (2.24)

and MK is as in (2.3), in a way that for every (σ, z) ∈ Bδ(σ̂, ẑ), the following holds:

λ(σ)
λ(σ̂) < 3

2 , (3.27)

where λ(σ) is defined as in (2.36). We define

aε := inf{t ∈ (t̂ε, t̂ε + δ) : (σε(t), zε(t)) ∈ ∂Bδ(σ̂, ẑ)}, (3.28)

where t̂ε is given by (3.20). The following lemma shows that, thanks to (3.26),
the function 1

ε
̺ε(t) becomes greater than a fixed positive constant after a time tε

converging to t̂ as ε → 0, while the motion is still in Bδ(σ̂, ẑ); we shall see that
this implies a transition to the inelastic regime.

Lemma 3.11. Assume (2.1)-(2.5), and (2.24), and let Φ as in (2.32). Let t̂ > 0
satisfy (3.19)-(3.22), let t̂ε be as in (3.20), and let δ , aε , and γ2 , be as in (3.26)
and (3.28). Let ε > 0 and ̺ε(t) be as in (2.30). Define

tε := inf{t ∈ (t̂ε, t̂ε + δ) : 1
ε
̺ε(t) ≥ γ2

3λ(σ̂)}. (3.29)

Then:

a) tε − t̂ → 0 as ε → 0+ ;
b) tε < aε for ε sufficiently small;
c) 1

ε
̺ε(t) ≥ γ2

3λ(σ̂) for every t ∈ [tε, aε].

Proof. Concerning part a) and part b) of the statement, we may clearly suppose
that tε > t̂ε . Let sε := tε ∧ aε. We first claim that, for small ε , in (t̂ε, sε) one has
̺ε(t) > 0.

Indeed, we first observe that if the set {̺ε(t) > 0} ∩ [t̂ε, sε] is empty along
a suitable subsequence (unrelabelled), then clearly sε = aε , and (3.25) holds for
every t ∈ [t̂ε, t

∗] ; we then easily get that lim inf aε > t̂ , and this contradicts Lemma
3.9. Then, for ε sufficiently small, the set {̺ε(t) > 0}∩[t̂ε, sε] has positive measure.
Now, observe that ˙̺ε(t) = 0 a.e. in {̺ε(t) = 0} ∩ [t̂ε, sε] , while in the set {̺ε(t) >
0} ∩ [t̂ε, sε] one has

˙̺ε(t) ≥ γ2

2 (3.30)

by (2.31), (3.26), (2.35), and (3.27). Then, by the fundamental theorem of calculus
and by Lemma 3.9, we get

̺ε(τ) =

∫

{̺ε(t)>0}∩[t̂ε,τ ]

˙̺ε(t) dt ≥ γ2

2 L1({̺ε(t) > 0} ∩ [t̂ε, τ ]) > 0

for every τ ∈ [t̂ε, sε] , which proves our claim. Therefore {̺ε(t) > 0} ∩ (t̂ε, sε] =
(t̂ε, sε] so that the previous estimate and the definition of sε yield

ε γ2

3λ(σ̂) ≥ ̺ε(sε) ≥ γ2

2 (sε − t̂ε),

which implies, by (3.20), that

sε − t̂ → 0 as ε → 0+. (3.31)

Now suppose, by contradiction, that sε = aε as ε → 0 along a suitable sequence.
Then aε − t̂ε → 0 as ε → 0+ and

sup
t∈[t̂ε,aε]

1
ε
̺ε(t) ≤ γ2

3λ(σ̂) ;
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by the definition of aε , (2.29), and (3.20), this implies

δ + o(1) = |(σε(aε), zε(aε)) − (σε(t̂ε), zε(t̂ε))|

≤ |(σε(aε) − σε(t̂ε), 0)| + |(0, zε(aε) − zε(t̂ε))|

≤
∫ aε

t̂ε

|σ̇ε(t)| + |żε(t)| dt

≤ (|C| + |tr(σ̂)| + δ + o(1))

∫ aε

t̂ε

̺ε(t)
ε

dt + |C|
∫ aε

t̂ε

|ξ̇(t)| dt

≤ [(|C| + |tr(σ̂)| + δ + o(1)) γ2

3λ(σ̂) ](aε − t1) + |C|
∫ aε

t̂ε

|ξ̇(t)| dt,

(3.32)

a contradiction, since the right-hand side tends to 0 as ε → 0. This proves part a)
and part b) of the statement.

Observe now that (3.30) yields ˙̺ε(tε) ≥ γ2

2 . Thus, if c) is false, let t1ε be the first

time in (tε, aε) such that ̺ε(t
1
ε) = γ2

3λ(σ1) ; then ˙̺ε(t
1
ε) ≤ 0. Repeating the proof of

(3.30) we find ˙̺ε(t
1
ε) ≥ γ2

2 > 0, a contradiction.

Remark 3.12. Notice that if t̂ = t1 , the statement of the Lemma holds with
t̂ε = t1 .

We now focus on the case where the slow-fast indicator is negative at (σ̂, ẑ). As
in [7], this allows to show that, in a neighborhood of t̂ , the function 1

ε
̺ε(t) remains

uniformly bounded. This is the key ingredient to prove that the limit evolution is
continuous.

For a suitable choice of δ in the definition of the neighborhood Uδ satisfying
(3.26), we may assume that there exists a positive constant γ1 such that

Ψ(σ, z) ≤ −γ1 for every (σ, z) ∈ Bδ(σ̂, ẑ). (3.33)

We now state an auxiliary lemma, analogous to [7, Lemma 3.6], which will be used
also in Section 4. Notice that in the statement of the lemma we make no assumption
on the sign of the indicator Φ.

Lemma 3.13. Assume (2.1)-(2.5), and (2.24); let Ψ be as in (2.33). Let t̃ > 0 ,
(σ̃, z̃) ∈ ∂K , and t̃ε a sequence such that

t̃ε → t̃ as ε → 0+,

(σε(t̃ε), zε(t̃ε)) → (σ̃, z̃) as ε → 0+.

Suppose that there exist two constants η > 0 , γ > 0 such that, for every (σ, z)
satisfying |(σ, z) − (σ̃, z̃)| < η , one has

Ψ(σ, z) < −γ.

Let

bη
ε := inf{t ∈ (t̃ε, t̃ + η) : (σε(t), zε(t)) ∈ ∂Bη(σ̃, z̃)}.

Then there exist L > 0 and a sequence s̃ε , which may be taken equal to t̃ε whenever

lim sup
ε→0

̺ε(t̃ε)
ε

< +∞ , such that

a) s̃ε → t̃ as ε → 0+ ,

b) (σε(s̃ε), zε(s̃ε)) → (σ̃, z̃) as ε → 0+ ,
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c) ̺ε(t)
ε

≤ L
γ

for every t ∈ [s̃ε, b
η
ε ] ,

d) lim inf
ε→0

bη
ε ≥ t̃ + C(σ̃, η, γ) ,

where C(σ̃, η, γ) := min{η, ηγ
L[(1+γ)|C|+|tr(σ̃)|+η]} .

Proof. To prove a), b), c) it suffices to adapt the arguments of [7, Lemma 3.6]; to

prove d) one can proceed as in (3.32), using the above bound on ̺ε(t)
ε

given by c);
this explains why, differently from [7, Lemma 3.6], here the constant C may also
depend on σ̃ .

The proof of the main theorem of this section involves of the following general
result on continuous dependence on a parameter, whose proof can be found in [6]
(see also [5]).

Theorem 3.14. Let fε and f0 be Carathéodory functions defined on [a, b]×Rm

with values in Rm , let tε , t0 ∈ [a, b] , and let xε , x0 ∈ Rm . Assume that there
exist two constants L > 0 and M > 0 such that

|fε(t, x2) − fε(t, x1)| ≤ L |x2 − x1| , (3.34)

|fε(t, x)| ≤ M , (3.35)

for every ε > 0 , every t ∈ [a, b] , and every x, x1 , x2 ∈ R
m . Let yε(t) and y0(t)

be the solutions of the Cauchy problems
{

ẏε(t) = fε(t, y(t)) ,

yε(tε) = xε ,

{

ẏ0(t) = f0(t, y(t)) ,

yε(t0) = x0 .
(3.36)

If tε → t0 , xε → x0 , and for every x ∈ Rm

∫ t

a

fε(s, x) ds →
∫ t

a

f(s, x) ds uniformly for t ∈ [a, b] ,

then yε(t) → y0(t) uniformly for t ∈ [a, b] .

In the following corollary inequalities (3.34) and (3.35) are satisfied only in the
intervals [tε, b] , and the conclusion is slightly weaker.

Corollary 3.15. Let fε and f0 be Carathéodory functions defined on [a, b]×Rm

with values in Rm , let tε → a , and let xε , x0 ∈ Rm . Assume that there exist two
constants L > 0 and M > 0 such that (3.34) and (3.35) hold for every ε > 0 ,
every t ∈ [tε, b] , and every x, x1 , x2 ∈ Rm . Let yε(t) and y0(t) be the solutions
of the Cauchy problems (3.36). If xε → x0 , and for every x ∈ R

m and every η > 0
∫ t

a+η

fε(s, x) ds →
∫ t

a+η

f(s, x) ds uniformly for t ∈ [a + η, b] ,

then

sup
tε≤t≤b

|yε(t) − y0(t)| → 0

Proof. See [7, Corollary 3.5].

We are now ready to prove the main result of this section.

Theorem 3.16. Assume (2.1)-(2.5), (2.24), and let Φ ,Ψ be as in (2.32), and
(2.33), respectively. Let t̂ > 0 satisfy (3.19)-(3.22), let t̂ε be as in (3.20), and
suppose that (3.33) holds. Let (σsl(s), zsl(s)) be the unique solution to the equation
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of the slow dynamics (3.1) with Cauchy datum (σ̂, ẑ) at t̂ , and let t2 > t̂ be as in
(3.5). Let t̄ < t2 and suppose that there exists a constant γ3 > 0 such that

Φ(s, σsl(s), zsl(s)) ≥ γ3 for every s ∈ [t̂, t̄]. (3.37)

Then (σε, zε) converges uniformly to (σsl, zsl) as ε → 0+ on compact subsets of
(t̂, t̄] .

Proof. Let δ , γ2 , γ1 , t̂ε , and aε be given by (3.26), (3.33), (3.20), and (3.28),
respectively. We put t∗ = lim inf

ε→0+
aε , and we apply Lemma 3.13 with t̃ = t̂ , t̃ε = t̂ε ,

and bη
ε = aε ; we have that t∗ > t̂ , and, by part c) of the Lemma, we may assume

that there exists a nonnegative function ω(t) such that, for every η > 0, ̺ε(t)
ε

w∗ -converges in L∞((t̂ + η, t∗)) to ω(t).
We write equation (2.26) in the form

{

Cξ̇(t) − σ̇(t) = ωε
1(t, σ(t), z(t))

ż(t) = ωε
2(t, σ(t), z(t)),

where

ωε
1(t, σ(t), z(t)) := ̺ε(t)

ε
h1(σ(t), z(t)) (3.38)

ωε
2(t, σ(t), z(t)) := ̺ε(t)

ε
h2(σ(t), z(t)); (3.39)

here h1(σ, z) and h2(σ, z) denote two C1 globally Lipschitz continuous functions,
which coincide with CnK(z)(πK(z)(σ)), and tr(σ)tr(nK(z)(πK(z)(σ))), respectively,
in Bδ(σ̂, ẑ) \ intK . Corollary 3.15 now provides the uniform convergence of the
solutions of (2.26) to the solution of the problem

{

Cξ̇(t) − σ̇(t) = ω(t)h1(σ(t), z(t))

ż(t) = ω(t)h2(σ(t), z(t)),
(3.40)

with the required Cauchy data, on the compact subintervals of (t̂, t∗] .
Now, Lemma 3.13, part c), implies that (σ(t), z(t)) ∈ K for every t ∈ (t̂, t∗] ,

while Lemma 3.11 entails that, for every t ∈ (t̂, t∗] , the points (σε(t), zε(t)) do
not belong to K when ε is sufficiently small; this proves that (σ(t), z(t)) ∈ ∂K
for every t ∈ (t̂, t∗] . Thus, for every t ∈ (t̂, t∗] , the functions h1(σ(t), z(t)) and
h2(σ(t), z(t)) coincide with CnK(z)(σ) and tr(σ)tr(nK(z)(σ)), respectively. Since

(σ(t), z(t)) ∈ ∂K , we must have, for every t ∈ (t̂, t∗]

0 = nK((σ(t), z(t))) · (σ̇(t), ż(t));

this in turn, recalling (2.10), is equivalent to

0 = (z nK(z)(σ),−σ · nK(z)(σ)) · (σ̇(t), ż(t)).

Then (3.40), (2.32), and (2.33) imply that

0 = ω(t)Ψ(σ(t), z(t)) + Φ(t, σ(t), z(t)). (3.41)

Therefore (3.40) coincides with (3.1). We conclude that the solutions of (2.26)
converge uniformly on compact subintervals of (t̂, t∗] to the solution of the equa-
tion (3.1) with Cauchy data (σ̂, ẑ) at t̂ , and by uniqueness, the limit is exactly
(σsl(t), zsl(t)).

Now, let t† the maximal time such that (σε, zε) converges uniformly to (σsl, zsl)
as ε → 0+ on compact subintervals of (t̂, t†); to conclude the proof, we have to show
that t† > t̄ . Let us argue by contradiction, supposing t† ≤ t̄ . Define(σ†, z†) :=
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(σsl(t
†), zsl(t

†)) and observe that, by the hypotheses, there exist two constants
η > 0 and γ > 0 such that, for every (t, σ, z) ∈ [t†− η, t† + η] ×Bη(σ†, z†), one has
Ψ(σ, z) < −γ and Φ(t, σ, z) > γ . We define c(η

2 , γ) as the infimum in Bη
2
(σ†, z†) of

C(σ, η
2 , γ), where the latter is the constant defined in Lemma 3.13. Now we may fix

t†− η
2 < t†1 < t†2 < t† < t†3 < t†1 +c(η

2 , γ) in a way that (σsl(t
†
1), zsl(t

†
1)) ∈ B η

2
(σ†, z†)

and we shall have that for every (t, σ, z) ∈ [t†1 − η
2 , t†1 + η

2 ] × B η
2
(σsl(t

†
1), zsl(t

†
1)),

Ψ(σ, z) < −γ and Φ(t, σ, z) > γ. (3.42)

By Lemma 3.13, applied with t̃ = t̃ε = t†1 , we have that there exists L > 0 such

that for ε sufficiently small ̺ε(t)
ε

≤ L
γ

for every t ∈ [t†2, t
†
3] . By Lemma 3.11, applied

with t̂ = t̂ε = t†1 , and aε = b
η
2
ε we get that

̺ε(t)
ε

≥ γ

3λ(σsl(t
†
1))

for every t ∈ [t†2, t
†
3], (3.43)

when ε is sufficiently small; here λ(σ) is defined by (2.36). We repeat the arguments
of the previous step of the proof, and we also notice that we are in position to apply
Theorem 3.14 in place of Corollary 3.15, to get that the solutions of (2.26) converges

uniformly in the interval [t†2, t
†
3] to the solution of the problem (3.1) with Cauchy

data (σ(t†2), z(t†2)) = (σsl(t
†
2), zsl(t

†
2)), that is, by uniqueness, to (σsl(t), zsl(t)).

This contradicts the maximality of t† .

Remark 3.17. A slight adaptation of the proof, taking into account Remark 3.12,
easily shows that in the particular case t̂ = t1 the conclusion of the Theorem holds
on the whole closed interval [t1, t̄] .

The previous theorem shows that, if one has

Φ(t, σsl(t), zsl(t)) > 0 for every t̂ ≤ t < t2, (3.44)

then (σε, zε) converges uniformly to (σsl, zsl) as ε → 0+ on compact subintervals
of (t̂, t2). On the contrary, if

Φ(t̄, σsl(t̄), zsl(t̄)) = 0 (3.45)

for some t̂ < t̄ < t2 , then the elastic behavior may re-appear starting from the point
(σ̄, z̄) := (σsl(t̄), zsl(t̄)) ∈ ∂K , as we are going to discuss in the next subsection.

In the last section of the paper we will consider the case when (3.44) holds, and
t2 < +∞ ; we will show that a transition from the slow to the fast dynamics occurs
at time t2 when(3.7) and (3.14) hold with strict inequality.

3.3. Return to the elastic regime. In this subsection we take t̂ and t2 as in
Theorem 3.16, and we assume that there exists t̂ < t̄ < t2 satisfying (3.45) and
such that Φ(t, σsl(t), zsl(t)) > 0 for every t̂ ≤ t < t̄ . Our purpose is to give some
conditions which imply the return of the system to the elastic behavior after the
time t̄ . The discussion will be completely analogous to that in [7, Section 3.3],
hence the proofs will be only sketched.

Assume that there exists a sequence tn → t̄ such that

Φ(tn, σsl(tn), zsl(tn)) < 0 (3.46)

and that there exists η > 0 such that, for every (t, s, σ, z) ∈ (t̄, t̄ + η) × (0, η) ×
(Bη(σ̄, z̄)) ∩ ∂K satisfying Φ(t, σ, z) ≤ 0,

(σ + C(ξ(t + s) − ξ(t)), z) ∈ intK. (3.47)



118 GIANNI DAL MASO AND FRANCESCO SOLOMBRINO

We then have the following theorem.

Theorem 3.18. Assume (2.1)-(2.5), (2.24), and let Φ ,Ψ be as in (2.32), and
(2.33), respectively. Let t̂ > 0 , (σsl(s), zsl(s)) , and t2 > t̂ be as in Theorem
3.16. Let t̄ < t2 satisfy (3.45) and suppose that Φ(t, σsl(t), zsl(t)) > 0 for every
t̂ ≤ t < t̄ . Let (σ̄, z̄) := (σsl(t̄), zsl(t̄)) , and assume that (3.46) and (3.47) hold. Let
(σel(t), zel(t)) := (σ̄ + C(ξ(t) − ξ(t̄)), z̄) and

τ := sup{t > t̄ |(σel(s), zel(s)) ∈ intK for every s ∈ (t̄, t)}.
Then (σε, zε) converges uniformly on compact subsets of (t̂, τ) to the function (σ, z)
defined by

(σ(t), z(t)) :=

{

(σsl(t), zsl(t)) for t̂ < t ≤ t̄,

(σel(t), zel(t)) for t̄ ≤ t < τ.
(3.48)

Proof. Let τ̂ be the maximal time such that (σε, zε) converges uniformly to (σ, z)
on compact subintervals of (t̂, τ̂ ); we have to show that τ̂ = τ . By Theorem 3.16,
it follows that τ̂ ≥ t̄ . As in [7, Theorem 3.11], it is easy to see that τ̂ = τ when
τ̂ > t̄ , therefore we have only to exclude τ̂ = t̄ .

In this case, there exist two constants η > 0 and γ > 0 such that, for every
(t, σ, z) ∈ [t̄ − η, t̄ + η] × Bη(σ̄, z̄), one has Ψ(σ, z) < −γ . We define c(η

2 , γ) as

the infimum in Bη
2
(σ†, z†) of C(σ, η

2 , γ), where the latter is the constant defined

in Lemma 3.13. Now we may fix t† − η
2 < t†1 < t†2 < t† < t†3 < t†1 + c(η

2 , γ) in a

way that (σsl(t
†
1), zsl(t

†
1)) ∈ B η

2
(σ†, z†) and we shall have that for every (t, σ, z) ∈

[t†1 − η
2 , t†1 + η

2 ] × B η
2
(σsl(t

†
1), zsl(t

†
1)),

Ψ(σ, z) < −γ.

By Lemma 3.13, applied with t̃ = t̃ε = t†1 , we have that there exists L > 0 such

that for ε sufficiently small ̺ε(t)
ε

≤ L
γ

for every t ∈ [t†2, t
†
3] , thus we may assume

̺ε(t)
ε

w∗ -converges in L∞((t†2, t
†
3)) to some nonnegative function ω(t). By (3.38),

(3.39), and Theorem 3.14 the sequence (σε, zε) converges uniformly in [t†2, t
†
3] to a

continuous function (σ̃, z̃). Theorem 3.16 gives (σ̃, z̃) = (σsl, zsl) in [t†2, t̄), while

[7, Theorem 3.11] gives (σ̃, z̃) = (σel, zel) in [t̄, t†3] , thus (σ̃, z̃) = (σ, z) in [t†2, t
†
3] .

This contradicts the maximality of τ̂ , when τ̂ = t̄ .

Remark 3.19. When ξ is at least C2 regular, by adapting the argument of [7,
Remark 3.12] we obtain that the inequality

Cξ̈(t̄) · nK(z̄)(σ̄) + Cξ̇(t̄) · [∇σnK(z̄)(σ̄)] Cξ̇(t̄) < 0. (3.49)

implies both (3.46) and (3.47). Notice that, since t̄ is the first time such that (3.45)
is satisfied, we always have

Cξ̈(t̄) · nK(z̄)(σ̄) + Cξ̇(t̄) · [∇σnK(z̄)(σ̄)] Cξ̇(t̄) ≤ 0.

It follows from the definition of Φ, from (3.45), and from (2.10), that the vector

Cξ̇(t̄) is tangent to ∂K(z̄) at σ̄ , hence Cξ̇(t̄) · [∇σnK(z̄)(σ̄)] Cξ̇(t̄) is exactly the

second fundamental form of ∂K(z̄) at σ̄ , applied to the tangent vector Cξ̇(t̄).
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4. Softening with discontinuities.

4.1. The equation of the fast dynamics. The goal of this section is a qualitative
study of the equation

{

σ̇f (s) = C(πK(zf (s))(σf (s)) − σf (s))

żf (s) = tr(σf (s)) tr
(

σf (s) − πK(zf (s))(σf (s))
)

;
(4.1)

this is called the fast dynamics equation and appears, as we shall see, as limit of a
rescaled version of (2.26) near a discontinuity point of a viscosity solution.

Under suitable conditions, we shall see the viscosity solution will jump between
the two endpoints of a heteroclinic orbit of (4.1), whose existence, together with
other properties, is the object of this subsection.

In order to prove the main theorem of this subsection, we need a preliminary
lemma, showing that the internal variable is constant along the unique solution of
(4.1), with an initial condition (σ̄, z̄) satisfying

(σ̄, z̄) /∈ K and tr
(

nK(z̄)(πK(z̄)(σ̄))
)

= 0. (4.2)

We preliminarly observe that taking an initial condition outside K easily implies
that we can never reach K in finite time, as the set K is made of critical points
of the autonomous equation (4.1). Through the decomposition (2.13) we identify

MN×N
sym with R×M

N×N
D ; in particular σf (s) is identified with the pair (xf (s), yf (s))

of its spherical and deviatoric parts. Introducing the function ̺ defined by (2.7),
which is positive by the previous remark, we may rewrite equation (4.1) in the form















ẋf (s) = −κ
√

N ̺(xf (s), yf (s), zf (s)) tr
(

nK(zf(s))

(

πK(zf (s))(xf (s), yf (s))
)

)

,

ẏf (s) = −2µ ̺(xf (s), yf (s), zf (s))nD
K(zf (s))

(

πK(zf (s))(xf (s), yf (s))
)

,

żf (s) =
√

Nxf (s) ̺(xf (s), yf (s), zf (s))tr
(

nK(zf(s))

(

πK(zf (s))(xf (s), yf (s))
)

)

.

(4.3)
Here κ and µ are defined in (2.24) and nD

K(zf(s))

(

πK(zf (s))(xf (s), yf (s))
)

is the

deviatoric part of nK(zf (s))

(

πK(zf (s))(xf (s), yf (s))
)

.

Lemma 4.1. Let (σ̄, z̄) ∈ [MN×N
sym × (0, +∞)] \K satisfying (4.2), and let x̄ and ȳ

the spherical and the deviatoric part of σ̄ , respectively. Then, for every t ∈ R , the
unique solution to equation (4.3) with Cauchy data (xf (0), yf (0), zf (0)) = (x̄, ȳ, z̄)
is given by

(xf (s), yf (s), zf (s)) = (x̄, y(s), z̄)

where y(s) solves the equation

ẏ(s) = −2µ ̺(x̄, y(s), z̄)ND
K(z̄)(πK(z̄)(x̄, ȳ)) (4.4)

with Cauchy condition y(0) = ȳ .
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Proof. Let y(s) be the unique solution to (4.4) with Cauchy condition y(0) = ȳ .
Then, for every s′ > 0

(x̄, y(s′)) =
(

x̄, ȳ − 2µ

∫ s′

0

̺(x̄, y(s), z̄)nD
K(z̄)(πK(z̄)(x̄, ȳ)) ds

)

=
(

x̄, ȳ − 2µ nD
K(z̄)(πK(z̄)(x̄, ȳ))

∫ s′

0

̺(x̄, y(s), z̄) ds
)

=
(

(x̄, ȳ) − 2µ nK(z̄)(πK(z̄)(x̄, ȳ))

∫ s′

0

̺(x̄, y(s), z̄) ds
)

,

Therefore πK(z̄)(x̄, y(s′)) = πK(z̄)(x̄, ȳ), provided (x̄, y(s′), z̄) /∈ K; this allows to
check that (x̄, y(s), z̄) solves (4.3), at least for small |s| . The conclusion for every
s follows, as solutions to (4.3) can never reach K in finite time.

Now we are able to prove the existence of an heteroclinic orbit of (4.1) starting
from a point (σ̂, ẑ) ∈ ∂K under suitable hypotheses on the slow-fast indicator Ψ.

Theorem 4.2. Assume that (2.24) and (2.14)-(2.17) are satisfied; let Φ , Ψ as in
(2.32) and (2.33), respectively. Let (σ̂, ẑ) ∈ ∂K and suppose that

Ψ(σ̂, ẑ) > 0 (4.5)

or
Ψ(σ̂, ẑ) = 0 and ∇Ψ(σ̂, ẑ) · ( −C nK(ẑ)(σ̂)

tr(σ̂) tr(nK(ẑ)(σ̂)) , 1) < 0. (4.6)

Then equation (4.1) has a unique solution (σ̂f (s), ẑf (s)) (up to time-translations)
satisfying

lim
s→−∞

(σ̂f (s), ẑf (s)) = (σ̂, ẑ). (4.7)

Moreover, the limit
(σ∞, z∞) := lim

s→+∞
(σ̂f (s), ẑf (s)) (4.8)

exists and satisfies the following conditions

(σ∞, z∞) ∈ ∂K, z∞ > 0, (4.9)

Ψ(σ∞, z∞) ≤ 0, (4.10)

tr(σ∞) < 0, tr(nK(z∞)(σ∞)) > 0. (4.11)

Proof. We first observe that, by (2.5), (2.12), and by (2.33), both (4.5) and (4.6)
imply that

tr(σ̂) < 0, tr(nK(ẑ)(σ̂)) > 0. (4.12)

Moreover, due to our regularity assumptions on K we may assume that in a suitably
small neighborhood of (σ̂, ẑ) an oriented distance function r from ∂K is well-
defined; this is a C1 -extension of the function ̺ , defined by (2.7), to the interior of
K . In view of the same assumptions, we may also locally define a minimal distance
projection onto ∂K(z), denoted by π∂K(z) , which obviously coincides with πK(z)

outside of K(z). For all these reasons, the Cauchy problem






σ′(z) =
−C nK(z)(σ(z))

tr(σ(z)) tr(nK(z)(π∂K(z)(σ(z))))

σ(ẑ) = σ̂

(4.13)

is well defined and admits a unique solution, which shall be denoted by σ̂(z). For z
sufficiently close to ẑ we then have that tr(σ̂(z)) < 0 and tr(nK(z)(π∂K(z)(σ(z))) >
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0; moreover for z < ẑ , sufficiently close to ẑ we can prove that (σ̂(z), z) /∈ K .
Indeed, as r(σ̂, ẑ) = 0, it suffices to show that in a left open neighborhood of ẑ one
has

d
dz

r(σ̂(z), z) < 0. (4.14)

By a direct computation, similar to that in (2.11), exploiting (4.13) and (2.33) we
get:

d

dz
r(σ̂(z), z) =

Ψ(σ̂(z), z)

tr(σ̂(z)) tr(nK(z)(π∂K(z)(σ̂(z))))
. (4.15)

Then (4.5) implies that d
dz

r(σ̂(z), z) < 0 for z = ẑ , thus (4.14) follows; if (4.6)
holds, deriving Ψ(σ̂(z), z), we get that

d
dz

r(σ̂(ẑ), ẑ) = 0 and d2

dz2 r(σ̂(ẑ), ẑ) > 0,

which in its turn implies (4.14). We thus may fix z̄ < ẑ such that, for every
z ∈ [z̄, ẑ), the following three hold

̺(σ̂(z), z) > 0, (4.16)

tr(σ̂(z)) < 0, (4.17)

tr(nK(z)(πK(z)(σ̂(z)))) > 0; (4.18)

we may indeed replace π∂K with πK as (σ̂(z), z) /∈ K . Now, let ẑf (s) the unique
solution to the autonomous Cauchy problem

{

żf (s) = tr(σ̂(zf (s))) tr(σ̂(zf (s)) − πK(zf (s))(σ̂(zf(s))))

zf (0) = ẑ;

by (4.16)-(4.18), we have that tr(σ̂(z)) tr(σ̂(z) − πK(z)(σ̂(z)) < 0, for every z ∈
[z̄, ẑ), with equality in z = ẑ ; the theory of autonomous equations implies that
ẑf(s) is defined for every s ≤ 0 and satisfies

lim
t→−∞

ẑf (s) = ẑ, ˙̂zf (s) < 0 for every t ≤ 0;

it now suffices to put σ̂f (s) := σ̂(ẑf (s)), to get a solution to (4.1) satifying (4.7).
To prove uniqueness, let (σ(s), z(s)) a solution to (4.1) satisfying (4.7); (4.12)

implies that there exists s̄ ∈ R such that, for every s ≤ s̄ , one has ż(s) < 0. Then
z(s) is invertible in (−∞, t̄) with inverse s(z). If we put σ(z) := σ(s(z)), it is easy
to see that σ(z) solves (4.13), thus coincides with σ̂(z); the theory of autonomous
equation now implies that (σ(s), z(s)) and (σ̂f (s), ẑf (s)) may only differ by a time
translation, thus the first part of the statement is proven.

Now, let (−∞, S) the maximal interval of definition for (σ̂f (s), ẑf (s)); observe
that, as orbits can never reach K in finite time, (σ̂f (s), ẑf (s)) also solves (4.3). We
split σ̂f (s) in its spherical part x̂f (s) and in its deviatoric part ŷf(s) as in (2.13),
and we observe that, by (4.3), the following equality holds:

κ ˙̂zf(s) = −x̂f (s) ˙̂xf (s). (4.19)

Moreover, (4.12) implies that there exist s̄ < S such that ˙̂xf (s) < 0 for every s ≤ s̄ .

Let us prove that ˙̂xf (s) < 0 for every s < S . Indeed, if there exists s1 < S such

that ˙̂xf (s1) = 0, by (4.3), as ̺(x̂f (s1), ŷf (s1), zf (s1) > 0, it must be

tr(nK(ẑf (s1))(σ̂f (s1))) = 0;
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by Lemma 4.1, this implies x̂f (s) = x̂f (s1) for all s , a contradiction. In particular
there exists

xS := lim
s→S

x̂f (s) < x̂ < 0, (4.20)

where x̂ is the spherical part of σ̂ . Now (4.19) implies that ˙̂zf(s) < 0 for every s <
S . In particular there exists zS := lim

s→S
ẑf (s) < ẑ .

We now show that zS is greater than zero. Indeed, by (4.3), the fact that
˙̂xf (s) < 0 for every s < S is equivalent to the inequality

tr(nK(ẑf (s))(πK(ẑf (s))(x̂f (s), ŷf (s)))) > 0 for every s < S, (4.21)

and also, as ̺(x̂f (s), ŷf (s), ẑf (s)) > 0, to the inequality

tr(πK(ẑf (s))(σ̂f (s)) < tr(σ̂f (s)) =
√

Nx̂f (s) for every s < S. (4.22)

By (2.9) and (2.23), (4.21) is equivalent to

tr(πK(ẑf (s))(σ̂f (s))) + a
√

Nẑf (s) > 0,

where a is the positive constant defined by (2.14); thus, by (4.22) we conclude that

x̂f (s) + aẑf (s) > 0 for every s < S (4.23)

which in the limit gives zS > |xS |
a

> 0, as claimed.
We now show that (σ̂f (s), ẑf (s)) is bounded, which in particular implies that

S = +∞ . Clearly, it suffices to prove that ŷf (s) is bounded. We have, by (4.1),
the negativeness of x̂f (s) and (4.22), that

d
ds

|ŷf (s)|2
2 = ŷf(s) · ˙̂yf (s)

= 2µ ŷf(s) ·
(

πK(ẑf (s))(σ̂f (s)) − σ̂f (s)
)

= 2µ σ̂f (s) ·
(

πK(ẑf (s))(σ̂f (s)) − σ̂f (s)
)

− 2 µ√
N

x̂f (s) tr
(

πK(ẑf (s))(σ̂f (s)) − σ̂f (s)
)

≤ 2µ σ̂f (s) ·
(

πK(ẑf (s))(σ̂f (s)) − σ̂f (s)
)

≤ 0,

as a consequence of (2.12); this proves that |ŷf(s)|2 is decreasing, thus ŷf (s) is
bounded.

Thus S = +∞ and zS is the limit of ẑf (s) at +∞ , which shall be denoted with
z∞ from now on; by the previous discussion, we also have that z∞ > 0, as required
by (4.9). Now we prove that σ̂f (s) has a limit at +∞ . To do that, we observe that
ẑf(s) is strictly decreasing, thus globally invertible; we thus express σ̂ in function
of z and we have to show that there exists lim

z→z∞

σ̂(z). We already know that σ̂(z)

is bounded and that its derivative satisfies

σ̂′(z) =
−C nK(z)(σ̂(z))

tr(σ̂(z)) tr(nK(z)(πK(z)(σ̂(z))))
(4.24)

thus the claim will follow once we get that

lim inf
z→z∞

tr(nK(z)(πK(z)(σ̂(z)))) > 0. (4.25)

Suppose that (4.25) is false; first, observe that in this case the liminf must be a
limit, as a consequence of the boundedness of σ̂(z) and of Lemma 3.5. Therefore
we will have, exploiting (2.33),

lim
z→z∞

Ψ(σ̂(z), z) = −2µ. (4.26)
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Moreover, observe that by (2.9) and (2.19),

lim
z→z∞

tr(nK(z)(πK(z)(σ̂(z)))) = 0 ⇔ lim
z→z∞

1
z
[
tr(πK(z)(σ̂(z)))√

N
+ az] = 0; (4.27)

on the other hand, clearly limz→z∞
tr(nK(z)(πK(z)(σ̂(z)))) = 0 implies that

lim
z→z∞

[tr(πK(z)(σ̂(z))) −
√

Nx̂(z)] = 0, (4.28)

thus combining (4.27) and (4.28), we get that

lim
z→z∞

x̂(z) = −az∞. (4.29)

Now, by (2.9), (2.19), (2.23), and (4.22), we have that

|tr(nK(z)(πK(z)(σ̂(z))))| ≤ |1
z
[
tr(πK(z)(σ̂(z)))√

N
+ az]|

≤ 1
z∞

[
tr(πK(z)(σ̂(z)))√

N
+ az]

≤ 1
z∞

[x̂(z) + az]. (4.30)

By (4.24), x̂′(z) = −κ
x̂(z) ; this fact, together with (4.29) and (4.30), yields that

lim sup
z→z∞

|tr(nK(z)(πK(z)(σ̂(z))))|
z − z∞

≤ 1

z∞
(

κ

az∞
+ a). (4.31)

Since (4.15) gives

d
dz

̺(σ̂(z), z) = Ψ(σ̂(z),z)
tr(σ̂(z)) tr(nK(z)(πK(z)(σ̂(z)))) , (4.32)

recalling that tr(nK(z)(πK(z)(σ̂(z)))) > 0 for all z > z∞ , we conclude by (4.26),
(4.29), and (4.31), that

lim inf
z→z∞

(z − z∞) d
dz

̺(σ̂(z), z) ≥ 2µz∞√
N(κ+az∞)

> 0.

This finally implies that

lim
z→z∞

̺(σ̂(z), z) = −∞,

contradicting the nonnegativeness of ̺ .
We thus have that there exists

σ∞ := lim
z→z∞

σ̂(z),

thus the proof of (4.8) is concluded. It is obvious that (σ∞, z∞) ∈ ∂K as it must
be a critical point of (4.1), thus (4.9) is proved. Concerning (4.11), it immediately
follows from (4.25) and (4.20). Finally, as ̺(σ̂(z), z) ≥ 0 for z > z∞ , we must have
d
dz

̺(σ̂(z), z) ≥ 0 for z = z∞ ; observing that tr(σ∞) tr(nK(z∞)(σ∞)) < 0 by (4.11),
from (4.32) we immediately get (4.10).

Remark 4.3. It is easy to show that, if an orbit of the system (4.1) has (σ̂, ẑ)
as an α -limit point, then (σ̂, ẑ) is indeed its unique α -limit point; indeed, by the
same arguments used in the proof of the previous theorem we can show that in this
case z(s) is strictly decreasing in a neighborhood of −∞ , thus it has ẑ as a limit;
the rest of the proof follows from (4.24), and Lemma 3.5.

We end up this analysis of equation (4.1) by showing an example where we can
improve (4.10), that is a case where Ψ(σ∞, z∞) < 0.
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Example 4.4. We suppose that for every z ∈ (0, +∞), K(z) is an ellipsoid of the
form

K(z) := {σ ∈ M
N×N
sym |(x + z)2 + |y|2

b2
= z2}, (4.33)

where x and y are as in (2.13). Notice that K(1) satisfies (2.14)-(2.17) with a = 1.
Suppose that, if κ and µ are as in (2.24) and b as in (4.33) the following condition
holds:

κN ≥ 2µ
b2

. (4.34)

We first compute the expression of Ψ on the yield surface in this case. Let
(σ, z) ∈ ∂K , with z > 0. We define

F (x, y, z) =

√

(x + z)2 + |y|2
b4

; (4.35)

to compute the expression of Ψ, it suffices to take into account the following facts:

a) nK(z)(σ) = 1
F (x,y,z) [(x + z) I√

N
+ y

b2
] ;

b) tr(nK(z)(σ)) =
√

N(x+z)
F (x,y,z) and tr(σ) =

√
Nx ;

c) CnK(z)(σ) = 1
F (x,y,z) [κN(x + z) I√

N
+ 2µy

b2
] .

It follows that

− nK(z)(σ) · CnK(z)(σ) = − 1
F (x,y,z)2 [κN(x + z)2 + 2µ|y|2

b4
]

= − 1
F (x,y,z)2 [(κN − 2µ

b2
)(x + z)2 + 2µz2

b2
], (4.36)

exploting (4.33). On the other hand, again by the use of (4.33),

tr(σ) tr(nK(z)(σ))

z
[σ · nK(z)(σ)] = N(x+z)x

zF (x,y,z)2 (x(x + z) + |y|2
b2

)

= N(x+z)x
zF (x,y,z)2 (x(x + z) + z2 − (x + z)2)

= −N(x+z)x2

F (x,y,z)2 . (4.37)

Recalling (2.33), by the use of (4.36) and (4.37), we have that

Ψ(σ, z) = − 1
F (x,y,z)2 [(κN − 2µ

b2
)(x + z)2 + 2µz2

b2
− Nx2(x + z)] (4.38)

for every (σ, z) ∈ ∂K , z > 0. We put

G(x, z) := (κN − 2µ
b2

)(x + z)2 + 2µz2

b2
− Nx2(x + z) (4.39)

and

H(σ, z) = − G(x, z)

F (x, y, z)
. (4.40)

Now, let (σ̂(z), z) be the heteroclinic trajectory joining the points (σ̂, ẑ) and
(σ∞, z∞) whose existence is guaranteed by the previous theorem; we shall denote
the spherical and the deviatoric part of σ̂(z) by x̂(z) and ŷ(z), respectively. Let
x∞ and y∞ be the spherical and the deviatoric part of σ∞ . Recall that, by (4.24),
x̂(z) satisfies

x̂′(z) = − κ
x̂(z) . (4.41)

We claim that if (4.34) holds, one has

Ψ(σ∞, z∞) < 0. (4.42)

Suppose, by contradiction, that Ψ(σ∞, z∞) = 0; this means, according to (4.38),
that

G(x∞, z∞) = 0. (4.43)
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Observe now that by (4.32), we have d
dz

̺(σ̂(z∞), z∞) = 0; as ̺(σ̂(z), z) is strictly
positive for z > z∞ while it is 0 for z = z∞ , we must have

d2

dz2 ̺(σ̂(z∞), z∞) ≥ 0,

and by explictly calculating this derivative with the help of (4.24), and recalling
(4.11), we find that it must be

∇Ψ(σ∞, z∞) · ( −C nK(z∞)(σ∞)

tr(σ∞) tr(nK(z∞)(σ∞)) , 1) ≤ 0. (4.44)

As we have already discussed in Remark 3.7, the directional derivative in (4.44)
is calculated in a tangential direction with respect to ∂K , whenever we suppose
Ψ(σ∞, z∞) = 0; as Ψ and H coincide on ∂K , we conclude that (4.44) is equivalent
to

∇H(σ∞, z∞) · ( −C nK(z∞)(σ∞)

tr(σ∞) tr(nK(z∞)(σ∞)) , 1) ≤ 0, (4.45)

where the left-hand side is, taking again into account (4.24), nothing more that
d
dz

H(σ̂(z), z) calculated for z = z∞ . By (4.43) and (4.40), we conclude that we
have

d
dz

G(x̂(z), z) ≥ 0 for z = z∞. (4.46)

Now, by (4.41), recalling that x̂(z) < 0 for every z ∈ [z∞, ẑ] , we have that
x̂′(z) > 0 for all z ∈ [z∞, ẑ] ; moreover, by (4.41) it follows that, for every z ,

d
dz

x̂2(z) = −2κ, d2

dz2 x̂2(z) = 0, x̂′′(z) = κ
x̂2(z) x̂

′(z) > 0. (4.47)

As in our case the constant a defined in (2.14) is equal to 1, (4.23) gives us that
x̂(z) + z > 0 for every z ; as x̂′′(z) > 0 by (4.47), we easily conclude that if (4.34)
holds

d2

dz2 [(κN − 2µ
b2

)(x̂(z) + z)2] ≥ 0 for every z ∈ [z∞, ẑ]. (4.48)

Therefore, recalling (4.39), by the use of (4.47), we get

d2

dz2 G(x̂(z), z) ≥ d2

dz2 [2µz2

b2
− Nx̂2(z)(x̂(z) + z)]

= 4µ
b2

− N d2

dz2 [x̂2(z)(x̂(z) + z)]

= 4µ
b2

− N [2( d
dz

x̂2(z))( d
dz

(x̂(z) + z)) + x̂2(z) d2

dz2 (x̂(z) + z)]

= 4µ
b2

− N [−4κ(x̂′(z) + 1) + κx̂′(z)]

= 4µ
b2

+ 4κN + 3κNx̂′(z) > 0;

thus, by (4.43) and (4.46) we have that

G(x̂(z), z) > 0 for every z ∈ (z∞, ẑ];

in particular, for z = ẑ we get G(x̂, ẑ) > 0, and then, by (4.38), (4.39), and (4.40),
we conclude that Ψ(σ̂, ẑ) < 0, which contradicts both (4.5) and (4.6).

4.2. Convergence to the fast dynamics. We want now to investigate how equa-
tion (4.1) governs the jump of our viscosity solution when it reaches a point on the
yield surface where the elastic-inelastic indicator is strictly positive (which means
that we are in the inelastic regime), while the slow-fast indicator satisfies (4.5), or
(4.6); we will see how a rescaled version of the solution converges to a heteroclinic
solution of the auxiliary system (4.1), whose asymptotic values at s = ±∞ give the
asymptotic values of the viscosity solution before and after the jump time. Both
the cases where (4.5) and (4.6) hold will be treated simultaneously; the discussion
will closely follow Section 4 and Section 5 of [7].
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Throughout this part of the paper, t̂ denotes a time such that there exist a left
continuous function t 7→ (σ(t), z(t)) defined on [0, t̂) with values in MN×N

sym ×[0, +∞)

and an element (σ̂, ẑ) of MN×N
sym × [0, +∞) satisfying the following properties:

(σε(t), zε(t)) → (σ(s), z(t)) for a.e. t ∈ [0, t̂), (4.49)

(σ(t), z(t)) → (σ̂, ẑ) as t → t̂−, (4.50)

(σ̂, ẑ) ∈ ∂K and ẑ > 0, (4.51)

Ψ(σ̂, ẑ) satisfies (4.5) or (4.6), (4.52)

Φ(t̂, σ̂, ẑ) > 0. (4.53)

For instance, we can take t̂ = t1 defined by (2.28), if (3.24) holds and Ψ(σ1, z1) > 0,
or t̂ = t2 defined by (3.5), provided that (4.6) holds for (σ̂, ẑ) = (σ2, z2) defined in
Proposition 3.6. In the latter case we have Ψ(σ2, z2) = 0 and in general, by Remark
3.7, we have the weak inequality

∇Ψ(σ2, z2) · ( −C nK(z2)(σ2)

tr(σ2) tr(nK(z2)(σ2)) , 1) ≤ 0;

thus, assuming (4.6), we are excluding the degenerate case when equality holds.
By (4.49) and (4.50) we also may fix a sequence t̂ε → t̂ such that

(σε(t̂ε), zε(t̂ε)) → (σ̂, ẑ); (4.54)

Indeed, by (4.53), and Lemma 3.11 we can find another sequence, still denoted by
t̂ε , which preserves (4.54), and satisfies in addition, for every ε > 0,

̺(σε(t̂ε), zε(t̂ε)) > cε, (4.55)

where c is a positive constant independent of ε .
We finally recall, as we have already dicussed in Remark 2.6 and in Proposition

3.6, that in the case t̂ = t2 the internal variable z is strictly decreasing in a left
neighborhood of t2 , thus discontinuities can appear only in the softening regime.

We start by fixing an open neighborhood Uδ1 := (t̂ − δ1, t̂ + δ1) × Bδ1(σ̂, ẑ) of
(t̂, σ̂, ẑ), in a way that (3.26) holds. If (4.5) holds, we may assume for a suitable
choice of δ1 there exists a positive constant γ1 such that

Ψ(σ, z) ≥ γ1 for every (σ, z) ∈ Bδ1(σ̂, ẑ); (4.56)

if instead (4.6) holds, we may assume that there exists a positive constant γ4 such
that

∇Ψ(σ, z) · ( −C nK(z)(πK(z)(σ))

tr(σ) tr(nK(z)(πK(z)(σ)) , 1) ≤ −γ4 (4.57)

for every (σ, z) ∈ Bδ1(σ̂, ẑ) \ intK .
We now define the exit time from Bδ1(σ̂, ẑ)

b1
ε := inf{t ∈ (t̂ε, t̂ε + δ1) : (σε(t), zε(t)) ∈ ∂Bδ1(σ̂, ẑ)}; (4.58)

by the previous assumptions for small ε we will trivially have t̂ε < b1
ε . We then

fix a positive decreasing sequence δk ց 0+ , starting from δ1 , and consequently we
define, for every k ∈ N ,

bk
ε := sup{t ∈ (t̂ε, b

1
ε) : (σε(t), zε(t)) ∈ ∂Bδk

(σ̂, ẑ)}. (4.59)

Next lemma, which will be crucial in the remainder of the section, shows that
the exit times bk

ε tend to t̂ when ε goes to 0 and that the difference b1
ε − bk

ε is of
order ε for fixed k .
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Lemma 4.5. Assume (2.1)-(2.5), and (2.24); let Φ , Ψ as in (2.32), and (2.33),
respectively. Let t̂ > 0 satisfying (4.49)-(4.53). Let b1

ε be given by (4.58) and bk
ε be

given for every k ∈ N, k > 1 by (4.59). Then, for every k ∈ N :

a) bk
ε → t̂ as ε → 0+ ;

b) supε>0
b1ε−bk

ε

ε
≤ ck < +∞,

where ck is a constant depending on k . Moreover, for every k ∈ N , there exists a
constant mk such that

̺(σε(b
k
ε), zε(b

k
ε)) > mk. (4.60)

Proof. We limit ourselves to giving a brief outline of the proof, as the argument is
similar to that of [7, Lemmas 4.3 and 5.1]. Concerning part a) of the statement, it
clearly suffices to show this is true for b1

ε. As t̂ε → t̂ this will be proved once we
get:

lim sup
ε→0+

(b1
ε − t̂ε) = 0. (4.61)

By Lemma 3.11 we have that ̺ε(t) > 0 for every t ∈ (t̂ε, b
1
ε), hence (2.31) holds.

Now, assume that (4.5) holds, which implies on his turn (4.56). With this condi-
tion, with the help of (3.26) and (2.31), we get that ˙̺ε(t) ≥ γ1

1
ε
̺ε(t); dividing by

̺ε(t), we get

˙̺ε(t)

̺ε(t)
≥ γ1

ε
for every t ∈ (t̂ε, b

1
ε), (4.62)

which is the analogue of [7, formula (4.17)]; now the proof of (4.61), of part b) of the
statement and of (4.60) can be easily achieved by simply adapting the arguments
of [7, Lemma 4.3].

Assume instead (4.6), which implies (4.57). We have already observed that this
implies tr(σ̂) < 0; by (2.34) this means that

tr(σ̂) < −min{κ,2µ}
MK

√
N

,

where MK is as in (2.3) and κ, 2µ as in (2.24). Provided we have chosen δ1 suitably
small, we may clearly assume that

tr(σε(t)) < −min{κ,2µ}
2MK

√
N

for every t ∈ (t̂ε, b
1
ε);

analogously, as (4.6) implies tr(nK(z)(σ̂)) > 0 we may assume

tr(nK(zε(t))(πK(zε(t))(σε(t))) > 0 for every t ∈ (t̂ε, b
1
ε).

By these facts and (2.29) we then easily get the existence of a positive constant C
such that

żε(t) ≤ −C
̺ε(t)

ε
for every t ∈ (t̂ε, b

1
ε). (4.63)

In particular, for fixed ε > 0, the function żε(t) never vanishes in the prescribed
interval. We also immediately get, as zε(t) < ẑ + δ1 for every t ∈ (t̂ε, b

1
ε) that there

exists a positive constant R̃ independent of ε such that:

∫ b1ε

t̂ε

̺ε(t)

ε
dt ≤ R̃,

as in [7, formula (5.10)].
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Differentiating the function Ψ along the trajectories, we get

d

dt
Ψ(σε(t), zε(t)) = ∇Ψ(σε(t), zε(t)) · (σ̇ε(t), żε(t))

= ∇Ψ(σε(t), zε(t)) · (Cξ̇(t), 0)

+ żε(t)∇Ψ(σε(t), zε(t)) · (−C(ξ̇(t)−σ̇ε(t))
żε(t) , 1)

= ∇Ψ(σε(t), zε(t)) · (Cξ̇(t), 0)

+żε(t)∇Ψ(σε(t), zε(t)) · ( −C nK(zε(t))(πK(zε(t))(σε(t)))

tr(σε(t))tr(nK(zε(t))(πK(zε(t))(σε(t))) , 1);

this equality, together with (4.63) and (4.57), implies that there exist two positive
constants L and R such that

d

dt
Ψ(σε(t), zε(t)) ≥ R

̺ε(t)

ε
− L|C||ξ̇(t)| for every t ∈ (t̂ε, b

1
ε), (4.64)

as in [7, formula (5.11)]. Now the proof of (4.61), of part b) of the statement and
of (4.60) can be achieved by repeating the arguments of [7, Lemma 5.1].

We are now ready to prove the main result of this section.

Theorem 4.6. Assume (2.24), and (2.14)-(2.17); let Φ , Ψ as in (2.32), and
(2.33), respectively. Let t̂ > 0 , (σ̂, ẑ) ∈ ∂K , such that (4.5) or (4.6) hold. As-
sume that Φ(t̂, σ̂, ẑ) > 0 , and let δ1 > 0 as in (3.26) and let b1

ε be given by (4.58).
For every s ∈ R, let (σ1

ε(s), z1
ε(s)) := (σε(b

1
ε + εs), zε(b

1
ε + εs)) . Then (σ1

ε(s), z1
ε(s))

converges uniformly on compact subsets of R to a solution of the problem:














σ̇f (s) = C(πK(zf (s))(σf (s)) − σf (s))

żf (s) = tr(σf (s)) tr(σf (s) − πK(zf (s))(σf (s)))

lim
s→−∞

(σf (s), zf (s)) = (σ̂, ẑ)

(4.65)

whose existence and uniqueness up to time translations is guaranteed by Theorem
4.2.

Proof. This proof is reminiscent of [8, Lemma 4.3]. First of all, we claim that it
suffices to prove the statement along a subsequence εk tending to 0. Indeed, the
only difficulty is that the solutions of (4.65) may differ by a time translation, thus
the limit could depend on the chosen subsequence. We are able to exclude this fact
applying [8, Lemma 4.4], with the same arguments as in the proof of Theorem 3.5
of the same paper. In view of that, we shall extract from now on subsequences
without relabelling. We also define χε(s) := ξ̇(a1

ε + εs).
We start by observing that the function (σ1

ε(s), z1
ε(s)) solves the problem











σ̇1
ε(s) = C(πK(z1

ε(s))(σ
1
ε(s)) − σ1

ε(s)) + εC χε(s),

ż1
ε(s) = tr(σ1

ε(s)) tr(σ1
ε(s) − πK(z1

ε(s))(σ
1
ε(s))),

(σ1
ε(0), z1

ε(0)) = (σε(b
1
ε), zε(b

1
ε)),

(4.66)

in the interval [− b1ε
ε

,
t̂+δ1−b1ε

ε
] . As (σε(b

1
ε), zε(b

1
ε)) belongs to the compact set

∂Bδ1(σ̂, ẑ) we may assume, possibly passing to a subsequence that (σε(a
1
ε), zε(a

1
ε))

converges to (σ̂1, ẑ1) ∈ ∂Bδ1(σ̂, ẑ) as ε → 0. Notice that (σ̂1, ẑ1) has a strictly
positive distance from K as a consequence of (4.60). Therefore, Lemma 4.5 and
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the Continuous Dependence Theorem imply that (σ1
ε(s), z1

ε(s)) converges uniformly
on compact subsets of R , as ε → 0, to the solution (σ1(s), z1(s)) of the problem











σ̇1(s) = C(πK(z1(s))(σ
1(s)) − σ1(s)),

ż1(s) = tr(σ1(s)) tr(σ1(s) − πK(z1(s))(σ
1(s))),

(σ1(0), z1(0)) = (σ̂1, ẑ1).

(4.67)

To conclude the proof we have to show that

lim
s→−∞

(σ1(s), z1(s)) = (σ̂, ẑ). (4.68)

Actually, recalling Remark 4.3, it suffices to show that there exist sk → +∞ such
that

lim
k→+∞

(σ1(−sk), z1(−sk)) = (σ̂, ẑ). (4.69)

To do that, we take δk and bk
ε as in Lemma 4.5, and we define S1,k

ε :=
b1ε−bk

ε

ε
; by

Lemma 4.5 and a diagunal argument, we may suppose, passing to a subsequence,
that for every k ∈ N there exists

sk := lim
ε→0

S1,k
ε ∈ R+.

We define (σk
ε (s), zk

ε (s)) := (σε(b
k
ε + εs), zε(b

k
ε + εs)); by repeating the above argu-

ments we may suppose that for every k ∈ N there exists (σ̂k, ẑk) ∈ ∂Bδk
(σ̂, ẑ) \ K

such that (σk
ε (s), zk

ε (s)) converges, as ε → 0, uniformly on compact subsets of R ,
to the solution (σk(s), zk(s)) of the problem











σ̇k(s) = C(πK(zk(s))(σ
k(s)) − σk(s)),

żk(s) = tr(σk(s)) tr(σk(s) − πK(zk(s))(σ
k(s))),

(σk(0), zk(0)) = (σ̂k, ẑk).

(4.70)

Moreover, equality (σk
ε (S1,k

ε ), zk
ε (S1,k

ε )) = (σε(b
1
ε), zε(b

1
ε)) implies that

(σk(sk), zk(sk)) = (σ̂1, ẑ1)

for every k , hence by the uniqueness of solutions for Cauchy problems we get

(σk(s), zk(s)) = (σ1(s − sk), z1(s − sk)). (4.71)

It follows that

(σ1(−sk), z1(−sk)) = (σ̂k, ẑk). (4.72)

As δk → 0, we have that (σ̂k, ẑk) → (σ̂, ẑ) as k goes to +∞ , hence

lim
k→+∞

(σ1(−sk), z1(−sk)) = (σ̂, ẑ); (4.73)

since (σ̂, ẑ) is an equilibrium point for equation (4.1), necessarily sk → +∞ as
k → +∞ ; so, (4.69) is proven and conclusion follows.

Remark 4.7. (Return to the continuous evolution).
Let (σ∞, z∞) the unique ω -limit point of the solution of (4.65); by Theorem

4.2, we have that Ψ(σ∞, z∞) ≤ 0; assume now that strict inequality holds (this is
certainly true, for instance, if we are in the situation described by Example 4.4).
By the previous theorem we may fix a sequence t̃ε converging to t̂ as ε → 0+ such
that (σε(t̃ε), zε(t̃ε)) → (σ∞, z∞).

Now, we have three possibilities:



130 GIANNI DAL MASO AND FRANCESCO SOLOMBRINO

a) Return to the continuous evolution in the softening regime. This
situation occurs if Φ(t̂, σ∞, z∞) > 0; by Theorem 3.16, in a right neighborhood
of t̂ the solutions of (2.26) uniformly converge, on compact subintervals, to
the solution of the slow dynamics equation given by (3.1) with Cauchy datum
(σ∞, z∞) at time t̂ ; notice that (4.11) implies that, when the continuous
evolution restarts, we are still in the softening regime, thus no istantaneous
transition between the softening and the hardening regime occurs during the
jump.

b) Return to the elastic regime . This situation occurs if Φ(t̂, σ∞, z∞) < 0.
To prove that, take η > 0, γ > 0 such that, for every t ∈ [t̂, t̂ + η] and every
(σ, z) satisfying |(σ, z) − (σ∞, z∞)| < η , one has

Ψ(σ, z) < −γ and Φ(t, σ, z) < −γ (4.74)

We observe that (4.74) obviously implies both (3.46) and (3.47), hence repeat-
ing the arguments of [7, Theorem 3.11], we get that (σε(t), zε(t)) uniformly
converges to the solution of the equation of linearized elasticity

(σel(t), zel(t)) := (σ∞ + C(ξ(t) − ξ(t̂)), z∞)

on compact subintervals of (t̂, τ), where

τ := sup{t > t̂ |(σel(s), zel(s)) ∈ intK for every s ∈ (t̄, t)}.

c) If Φ(t̂, σ∞, z∞) = 0, we need some higher order conditions on the indicator Φ
to establish whether the system will follow the first or the second alternative;
however, by the negativeness of the indicator Ψ, applying Lemma 3.13, and
Corollary 3.15, we are able to conlude that the evolution must be continuous
in a right open neighborhood of t̂ .

5. Statement of the main result. We collect the results of the previous sections
in the next theorem, which gives a procedure to construct a viscosity solution to our
evolution problem under quite general assumptions; in fact, if these assumptions are
satisfied at every step of the construction, the viscosity solution is also unique. The
theorem will determine a possibly infinite sequence of times t0 < t1 < · · · < ti <
. . . such that in each interval (ti−1, ti] the solution, denoted here by (σi−1, zi−1)
is continuous and satisfies either the slow dynamics, or the elastic regime, or a
combination of the two. A jump may occur at time ti if the value (σi−1(ti), zi−1(ti))
satisfies (4.5) or (4.6). In this case the new starting point (σ+

i , z+
i ) for the solution

in the interval (ti, ti+1] is determined by taking the limit as s → +∞ of the solution
of the fast dynamics originating from (σi−1(ti), zi−1(ti)) at s = −∞ . To prepare
the technical statement of the theorem it is convenient to introduce some notation.

Definition 5.1. For every (σ̂, ẑ) ∈ ∂K satisfying Ψ(σ̂, ẑ) 6= 0, and every T > 0
we define (σsl, zsl)(t; σ̂, ẑ, T ) as the unique solution to (3.1) starting from the point
(σ̂, ẑ) at time T . For every (σ̂, ẑ) ∈ ∂K we define (σel, zel)(t; σ̂, ẑ, T ) = (σ̂+C(ξ(t)−
ξ(T )), ẑ). For every (σ̂, ẑ) ∈ ∂K satisfying (4.5) or (4.6) we define (σf , zf)(s; σ̂, ẑ)
as the unique solution to (4.1) having (σ̂, ẑ) as an α -limit point.

To simplify our notation, in the statement of the theorem we also put

∂Kf := {(σ, z) ∈ ∂K : (σ, z) satisfy (4.5) or (4.6) }.
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Theorem 5.2. Let (σ0, z0) ∈ intK , let t0 = 0 , t1 as in (2.28), and (σ0(t), z0(t)) =
(σ0 + C(ξ(t) − ξ(0)), z0) . For every i ≥ 1 with ti < +∞ define

(σ+
i , z+

i ) =

{

(σi−1, zi−1)(ti) if Ψ(σi−1(ti), zi−1(ti)) < 0,

lim
s→+∞

(σf , zf )(s; σi−1(ti), zi−1(ti)) if (σi−1(ti), zi−1(ti)) ∈ ∂Kf .

If Ψ(σ+
i , z+

i ) < 0 , let t̂i be the maximal time of existence for (σsl, zsl)(t; σ
+
i , z+

i , ti) ,
and

t̄i := inf{t ≥ ti : Φ(t, (σsl, zsl)(t; σ
+
i , z+

i , ti)) ≤ 0}.
If t̂i = t̄i , put ti+1 := t̂i , and

(σi(t), zi(t)) = (σsl, zsl)(t; σ
+
i , z+

i , ti)

for every ti ≤ t ≤ ti+1 ; if instead t̂i > t̄i , put (σ̄i, z̄i) := (σsl, zsl)(t̄i, σ
+
i , z+

i , ti) ,

ti+1 := inf{t > t̄i |(σel, zel)(t; σ̄i, z̄i, t̄i) ∈ intK for every s ∈ (t̄i, t)},
and

(σi(t), zi(t)) =

{

(σsl, zsl)(t; σ
+
i , z+

i , ti) for ti < t ≤ t̄i,

(σel, zel)(t; σ̄i, z̄i, t̄i) for t̄i ≤ t ≤ ti+1.

Define (σ(t), z(t)) :=
∑

i≥1 1(ti−1,ti](σi−1(t), zi−1(t)) . Assume that

Φ(σ(ti), z(ti)) > 0 for every i ≥ 1, (5.1)

(3.46) and (3.47) hold for every i with t̄i < t̂i (5.2)

lim inf
t→t

−
i+1

Φ(t, σ(t), z(t)) > 0 for every i with ti+1 = t̂i < +∞. (5.3)

Define e(t) and p(t) through the consitutive relations in (1.1), and put T := supi ti .
Then (e(t), p(t), σ(t), z(t)) is the unique viscosity solution of (1.1) in [0, T ) .

Proof. The result follows from Theorem 3.16, Theorem 3.18, Theorem 4.6, and
Remark 4.7.

Remark 5.3. Notice that assumption (5.3) ensures that whenever ti+1 = t̂i < +∞
we can extend by continuity (σsl, zsl) in ti+1 thanks to Proposition 3.6, hence at
every step (σ(ti), z(ti)) is well-defined. Concerning the other assumptions in the
theorem, observe that by construction and Theorem 4.2, we always have at least the
weak inequality Ψ(σ+

i , z+
i ) ≤ 0; by construction we also have Φ(σ(ti), z(ti)) ≥ 0 for

every i . Similarly, the weak inequality in (5.3) is always true whenever ti+1 = t̂i .
Thus our construction works at least for the nondegenerate cases where equality is
excluded while a higher-order analysis is needed in the remaining situations to get
insight of the limit behavior of the viscous approximations.
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