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Abstract: We prove the well-posedness of entropy weak solutions for a class of space-discontinuous
scalar conservation laws with nonlocal flux. We approximate the problem adding a viscosity term
and we provide L∞ and BV estimates for the approximate solutions. We use the doubling of variable
technique to prove the stability with respect to the initial data from the entropy condition.
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1. Introduction

The aim of this paper is to study nonlocal conservation laws characterized by a flux discontinuous
in space. In particular, the nonlocality consists in the fact that the velocity function depends on a
convolution term that averages the solution in space. It is worth pointing out that the discontinuity
appears in the flux through a multiplicative way. We will focus on the following equation,

∂tρ + ∂x

(
ρ(1 − wη ∗ ρ)v(x)

)
= 0, (t, x) ∈ (0,∞) × R,

where the function v = v(x) is defined as follows:

v(x) =

vl, if x < 0,
vr, if x > 0.

The idea comes from the work in [27] in which traveling waves are studied for a nonlocal scalar space
discontinuous traffic model that describes the beaviour of drivers on two consecutive roads with
different speed limits. Indeed, in recent years nonlocal conservation laws have been provided to
describe several phenomena, for example: flux granular flows [2], sedimentation [6], supply
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chains [19], conveyor belts [18], structured populations dynamics [26] and traffic
flows [7, 9, 10, 16, 28]. For these reasons, we believe the matter of discontinuous nonlocal
conservation laws mathematically challenging and interesting while applicable to different real-life
scenarios. Here, we prove the wellposedness of a nonlocal space discontinuous problem and our
approach is based on a viscous regularizing approximation of the problem and standard compactness
estimates. To our knowledge, these are the first results regarding discontinuous nonlocal problem
using the vanishing viscosity technique. In particular, we have been inspired by the adaptation of the
classical vanishing viscosity argument for scalar conservation laws [23] to erosion models [15], scalar
equations with discontinous fluxes [8, 24, 25] and triangular systems [14]. This technique is based on
the approximation of the solution of the starting problem through a sequence of smooth solutions of
the corresponding viscous parabolic problem. The convergence to a solution of the starting problem is
obtained proving compactness estimates on the sequence of smooth solutions. The existence of the
approximate smooth solutions is proved through a fixed point theorem. In [9, 10, 27] conservation
laws with nonlocal flux have been applied to the traffic flow setting. In particular, in [9,10] the authors
study conservation laws with continuous flux functions and the well-posedness is obtained
approximating the problem through an adapted numerical scheme and proving standard compactness
estimates on the sequence of approximate solutions. In [27], travelling waves for a
space-discontinuous traffic model describing two roads with rough conditions are studied. In the
present work we do not need to apply an appropriate numerical discretisation of our problem due to
the vanishing viscosity technique. We would like to count other more recent, noteworthy and
interesting results about discontinuous nonlocal problems in [21] obtained with the fixed-point
theorem technique. Our aim is to study a nonlocal equation in which the space-discontinuity occurs in
the multiplicative term. It is not straightforward to deal with more general flux functions in the
nonlocal setting satisfying the ‘crossing condition’ as in the paper [20]. Indeed, considering two
different nonlocal flux functions for x < 0 and x > 0 would imply that the crossing point is not fixed
but it changes position in time and this makes harder the analytical study. The paper is organized as
follows. In Section 2, we describe the main results in this paper. In Section 3, we prove the existence
of weak solutions of our problem, approximating it through a viscous problem and giving L∞ and BV
bounds. Finally, in Section 4, we show the uniqueness of entropy solutions, deriving an L1

contraction property using a doubling of variables argument.

2. Main results

We consider the following scalar conservation equation with discontinuous nonlocal flux coupled
with an initial datum ∂tρ + ∂x f (t, x, ρ) = 0, (t, x) ∈ (0,∞) × R,

ρ(0, x) = ρ0(x), x ∈ R,
(2.1)

where

f (t, x, ρ) = ρ(1 − wη ∗ ρ)v(x),

(wη ∗ ρ)(t, x) =

∫ x+η

x
ρ(t, y)wη(y − x)dy, η > 0,
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and the velocity function v = v(x) is defined as follows

v(x) =

vl, if x < 0,
vr, if x > 0.

In this context ρ represents the unknown function, wη is a non-increasing kernel function whose length
of the support is η. The equation in (2.1) is the space discontinuous version of the one in [7], where a
nonlocal traffic model is presented.

On wη, v, ρ0 we shall assume that

0 < vl < vr; (2.2)

wη ∈ C2([0, η]), wη(η) = w′η(η) = 0, w′η ≤ 0 ≤ wη,
∥∥∥wη

∥∥∥
L1(0,η)

= 1; (2.3)

0 ≤ ρ0 ≤ 1, ρ0 ∈ L1(R) ∩ BV(R). (2.4)

Assumption (2.3) implies that, if ρ is continuous,

∂x(wη ∗ ρ)(t, x) = −(w′η ∗ ρ)(t, x) − wη(0)ρ(t, x),

∂x(w′η ∗ ρ)(t, x) = −(w′′η ∗ ρ)(t, x) − w′η(0)ρ(t, x).
(2.5)

Remark 2.1. The assumption Eq (2.3) does not allow the usual choices of kernels in traffic literature,
such as: the constant and the linear decreasing kernels. Our kernels are like restrictions to [0, η] of
cut-off functions that are equal to 1 in [−η/2, η/2] and vanish outside [−η, η] or, for example,

wη(x) :=

e
1

x2−η2 x ∈ [0, η),
0 otherwise,

(2.6)

observing that lim
x→η−

w′η(x) = 0.

Remark 2.2. It is interesting to notice that if Eq (2.2) does not hold, namely vl > vr, we cannot say
even in the local case that

‖ρ‖L∞((0,∞)×R) ≤ ‖ρ0‖L∞(R) .

Let us consider this very easy example in the classical local case
∂tρ + ∂x f (ρ) = 0, (t, x) ∈ (0,∞) × (−∞, 0),
∂tρ + ∂xg(ρ) = 0, (t, x) ∈ (0,∞) × (0,∞),
ρ(0, x) = ρ0(x), x ∈ R,

(2.7)

where

f (ρ) = 2(ρ(1 − ρ)), g(ρ) = ρ(1 − ρ), ρ0(x) =

0.25, if x < 0,
0.77, if x > 0.

The entropy weak solution to the above Cauchy problem is

ρ =


ρl = 0.25, if x < f (ρ−)− f (ρl)

ρ−−ρl
t,

ρ− = 0.9, if f (ρ−)− f (ρl)
ρ−−ρl

t < x < 0,

ρ+ = ρr = 0.77, if x > 0.

(2.8)
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ρ
0

f (ρl)

f (ρ−)g(ρ+) = g(ρr)

ρl ρ+ = ρr ρ−

Figure 1. Fundamental diagrams relative to Eq (2.7).

A complete description of conservation laws with discontinuous flux can be found in [17, 22].

We use the following definitions of solution.

Definition 2.1. We say that a function ρ : [0,∞) × R→ R is a weak solution of Eq (2.1) if

0 ≤ ρ ≤ 1, ‖ρ(t, ·)‖L1(R) ≤ ‖ρ0‖L1(R) , (2.9)

for almost every t > 0 and for every test function ϕ ∈ C1
c(R2)∫ ∞

0

∫
R

(ρ∂tϕ + f (t, x, ρ)∂xϕ) dtdx +

∫
R

ρ0(x)ϕ(0, x)dx = 0.

Definition 2.2. A function ρ ∈ (L1 ∩ L∞)(R+ × R; [0, ρmax]) is an entropy weak solution of Eq (2.1), if

(1) for all κ ∈ R, and any test function ϕ ∈ C1
c(R2;R+) which vanishes for x ≤ 0,∫ +∞

0

∫
R+

|ρ − κ|ϕt + |ρ − κ| (1 − wη ∗ ρ)vrϕx

− sgn (ρ − κ) κ ∂x(wη ∗ ρ)vrϕ dx dt +

∫
R+

|ρ0(x) − κ|ϕ(0, x)dx ≥ 0;

(2) for all κ ∈ R, and any test function ϕ ∈ C1
c(R2;R+) which vanishes for x ≥ 0,∫ +∞

0

∫
R−
|ρ − κ|ϕt + |ρ − κ| (1 − wη ∗ ρ)vl ϕx

− sgn (ρ − κ) κ ∂x(wη ∗ ρ) vl ϕ dx dt +

∫
R−
|ρ0(x) − κ|ϕ(0, x)dx ≥ 0;

(3) for all κ ∈ R, and any test function ϕ ∈ C1
c(R2;R+)∫ +∞

0

∫
R

|ρ − κ|ϕt + |ρ − κ| (1 − wη ∗ ρ)v(x)ϕx
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−

∫ +∞

0

∫
R∗

sgn (ρ − κ) κ ∂x

(
(wη ∗ ρ) v(x)

)
ϕ dx dt

+

∫
R

|ρ0(x) − κ|ϕ(0, x)dx

+

∫ +∞

0

∣∣∣(vr − vl)κ(1 − wη ∗ ρ)
∣∣∣ϕ(t, 0)dt ≥ 0;

(4) the traces are such that the jump
|ρl − ρr| (2.10)

is the smallest possible that satisfies the Rankine-Hugoniot condition

f (t, 0+, ρr) = f (t, 0−, ρl) i.e. vlρl = vrρr,

where we denoted with

f (t, 0±, ρr,l) = lim
x→0±
v(x)ρ(t, x)

(
1 −

∫ x+η

x
wη(y − x)ρ(y, t)dy

)
.

Remark 2.3. We would like to underline that the existence of strong right and left traces, respectively
ρr and ρl, is ensured by the genuine non-linearity of our flux function, as it is proved in [1, 4].

The main result of this paper is the following.

Theorem 2.1. Assume Eq (2.2), Eq (2.3), and Eq (2.4). Then, the initial value problem in Eq (2.1)
possesses an unique entropy solution u in the sense of Definition 2.2. Moreover, if u and v are two
entropy solutions of Eq (2.1) in the sense of Definition 2.2 , the following inequality holds

‖u(t, ·) − v(t, ·)‖L1(R) ≤ eKt ‖u(0, ·) − v(0, ·)‖L1(R) , (2.11)

for some suitable constant K > 0.

3. Existence

Our existence argument is based on passing to the limit in a vanishing viscosity approximation of
Eq (2.1). We have been inspired by the viscous approximation in [11, Theorem 3.1], the sign of the
term in absolute value |1 − wη ∗ ρε| follows from Lemma 3.1 below.

Fix a small number ε > 0 and let ρε = ρε(t, x) be the unique classical solution of the following
problem 

∂tρε + (1 − wη ∗ ρε)vε(x)∂xρε + ρε|1 − wη ∗ ρε|vε
′(x)

+ρε(w′η ∗ ρε)vε(x) + ρ2
εwη(0)vε(x) = ε∂2

xxρε, (t, x) ∈ (0,∞) × R,
ρε(0, x) = ρ0,ε(x), x ∈ R,

(3.1)

where ρ0,ε and vε are C∞(R) approximations of ρ0 and v such that

ρ0,ε → ρ0, a.e. and in Lp(R), 1 ≤ p < ∞,

0 ≤ ρ0,ε ≤ 1,
∥∥∥ρ0,ε

∥∥∥
L1(R)
≤ ‖ρ0‖L1(R) ,

∥∥∥∂xρ0,ε

∥∥∥
L1(R)
≤ C0

vl ≤ vε ≤ vr, vε
′ ≥ 0, vε(x) =

vl if x < −ε,

vr if x > ε,

(3.2)
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for every ε > 0 and some positive constant C0 independent on ε. The well-posedness of Eq (3.1) can
be obtained following the same arguments of [11–13].

Let us prove some a priori estimates on ρε denoting with C0 the constants which depend only on the
initial data, and C(T ) the constants which depend also on T .

Lemma 3.1 (L∞ estimate). Let ρε be a solution of (3.1). We have that

0 ≤ ρε ≤ 1,

for every ε > 0.

Proof. Thanks to Eq (3.2), 0 is a subsolution of Eq (3.1), due to the Maximum Principle for parabolic
equations we have that

ρε ≥ 0. (3.3)

We have to prove
ρε ≤ 1. (3.4)

Assume by contradiction that Eq (3.4) does not hold.
Let us define the function r(t, x) = e−λtρε(t, x). We can choose λ > 0 so small that

‖r‖L∞((0,∞)×R) > 1. (3.5)

Thanks to Eq (3.1), r solves the equation

∂tr + λr + (1 − wη ∗ ρε)vε(x)∂xr − ε∂2
xxr

= − r(w′η ∗ ρε)vε(x) − r|1 − wη ∗ ρε|vε
′(x) − eλtr2wη(0)vε(x).

(3.6)

Since

(w′η ∗ ρε(t, ·))(x) =

∫ x+η

x
w′η(y − x)

(
ρε(t, y) − ‖ρε‖L∞((0,∞)×R)

)
dy

− ‖ρε‖L∞((0,∞)×R) wη(0),

we can write

∂tr + λr + (1 − wη ∗ ρε)vε(x)∂xr − ε∂2
xxr

= − r
(
w′η ∗

(
ρε − ‖ρε‖L∞((0,∞)×R)

))
vε(x) + rwη(0) ‖ρε‖L∞((0,∞)×R) vε(x)

− r|1 − wη ∗ ρε|vε
′(x) − eλtr2wη(0)vε(x)

= − r
(
w′η ∗

(
ρε − ‖ρε‖L∞((0,∞)×R)

))
vε(x) − r|1 − wη ∗ ρε|vε

′(x)

+ r(‖ρε‖L∞((0,∞)×R) − ρε)wη(0)vε(x) ≤ 0.

(3.7)

Let (t̄, x̄) be such that
‖r‖L∞((0,∞)×R) = r(t̄, x̄).

Since, thanks to Eq (3.5),
‖r(0, ·)‖L∞(R) ≤ 1 < r(t̄, x̄),
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we must have
t̄ > 0.

Therefore we can evaluate Eq (3.6) in (t̄, x̄) and gain

0 < λ ‖r‖L∞((0,∞)×R) ≤ 0.

Since, this cannot be, Eq (3.4) is proved. �

Using Eq (2.3) and Lemma 3.1, we know that

0 ≤ wη ∗ ρε ≤ 1 (3.8)

and then we can rewrite Eq (3.1) as follows∂tρε + ∂x(ρε(1 − wη ∗ ρε)vε(x)) = ε∂2
xxρε, (t, x) ∈ (0,∞) × R,

ρε(0, x) = ρ0,ε(x), x ∈ R.
(3.9)

Lemma 3.2 (L1 estimate). Let ρε be a solution of Eq (3.1). We have that

‖ρε(t, ·)‖L1(R) ≤ ‖ρ0‖L1(R) , (3.10)∥∥∥(wη ∗ ρε)(t, ·)
∥∥∥

L1(R)
≤ ‖ρ0‖L1(R) , (3.11)∥∥∥∂x(wη ∗ ρε)(t, ·)

∥∥∥
L1(R)
≤2wη(0) ‖ρ0‖L1(R) , (3.12)

for every t ≥ 0 and ε > 0.

Proof. We have

d
dt

∫
R

ρεdx =

∫
R

∂tρεdx = ε

∫
R

∂2
xxρεdx −

∫
R

∂x(ρε(1 − wη ∗ ρε)vε(x))dx = 0.

Therefore,
‖ρε(t, ·)‖L1(R) =

∥∥∥ρ0,ε

∥∥∥
L1(R)

,

and Eq (3.10) follows from Eq (3.2).
Using Eqs (2.3), (2.5), (3.8), and Lemma 3.1∫

R

(wη ∗ ρε)(t, x)dx =

∫
R

∫ x+η

x
wη(y − x)ρε(t, y)dydx

=

∫
R

∫ η

0
wη(y)ρε(t, y + x)dydx

=
∥∥∥wη

∥∥∥
L1(R) ‖ρε(t, ·)‖L1(R) = ‖ρε(t, ·)‖L1(R) ,∫

R

|∂x(wη ∗ ρε)(t, x)|dx ≤
∫
R

∫ x+η

x
|w′η(y − x)|ρε(t, y)dxdy + wη(0)

∫
R

ρεdx

= −

∫
R

∫ η

0
w′η(y)ρε(t, y + x)dxdy + wη(0)

∫
R

ρεdx

=2wη(0) ‖ρε(t, ·)‖L1(R) .

Therefore, Eq (3.10), Eq (3.11), and Eq (3.12) follow from Eq (3.2). �
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Lemma 3.3 (BV estimate in x). Let ρε be a solution of Eq (3.1). We have that

‖∂xρε(t, ·)‖L1((−∞,−2δ)∪(2δ,∞)) ≤ Cδ,

for every t ≥ 0 and ε, δ > 0 where Cδ is a constant depending on δ but not on ε.

Proof. Let us consider the function

χ(x) =

1, x ∈ (−∞,−2δ) ∪ (2δ,+∞),
0, x ∈ (−δ, δ),

such that

χ ∈ C∞(R), 0 ≤ χ(x) ≤ 1,
χ′(x) ≥ 0 for x ∈ [0,+∞), χ′(x) ≤ 0 for x ∈ (−∞, 0].

It is not restrictive to assume ε < δ. In such a way we have that the supports of χ and vε′ are disjoint.
Finally, we observe that

χ′

χ
,
χ′′

χ
∈ L∞(R).

Differentiating the equation in (3.9) w.r.t. the space variable

∂2
txρε + ∂x

(
(1 − wη ∗ ρε)vε(x)∂xρε

)
+ ∂x

(
ρε(1 − wη ∗ ρε)vε′(x)

)
+ ∂x

(
ρε(w′η ∗ ρε)vε(x)

)
+ wη(0)∂x

(
ρ2
εvε(x)

)
= ε∂3

xxxρε.

Using [5, Lemma 2] and Lemmas 3.1, and 3.2

d
dt

∫
R

|χ(x)∂xρε| dx =

∫
R

χ(x)∂2
txρε sgn ∂xρεdx

=ε

∫
R

χ(x)∂3
xxxρε sgn ∂xρεdx

−

∫
R

χ(x)∂x
(
(1 − wη ∗ ρε)vε(x)∂xρε

)
sgn ∂xρεdx

−

∫
R

χ(x)∂x
(
ρε|1 − wη ∗ ρε|vε

′(x)
)

sgn ∂xρεdx︸                                                     ︷︷                                                     ︸
=0

−

∫
R

χ(x)∂x
(
ρε(w′η ∗ ρε)vε(x)

)
sgn ∂xρεdx

− wη(0)
∫
R

χ(x)∂x
(
ρ2
εvε(x)

)
sgn ∂xρεdx

=−ε

∫
R

χ(x)(∂2
xxρε)

2δ{∂xρε=0}︸                            ︷︷                            ︸
≤0

−ε

∫
R

χ′(x) ∂2
xxρε sgn ∂xρε︸           ︷︷           ︸

=∂x |∂xρε |

dx

+

∫
R

χ(x)(1 − wη ∗ ρε)vε(x)∂xρε∂
2
xxρεδ{∂xρε=0}dx︸                                                      ︷︷                                                      ︸

=0
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+

∫
R

χ′(x)(1 − wη ∗ ρε)vε(x)|∂xρε|dx

−

∫
R

χ(x)(w′η ∗ ρε)vε(x)|∂xρε|dx

−

∫
R

χ(x)(ρε(w′η ∗ ρε)vε
′(x) sgn ∂xρεdx︸                                            ︷︷                                            ︸

=0

+

∫
R

χ(x)ρε(w′′η ∗ ρε)vε(x) sgn ∂xρεdx + w′η(0)
∫
R

χ(x)ρ2
εvε(x) sgn ∂xρεdx

− 2wη(0)
∫
R

χ(x)ρεvε(x)|∂xρε|dx − wη(0)
∫
R

χ(x)ρ2
εvε
′(x) sgn ∂xρεdx︸                             ︷︷                             ︸
=0

≤ c
∫
R

χ(x)|∂xρε|dx + c
∫
R

ρεdx ≤ c
∫
R

χ(x)|∂xρε|dx + c ‖ρ0‖L1(R) ,

where δ{∂xρε=0} is the Dirac delta concentrated on the set {∂xρε = 0} and c is a constant that depends on
δ and does not depend on ε. Thanks to the Gronwall Lemma we get

‖χ∂xρε(t, ·)‖L1(R) ≤ ect
∥∥∥χ∂xρ0,ε

∥∥∥
L1(R)

+ c(ect − 1),

and using (3.2) we get the claim. �

Lemma 3.4 (Compactness). There exists a function ρ : [0,∞) × R → R and a subsequence {εk}k ⊂

(0,∞), εk → 0, such that

0 ≤ ρ ≤ 1, ρ ∈ BV((0,∞) × ((−∞,−δ) ∪ (δ,∞))), δ > 0,
ρεk → ρ a.e. and in Lp

loc((0,∞) × R), 1 ≤ p < ∞.

Proof. Thanks to Lemma 3.3 the sequence {ρεχIδ}ε,δ>0 of approximate solutions to Eq (2.1) constructed
by vanishing viscosity has uniformly bounded variation on each interval of the type Iδ = (−∞,−δ) ∪
(δ,+∞), δ > 0. Moreover, thanks to Lemma 3.1 the L∞−norm of the sequence {ρεχIδ}ε,δ>0 is bounded
by 1. Thus, applying Helly’s Theorem and by a diagonal procedure, we can extract a subsequence
{ρεkχIδk

}k∈N that converges to a function ρ : [0,∞) × R → R that satisfies the following conditions:
ρ ∈ BV((0,∞) × ((−∞,−δ) ∪ (δ,∞))) and 0 ≤ ρ ≤ 1,

ρεkχIδk
→ ρ a.e. and in Lp

loc((0,∞) × R), 1 ≤ p < ∞.

Thus, we obtain the compactness of the sequence {ρεk}k∈N a.e. in (0,∞) × R and for this reason we get
the claim. It is worth remarking that being δ as small as we want we get the convergence on the whole
space R. �

4. Uniqueness and Stability

We are now ready to complete the proof of Theorem 2.1.
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Proof of Theorem 2.1. The existence of entropy solutions follows using the same arguments of [3]
and Lemma 3.4. In particular, the nature of entropy solution of our limit function is related to the
equivalence between [3, Definition 3] and [3, Definition 4] based on the germs theory, being our
solution obtained through the vanishing viscosity technique. Moreover, one can observe that the
points 1 and 2 of Definition 2.2 are directly satisfied multiplying equation (3.9) times the sgn(ρ − k),
integrating with respect to time and space, and passing to the limit as ε → 0. The sketch of this proof
is the following: we start from an L1 contraction property proved using the doubling of variables
technique. After that we choose appropriate test functions in order to deal with the discontinuity in 0.
We apply some limit procedures on the test functions and the classical Rankine-Hugoniot condition.
At the end the Gronwall’s inequality gives us the statement.

Let us prove the inequality Eq (2.11). In Lemma 4.1 we prove the following inequality through the
doubling of variables technique. For any two entropy solutions u and v we derive the L1 contraction
property: "

R+×R

(
|u − v| φt + sgn(u − v)( f (t, x, u) − f (t, x, v))φx

)
dxdt

≤ K
"
R+×R

|u − v| φdxdt, (4.1)

for any 0 ≤ φ ∈ C∞c (R+ × R \ {0}) . We remove the assumption in Eq (4.1) that φ vanishes near 0, by
introducing the following Lipschitz function for h > 0

µh(x) =


1
h (x + 2h), x ∈ [−2h,−h],
1, x ∈ [−h, h],
1
h (2h − x), x ∈ [h, 2h],
0, |x| ≥ 2h.

Now we can define Ψh(x) = 1 − µh(x), noticing that Ψh → 1 in L1 as h→ 0. Moreover, Ψh vanishes in
a neighborhood of 0. For any 0 ≤ Φ ∈ C∞c (R+ × R), we can check that φ = ΦΨh is an admissible test
function for Eq (4.1). Using φ in Eq (4.1) and integrating by parts we get"

R+×R

(
|u − v|ΦtΨh + sgn(u − v)( f (t, x, u) − f (t, x, v))ΦxΨh

)
dxdt

−

"
R+×R

sgn(u − v)( f (t, x, u) − f (t, x, v))Φ(t, x)Ψ′h(x)dxdt︸                                                                     ︷︷                                                                     ︸
J(h)

≤ K
"
R+×R

|u − v|ΦΨhdxdt.

Sending h→ 0 we end up with"
R+×R

(
|u − v|Φt + sgn(u − v)( f (t, x, u) − f (t, x, v))Φx

)
dxdt

≤ K
"
R+×R

|u − v|Φdxdt + lim
h→0

J(h).
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We can write

lim
h→0

J(h) = lim
h→0

1
h

∫ +∞

0

∫ 2h

h
sgn(u − v)( f (t, x, u) − f (t, x, v))Φ(t, x)dxdt

− lim
h→0

1
h

∫ +∞

0

∫ −h

−2h
sgn(u − v)( f (t, x, u) − f (t, x, v))Φ(t, x)dxdt

=

∫ +∞

0
[sgn(u − v)( f (t, x, u) − f (t, x, v))]x=0+

x=0−Φ(t, 0)dt,

where we indicate the limits from the right and left at x = 0. The aim is to prove that the limit
lim
h→0

J(h) ≤ 0, then it is sufficient to prove

S := [sgn(u − v)( f (t, x, u) − f (t, x, v))]x=0+

x=0− ≤ 0.

In particular, denoting the right and left traces of u and v with u± and v±, we can write

S =vr sgn(u+ − v+)
(
u+

(
1 −

∫ η

0
u(t, y)wη(y)dy

)
− v+

(
1 −

∫ η

0
v(t, y)wη(y)dy

))
− vl sgn(u− − v−)

(
u−

(
1 −

∫ η

0
u(t, y)wη(y)dy

)
− v−

(
1 −

∫ η

0
v(t, y)wη(y)dy

))
=vr sgn(u+ − v+)(v+ − u+)

∫ η

0
u(t, y)wη(y)dy

− vr sgn(u+ − v+)v+

∫ η

0
(u(t, y) − v(t, y))wη(y)dy

+ vr |u+ − v+|

− vl sgn(u− − v−)(v− − u−)
∫ η

0
u(t, y)wη(y)dy

+ vl sgn(u− − v−)v−

∫ η

0
(u(t, y) − v(t, y))wη(y)dy

− vl |u− − v−|

= (vr |u+ − v+| − vl |u− − v−|)︸                           ︷︷                           ︸
=0

(
1 −

∫ η

0
u(y, t)wη(y)dy

)
+ (vrv+ − vlv−)︸         ︷︷         ︸

=0

sgn(u− − v−)
∫ η

0
(v(t, y) − u(t, y))wη(y)dy.

A simple application of the Rankine-Hugoniot condition yields S = 0, being u+ = vl
vr

u− and v+ = vl
vr

v−.
In this way we know that (4.1) holds for any 0 ≤ φ ∈ C∞c (R+ × R). For r > 1, let γr : R → R be a C∞

function which takes values in [0, 1] and satisfies

γr(x) =

1, |x| ≤ r,

0, |x| ≥ r + 1.
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Fix s0 and s such that 0 < s0 < s. For any τ > 0 and k > 0 with 0 < s0 +τ < s+k, let βτ,k : [0,+∞]→ R
be a Lipschitz function that is linear on [s0, s0 + τ[∪[s, s + k] and satisfies

βτ,k(t) =

0, t ∈ [0, s0] ∪ [s + k,+∞],
1, t ∈ [s0 + τ, s].

We can take the admissible test function via a standard regularization argument φ = γr(x)βτ,k(t). Using
this test function in Eq (4.1) we obtain

1
k

∫ s+k

s

∫
R

|u(t, x) − v(t, x)| γr(x)dxdt −
1
τ

∫ s0+k

s0

∫
R

|u(t, x) − v(t, x)| γr(x)dxdt

≤ K
∫ s0+k

s0

∫
R

|u − v| γr(x)dxdt

+
∥∥∥γ′r∥∥∥∞ ∫ s+k

s0

∫
r≤|x|≤r+1

sgn(u − v)( f (t, x, u) − f (t, x, v))dxdt.

Sending s0 → 0, we get

1
k

∫ s+k

s

∫ r

−r
|u(t, x) − v(t, x)| γr(x)dx dt

≤

∫ r

−r
|u0(x) − v0(x)| dx +

1
τ

∫ τ

0

∫ r

−r
|v(t, x) − v0(x)| dxdt

+
1
τ

∫ τ

0

∫ r

−r
|u(t, x) − u0(x)| dx dt + K

∫ t+τ

0

∫
R

|u − v| γr(x)dx dt + o
(
1
r

)
.

Observe that the second and the third terms on the right-hand side of the inequality tends to zero as
τ → 0 following the same argument in [20, Lemma B.1], because our initial condition is satisfied in
the “weak” sense of the definition of our entropy condition. Sending τ→ 0 and r → ∞, we have

1
k

∫ s+k

s

∫
R

|u(t, x) − v(t, x)| dx dt ≤
∫
R

|u0(x) − v0(x)| dx

+ K
∫ s+k

0

∫
R

|u(t, x) − v(t, x)| dx dt.

Sending k → 0 and an application of Gronwall’s inequality gives us the statement. �

Lemma 4.1 (A Kružkov-type integral inequality). For any two entropy solutions u = u(t, x) and
v = v(t, x) the integral inequality of Eq (4.1) holds for any 0 ≤ φ ∈ C∞c (R+ × R \ {0}).

Proof. The proof follows [20]. Let 0 ≤ φ ∈ C∞c
(
(R+ × R \ {0})2

)
, φ = φ(t, x, s, y), u = u(t, x) and

v = v(s, y). From the definition of entropy solution for u = u(t, x) with κ = v(s, y) we get

−

"
R+×R

(
|u − v| φt + sgn(u − v) ( f (t, x, u) − f (t, x, v)) φx

)
dt dx

+

"
R+×R\{0}

sgn(u − v) f (t, x, v)xφ dt dx ≤ 0.
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Integrating over (s, y) ∈ R+ × R, we find

−

&
(R+×R)2

(
|u − v| φt + sgn(u − v) ( f (t, x, u) − f (t, x, v)) φx

)
dt dx ds dy

+

&
(R+×R\{0})2

sgn(u − v) f (t, x, v)xφ dt dx ds dy ≤ 0.
(4.2)

Similarly, for the entropy solution v = v(s, y) with α(y) = u(t, x)

−

&
(R+×R)2

(
|v − u| φs + sgn(v − u) ( f (s, y, v) − f (s, y, u)) φx

)
dt dx ds dy

+

&
(R+×R\{0})2

sgn(u − v) f (t, x, v)xφ dt dx ds dy ≤ 0.
(4.3)

Note that we can write, for each (t, x) ∈ R+ × R \ {0},

sgn(u − v)( f (t, x, u) − f (t, x, v))φx − sgn(u − v) f (t, x, v)xφ

= sgn(u − v)( f (t, x, u) − f (s, y, v))φx − sgn(u − v)
[
( f (t, x, v) − f (s, y, v))φ

]
x ,

so that

−

&
(R+×R)2

sgn(u − v)( f (t, x, u) − f (t, x, v))φx dt dx ds dy

+

&
(R+×R\{0})2

sgn(u − v) f (t, x, v)xφ dt dx ds dy

= −

&
(R+×R)2

sgn(u − v)( f (t, x, u) − f (s, y, v))φx dt dx ds dy

+

$
(R+×R\{0})2

sgn(u − v)
[
( f (t, x, v) − f (s, y, v))φ

]
x dt dx ds dy.

Similarly, writing, for each (y, s) ∈ R+ × R \ {0}

sgn(v − u)( f (s, y, v) − f (s, y, u))φy − sgn(v − u) f (s, y, u)yφ

= sgn(u − v)( f (s, y, v) − f (s, y, u))φy − sgn(u − v)
[
( f (t, x, u) − f (s, y, u))φ

]
x ,

so that

−

&
(R+×R)2

sgn(u − v)( f (s, y, v) − f (s, y, u))φy dt dx ds dy

+

&
(R+×R\{0})2

sgn(u − v) f (s, y, u)yφ dt dx ds dy

= −

&
(R+×R)2

sgn(u − v)( f (t, x, v) − f (s, y, u))φx dt dx ds dy

+

$
(R+×R\{0})2

sgn(u − v)
[
( f (t, x, u) − f (s, y, u))φ

]
y dt dx ds dy.
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Let us introduce the notations

∂t+s = ∂t + ∂s, ∂x+y = ∂x + ∂y,

∂2
x+y = (∂x + ∂y)2 = ∂2

x + 2∂x∂y + ∂2
y .

Adding Eq (4.2) and Eq (4.3) we obtain

−

&
(R+×R)2

(
|u − v| ∂t+sφ + sgn(u − v) ( f (t, x, u) − f (s, y, v)) ∂x+yφ

)
dt dx ds dy

+

&
R+×R\{0}

sgn(u − v)
(
∂x

[
( f (t, x, v) − f (s, y, v))φ

]
+∂y

[
( f (t, x, u) − f (s, y, u))φ

])
dt dx ds dy ≤ 0.

(4.4)

We introduce a non-negative function δ ∈ C∞c (R), satisfying δ(σ) = δ(−σ), δ(σ) = 0 for |σ| ≥ 1, and∫
R
δ(σ)dσ = 1. For u > 0 and z ∈ R, let δp(z) = 1

pδ(
z
p ). We take our test function φ = φ(t, x, s, y) to be

of the form
Φ(t, x, s, y) = φ

( t + s
2

,
x + y

2

)
δp

( x − y
2

)
δp

( t − s
2

)
,

where 0 ≤ φ ∈ C∞c (R+ × R \ {0}) satisfies

φ(t, x) = 0, ∀(t, x) ∈ [0,T ] × [−h, h],

for small h > 0. By making sure that
p < h,

one can check that Φ belongs to C∞c
(
(R+ × R \ {0})2

)
. We have

∂t+sΦ(t, x, s, y) = ∂t+sφ
( t + s

2
,

x + y
2

)
δp

( x − y
2

)
δp

( t − s
2

)
,

∂x+yΦ(t, x, s, y) = ∂x+yφ
( t + s

2
,

x + y
2

)
δp

( x − y
2

)
δp

( t − s
2

)
,

Using Φ as test function in Eq (4.4)

−

&
(R+×R)2

(I1(t, x, s, y) + I2(t, x, s, y)) δp

( x − y
2

)
δp

( t − s
2

)
dt dx ds dy

≤

&
(R+×R\{0})2

(I3(t, x, s, y) + I4(t, x, s, y) + I5(t, x, s, y)) dt dx ds dy,

where

I1 = |u(t, x) − v(s, y)| ∂t+sφ
( t + s

2
,

x + y
2

)
,

I2 = sgn (u(t, x) − v(s, y))( f (t, x, u) − f (s, y, v))∂x+yφ
( t + s

2
,

x + y
2

)
,

I3 = − sgn (u(t, x) − v(s, y))
(
∂x f (t, x, v) − ∂y f (s, y, u)

)
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φ
( t + s

2
,

x + y
2

,
)
δp

( x − y
2

)
δp

( t − s
2

)
,

I4 = − sgn (u(t, x) − v(s, y))δp

( x − y
2

)
δp

( t − s
2

)
[
∂xφ

( t + s
2

,
x + y

2
,
)

( f (t, x, v) − f (s, y, v))

∂yφ
( t + s

2
,

x + y
2

)
( f (t, x, u) − f (s, y, u))

]
,

I5 = (F(x, u(t, x), v(s, y)) − F(y, u(t, x), v(s, y)))

φ
( t + s

2
,

x + y
2

)
∂xδp

( x − y
2

)
δp

( t − s
2

)
,

where F(x, u, c) := sgn (u − c) ( f (t, x, u) − f (t, x, c)) .
We now use the change of variables

x̃ =
x + y

2
, t̃ =

t + s
2

, z =
x − y

2
, τ =

t − s
2

,

which maps (R+ × R)2 in Ω ⊂ R4 and (R+ × R \ {0})2 in Ω0 ⊂ R
4, where

Ω = {(x̃, t̃, z, τ) ∈ R4 : 0 < t̃ ± τ < T },

Ω0 = {(x̃, t̃, z, τ) ∈ Ω : x̃ ± z , 0},

resepectively. With this changes of variables,

∂t+sφ
( t + s

2
,

x + y
2

)
= ∂t̃φ(t̃, x̃),

∂x+yφ
( t + s

2
,

x + y
2

)
= ∂x̃φ(t̃, x̃).

Now we can write

−

&
Ω

(
I1(t̃, x̃, τ, z) + I2(t̃, x̃, τ, z)

)
δp (z) δp (τ) dt̃ dx̃ dτ dz

≤

&
Ω0

(
I3(t̃, x̃, τ, z) + I4(t̃, x̃, τ, z) + I5(t̃, x̃, τ, z)

)
dt̃ dx̃ dτ dz,

where

I1(t̃, x̃, τ, z) =
∣∣∣u(t̃ + τ, x̃ + z) − v(t̃ − τ, x̃ − z)

∣∣∣ ∂t̃φ
(
t̃, x̃

)
,

I2(t̃, x̃, τ, z) = sgn (u(t̃ + τ, x̃ + z) − v(t̃ − τ, x̃ − z))
( f (t̃ + τ, x̃ + z, u) − f (t̃ − τ, x̃ − z, v))∂x̃φ

(
t̃, x̃

)
,

I3(t̃, x̃, τ, z) = − sgn (u(t̃ + τ, x̃ + z) − v(t̃ − τ, x̃ − z))(
∂x̃+z f (t̃ + τ, x̃ + z, v) − ∂x̃−z f (t̃ − τ, x̃ − z, u)

)
φ
(
t̃, x̃

)
δp (z) δp (τ) ,

I4(t̃, x̃, τ, z) = − sgn (u(t̃ + τ, x̃ + z) − v(t̃ − τ, x̃ − z))
∂x̃φ

(
t̃, x̃

)
δp (z) δp (τ)

[
( f (t̃ + τ, x̃ + z, v) − f (t̃ − τ, x̃ − z, v))

+( f (t̃ + τ, x̃ + z, u) − f (t̃ − τ, x̃ − z, u))
]
,
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I5(t̃, x̃, τ, z) =
(
F(x̃ + z, u(t̃ + τ, x̃ + z), v(t̃ − τ, x̃ − z))
−F(x̃ − z, u(t̃ + τ, x̃ + z), v(t̃ − τ, x̃ − z))

)
φ
(
t̃, x̃

)
∂zδp (z) δp (τ) .

Employing Lebesgue’s differentiation theorem, to obtain the following limits

lim
p→0

&
Ω

I1(t̃, x̃, τ, z)δp(z)δp(τ) dt̃ dx̃ dτ dz

=

"
R+×R

|u(t, x) − v(t, x)| ∂tφ(t, x)dtdx,

lim
p→0

&
Ω

I2(t̃, x̃, τ, z)δp(z)δp(τ) dt̃ dx̃ dτ dz

=

"
R+×R

sgn (u(t, x) − v(t, x))( f (t, x, u) − f (t, x, v))∂xφ(t, x)dtdx.

Let us consider the term I3. Note that I3(t̃, x̃, τ, z) = 0, if x̃ ∈ [−h, h], since then φ(t̃, x̃) = 0 for any t̃, or
if |z| ≥ p. On the other hand, if x̃ < [−h, h], then x̃ ± z < 0 or x̃ ± z > 0, at least when |z| < p and p < h.
Defining U(t, x) = 1 − wη ∗ u and V(t, x) = 1 − wη ∗ v, and sending p→ 0 :

lim
p→0

&
Ω0

I3(t̃, x̃, τ, z) dt̃ dx̃ dτ dz

=

"
R+×R\{0}

sgn (u(t, x) − v(t, x))v(x) (v∂xV − u∂xU) φ (t, x) dt dx

≤ vr‖∂xV‖
"
R+×R\{0}

|u − v| φ(t, x) dt dx + vr

"
R+×R\{0}

|ρ| |∂xV − ∂xU | dt dx

≤ K1

"
R+×R\{0}

|u − v| φ(t, x) dt dx.

In fact,

|∂xV − ∂xU | ≤
∥∥∥ω′η∥∥∥ ‖u(t, ·) − v(t, ·)‖L1

+ wη(0) (|u − v| (t, x + η) + |u − v| (t, x)) .

The term I4 converges to zero as p→ 0. Finally, the term I5

lim
p→0

&
Ω0

I5(t̃, x̃, τ, z) dt̃ dx̃ dτ dz ≤ K2

"
R+×R\{0}

|u − v| φ(t, x) dt dx.

�

5. Conclusions and open problems

In this paper we proved the well-posedness of a Cauchy problem characterized by a nonlocal
conservation law with space-discontinuous flux using the vanishing viscosity technique. This kind of
equations can be applied to describe different real phenomena, such as: traffic flow, sedimentation,
conveyor belts and others. It is worth noticing that the discontinuity appears in a multiplicative way.
For this reason, one can think to consider more general nonlocal flux functions satisfying proper
‘crossing conditions’ in a future work and to study nonlocal-to-local limit in this space-discontinuous
setting.
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