Citation: Juraj Földes, Peter Poláčik. On asymptotically symmetric parabolic equations[J]. Networks and Heterogeneous Media, 2012, 7(4): 673-689. doi: 10.3934/nhm.2012.7.673
[1] | A. D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl. (4), 58 (1962), 303-315. |
[2] | A. V. Babin, Symmetrization properties of parabolic equations in symmetric domains, J. Dynam. Differential Equations, 6 (1994), 639-658. doi: 10.1007/BF02218852 |
[3] | _______, Symmetry of instabilities for scalar equations in symmetric domains, J. Differential Equations, 123 (1995), 122-152. doi: 10.1006/jdeq.1995.1159 |
[4] | A. V. Babin and G. R. Sell, Attractors of non-autonomous parabolic equations and their symmetry properties, J. Differential Equations, 160 (2000), 1-50. doi: 10.1006/jdeq.1999.3654 |
[5] | H. Berestycki, Qualitative properties of positive solutions of elliptic equations, Partial differential equations (Praha, 1998), Chapman & Hall/CRC Res. Notes Math., 406, Chapman & Hall/CRC, Boca Raton, FL, (2000), 34-44. |
[6] | H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37. doi: 10.1007/BF01244896 |
[7] | H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92. doi: 10.1002/cpa.3160470105 |
[8] | X. Cabré, On the Alexandroff-Bakel'man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations, Comm. Pure Appl. Math., 48 (1995), 539-570. doi: 10.1002/cpa.3160480504 |
[9] | F. Da Lio and B. Sirakov, Symmetry results for viscosity solutions of fully nonlinear uniformly elliptic equations, J. European Math. Soc., 9 (2007), 317-330. doi: 10.4171/JEMS/81 |
[10] | E. N. Dancer, Some notes on the method of moving planes, Bull. Austral. Math. Soc., 46 (1992), 425-434. doi: 10.1017/S0004972700012089 |
[11] | J. Földes, On symmetry properties of parabolic equations in bounded domains, J. Differential Equations, 250 (2011), 4236-4261. doi: 10.1016/j.jde.2011.03.018 |
[12] | _____, Symmetry of positive solutions of asymptotically symmetric parabolic problems on $\mathbbR^N$, J. Dynam. Differential Equations, 23 (2011), 45-69. doi: 10.1007/s10884-010-9193-y |
[13] | B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243. |
[14] | P. Hess and P. Poláčik, Symmetry and convergence properties for non-negative solutions of nonautonomous reaction-diffusion problems, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 573-587. doi: 10.1017/S030821050002878X |
[15] | J. Jiang and J Shi, Dynamics of a reaction-diffusion system of autocatalytic chemical reaction, Discrete Contin. Dynam. Systems, 21 (2008), 245-258. doi: 10.3934/dcds.2008.21.245 |
[16] | B. Kawohl, Symmetrization-or how to prove symmetry of solutions to a PDE, Partial differential equations (Praha, 1998), Chapman & Hall/CRC Res. Notes Math., 406, Chapman & Hall/CRC, Boca Raton, FL, (2000), 214-229. |
[17] | C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains, Comm. Partial Differential Equations, 16 (1991), 491-526. doi: 10.1080/03605309108820766 |
[18] | W.-M. Ni, Qualitative properties of solutions to elliptic problems, Stationary partial differential equations. Vol. I, Handb. Differ. Equ., North-Holland, Amsterdam, (2004), 157-233. doi: 10.1016/S1874-5733(04)80005-6 |
[19] | P. Poláčik, Estimates of solutions and asymptotic symmetry for parabolic equations on bounded domains, Arch. Ration. Mech. Anal., 183 (2007), 59-91. Addendum: www.math.umn.edu/ polacik/Publications. doi: 10.1007/s00205-006-0004-x |
[20] | _______, Symmetry properties of positive solutions of parabolic equations: A survey, Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions, World Sci. Publ., Hackensack, NJ, (2009), 170-208. doi: 10.1142/9789812834744_0009 |
[21] | ________, Symmetry of nonnegative solutions of elliptic equations via a result of Serrin, Comm. Partial Differential Equations, 36 (2011), 657-669. doi: 10.1080/03605302.2010.513026 |
[22] | ________, On symmetry of nonnegative solutions of elliptic equations, Ann. Inst. H. Poincaré Anal. Non Lineaire 29 (2012), 1-19. |
[23] | J. Evol. Equ. (to appear). doi: 10.1007/s00028-012-0150-6 |
[24] | J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318. |