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Abstract. We consider global bounded solutions of fully nonlinear parabolic

equations on bounded reflectionally symmetric domains, under nonhomoge-
neous Dirichlet boundary condition. We assume that, as t → ∞, the equation

is asymptotically symmetric, the boundary condition is asymptotically homo-

geneous, and the solution is asymptotically strictly positive in the sense that
all its limit profiles are strictly positive. Our main theorem states that all

the limit profiles are reflectionally symmetric and decreasing on one side of

the symmetry hyperplane in the direction perpendicular to the hyperplane.
We also illustrate by example that, unlike for equations which are symmetric

at all finite times, the result does not hold under a relaxed positivity condi-

tion requiring merely that at least one limit profile of the solution be strictly
positive.

1. Introduction. In this paper, we continue our study of symmetry properties of
positive solutions of nonlinear parabolic equations. In the previous papers [19, 11],
we considered the problem

∂tu = F (t, x, u,Du,D2u), (x, t) ∈ Ω× (0,∞),

u = 0, (x, t) ∈ ∂Ω× (0,∞),
(1.1)

where Ω is a bounded domain in RN , which is reflectionally symmetric about a
hyperplane and convex in the direction orthogonal to that hyperplane, and F is
a Lipschitz function satisfying uniform ellipticity conditions. Under suitable sym-
metry hypotheses on the nonlinearity F , we established the asymptotic reflectional
symmetry of bounded positive solutions. These results are in the spirit of earlier
symmetry results for elliptic equations as proved in [13, 17, 10, 6, 9, 21] and many
other papers (surveys can be found in [5, 16, 18]).

When dealing with the Cauchy-Dirichlet problem for parabolic equations, solu-
tions cannot be spatially symmetric, unless they emanate from a symmetric initial
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condition. Thus the asymptotic symmetry, that is, the symmetry of all limit profiles
of a solution as time approaches∞, is a natural concept for the study of symmetry.
First asymptotic symmetry results for parabolic equations were given in [2, 3, 14],
more general results can be found in the later papers [4, 19, 11] (see also the survey
[20] and the recent paper [23]).

While there are many similarities between the results in parabolic and elliptic
equations, in particular the method of moving hyperplanes [1, 24] usually plays an
important role in both, there are significant differences as well. For example, a
solution of (1.1), even though positive, may converge to zero along a sequence of
times and to some positive functions along different sequences. This causes major
technical difficulties when one wants to establish the asymptotic symmetry of such
solutions and new techniques had to be developed for this purpose [19].

When considering the asymptotic symmetry of solutions, several natural ques-
tions come to mind. For example, can the asymptotic symmetry be proved if the
equation itself is not symmetric, but is merely asymptotically symmetric as t→∞?
Then one can start thinking about relaxing other conditions: assuming the solutions
in question to be asymptotically positive, rather than positive, or replacing the ho-
mogeneous Dirichlet boundary condition with an asymptotically homogeneous one.
Our goal in this paper is to examine to what extend the asymptotic symmetry
results remain valid for such asymptotically symmetric problems. To discuss our
present contributions in a simpler setting, consider first the following semilinear
problem

∂tu = ∆u+ f(t, u) + g1(x, t), (x, t) ∈ Ω× (0,∞),

u = g2(x, t), (x, t) ∈ ∂Ω× (0,∞).
(1.2)

Here Ω ⊂ RN is a bounded domain and f : [0,∞) × R → R, g1 : Ω̄ × [0,∞) → R,
g2 : ∂Ω × [0,∞) → R are continuous functions such that the following conditions
are satisfied.

(D) Ω is convex in x1 and symmetric with respect to the hyperplane

H0 := {x = (x1, . . . , xN ) ∈ RN : x1 = 0}.
(f) f if Lipschitz in u: there is β > 0 such that

sup
t≥0
|f(t, u)− f(t, ũ)| ≤ β|u− ũ| (t ≥ 0, u, ũ ∈ R). (1.3)

(g) For i = 1, 2 one has
lim
t→∞

sup
x
|gi(x, t)| = 0, (1.4)

where the supremum is taken over x ∈ Ω if i = 1 and over x ∈ ∂Ω if i = 2.

Let us make a few comments on these hypotheses. Without g1, the first equation
in (1.2) is symmetric: it is invariant under reflections. With g1 added, the equation
is no longer symmetric, but the nonsymmetric perturbation diminishes as t → ∞
and in this sense the equation is asymptotically symmetric. This setting is general
enough to apply to a larger class of nonsymmetric perturbations. For example,
instead of g1 one could add to f another nonlinearity g = g(t, x, u) converging to
0 as t → ∞ uniformly in x and u. Since we only consider properties of individual
solutions, we can always write this more general equation in the form (1.2) by setting
g1(x, t) = g(t, x, u(x, t)), where u is a solution under investigation. A similar remark
applies to the asymptotically homogeneous Dirichlet boundary condition.

As indicated above, problems like (1.2) come about naturally when one thinks
about the robustness of the symmetry results for (1.1). Asymptotically symmetric
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equations can also arise in studies of parabolic systems. Assume, for example, that
a parabolic system for the unknown vector function (u, v) is considered in which the
first equation has the form ut = ∆u+ f(t, u) + g(t, u, v). This equation can also be
put in the form (1.2) by setting g1(x, t) = g(t, u(x, t), v(x, t)), where (u(x, t), v(x, t))
is a solution to be examined. In this situation, the decay of g1 as t → ∞ might
come from explicit decay assumptions on the function g or it can be forced by the
behavior of v. The latter occurs when g has the form g(t, u, v) = vg̃(t, u, v) and one
can establish the decay of v (a specific example of a reaction-diffusion system that is
reduced this way to an asymptotically symmetric autonomous scalar equation can
be found in [15]).

By the asymptotic symmetry of a global solution u of (1.2) we mean the property

lim
t→∞

(u(−x1, x
′, t)− u(x1, x

′, t)) = 0 (x = (x1, x
′) ∈ Ω). (1.5)

Alongside (1.5), we consider the asymptotic monotonicity of u:

lim sup
t→∞

ux1
(x1, x

′, t) ≤ 0 (x ∈ Ω0 := {x ∈ Ω : x1 > 0}). (1.6)

If {u(·, t) : t ≥ 0} is relatively compact in C(Ω̄), these properties can be expressed
in terms of the limit profiles of u, that is, the elements of its ω-limit set,

ω(u) := {φ : φ = limu(·, tn) for some tn →∞},

where the convergence is in C(Ω̄) (with the supremum norm). The asymptotic
symmetry and monotonicity of u mean that each φ ∈ ω(u) is symmetric (even) in
x1 and monotone nonincreasing in x1 on Ω0.

In a theorem of [19], the asymptotic symmetry and monotonicity is established
for bounded positive solutions of problem (1.2) with gi ≡ 0, i = 1, 2. Two extra
conditions on u, in addition to boundedness and positivity, are assumed in that
theorem. One is an equicontinuity condition, which gives compactness of the orbit
{u(·, t) : t ≥ 0}; it can be removed under minor regularity conditions on Ω, such as
the exterior cone condition. The other condition requires that at least one element
of ω(u) be strictly positive on Ω. It was also shown in [19] that without this strict
positivity condition, the result is not valid in general, even if u itself is strictly posi-
tive ([11] contains sufficient conditions, in terms of the domain and the nonlinearity
f , under which the strict positivity condition can be omitted).

Let us now consider a bounded positive solution of the asymptotically symmetric
problem (1.2), assuming the same conditions on u as in [19]. It might be surprising
at the first glance that, even with g2 ≡ 0 and g1(·, t) decaying to zero exponentially,
one cannot prove the symmetry result in the same form as for g1 ≡ 0. We show
in Example 2.3 below that the asymptotic monotonicity fails in general. We do
not know whether the asymptotic symmetry can be established without the asymp-
totic monotonicity. This might be an interesting problem to tackle (see [22] for a
discussion of related issues in the context of elliptic equations).

As Example 2.3 demonstrates, stronger assumptions are needed for the symme-
try result to hold for (1.2). In this paper, we prove that (1.5), (1.6) hold if the
strict positivity assumption is strengthened so as to require all elements of ω(u) to
be positive in Ω. We prove this statements in the setting of fully nonlinear equa-
tions, see Theorem 2.2 in the next section. The strict positivity condition can be
equivalently stated as

lim inf
t→∞

u(x, t) > 0 (x ∈ Ω). (1.7)
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This condition requires u to be asymptotically strictly positive; whether u(·, t) is
positive or not at finite times is irrelevant. In a remark following Example 2.3 in
Section 2, we mention an alternative condition, a sufficiently fast decay of the gi,
under which the symmetry theorem can also be proved.

With our strict positivity assumption, two different approaches to the symmetry
problem are possible. One is based on symmetry results for entire solutions (that
is, solutions defined for all t ∈ R) of symmetric equations. Similarly as in [4], the
idea is to view ω(u) as a set of entire solutions, positive by assumption, of a suitable
“limit equation.” Since the perturbation terms gi disappear at t = ∞, the limit
equation is symmetric. Thus known symmetry results for positive entire solutions
[2, 4] can be used to establish the symmetry of the elements of ω(u). This approach
requires stronger regularity assumptions on the solution u and the nonlinearity in
the equation. We use a different approach, similar to that in [19]. Since it is based
on direct Harnack-type estimates of the solution and does not depend on any limit
equation, no extra regularity assumptions are needed. Such an approach was also
used in [12], where asymptotically symmetric quasilinear equations on RN were
considered.

We have organized the exposition as follows. Our main symmetry result is stated
in the next section and proved in Section 4. Estimates of solutions of linear nonho-
mogeneous equations that facilitate the proof are collected in Section 3. Section 5
contains the computations needed for Example 2.3.

To conclude the introduction, we add another point to the discussion of the
robustness of the symmetry properties. In (1.2), the domain Ω is assumed to be
symmetric. One can make the problem more general by allowing Ω to vary in
time in such a way that it approaches, in a suitable sense, a symmetric domain, as
t → ∞. While we do not explicitly consider this generalization, our results cover
it to some extent. Indeed, if the variable domain is sufficiently smooth, then using
a time dependent change of coordinates one can transform it to a fixed symmetric
domain. This changes the equation in an asymptotically symmetric way, although
the transformed equation is no longer of the form (1.2). Nonetheless, our results
on fully nonlinear asymptotically symmetric equations, as given in the next section,
can be applied to the transformed problem.

2. Main results. Our main results concern parabolic problems of the form

∂tu = F (t, x, u,Du,D2u) +G1(x, t), (x, t) ∈ Ω× (0,∞),

u = G2(x, t), (x, t) ∈ ∂Ω× (0,∞).

}
(2.1)

Here, Ω is a bounded domain in RN satisfying condition (D) from the introduction.
The real valued function F is defined on [0,∞)× Ω̄×O, where O is an open convex

subset of R1+N+N2

, invariant under the transformation

Q : (u, p, q) 7→ (u,−p1, p2, · · · , pN , q̃),

q̃ij =

{
−qij if exactly one of i, j equals 1,

qij otherwise .

The assumptions on F are as follows.

(N1) Regularity. The function F is continuous, differentiable with respect to q, and
Lipschitz continuous in (u, p, q) uniformly with respect to (x, t) ∈ Ω̄ × R+.
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This means that there is β > 0 such that

sup
x∈Ω̄,t≥0

|F (t, x, u, p, q)− F (t, x, ũ, p̃, q̃)| ≤ β|(u, p, q)− (ũ, p̃, q̃)|

((u, p, q), (ũ, p̃, q̃) ∈ O). (2.2)

(N2) Ellipticity. There is a positive constant α0 such that for each ξ ∈ RN and
(t, x, u, p, q) ∈ [0,∞)× Ω̄×O one has

∂F

∂qij
(t, x, u, p, q)ξiξj ≥ α0|ξ|2.

Here and below we use the summation convention (summation over repeated
indices); for example, in the above formula the left hand side represents the
sum over i, j = 1, . . . , N .

(N3) Symmetry and monotonicity. For all (x1, x
′), (x̃1, x

′) ∈ Ω with x̃1 > x1 ≥ 0
and for all (t, u, p, q) ∈ [0,∞)×O one has

F (t,±x1, x
′, Q(u, p, q)) = F (t, x1, x

′, u, p, q) ≥ F (t, x̃1, x
′, u, p, q) .

The functions G1 and G2 are defined on Ω× [0,∞) and ∂Ω× [0,∞), respectively,
and are assumed to satisfy the following conditions.

(G) G1 ∈ LN+1(Ω× (0, T )) for each T ∈ (0,∞), G2 ∈ C(∂Ω× (0,∞)), and

lim
t→∞

max
{
‖G1‖LN+1(Ω×(t,t+1)), ‖G2(·, t)‖L∞(∂Ω)

}
= 0. (2.3)

Remark 2.1. Some remarks on our hypotheses are in order.

(i) Although we are not assuming any regularity of the perturbation term G1

(other than that contained in (G)), the reader may notice that when working
with classical solutions, as we do in this paper, G1 must be continuous for the
first equation in (2.1) to be satisfied. However, the continuity is never used
in our proofs. If one wishes to consider more specific semilinear or quasilinear
equations with a weaker notion of solutions (as long as the solutions are in

W 2,1
N+1(Ω×(0, T )) for each T ∈ (0,∞), as needed in our estimates of linearized

problems), then it might be reasonable to consider functions G1 which are not
necessarily continuous on Ω× (0,∞).

(ii) As discussed in the introduction in the context of semilinear equations, the
form of problem (2.1) is general enough to cover equations with nonlinear non-
symmetric perturbation terms when individual solutions are considered. For
example, if G1(x, t) in the first equation is replaced with G̃1(x, t, u,Du,D2u),

where G̃1(x, t, u, p, q) is a function defined on Ω̄ × [0,∞) × R1+N+N2

, then,
given a solution u of the modified equation, we set

G1(x, t) = G̃1(x, t, u,Du,D2u)

to bring the equation to the form (2.1). The results of our paper are then appli-

cable, provided G̃1 satisfies a suitable decay assumption so that the resulting
function G1 satisfies (G) for any global solution u one wishes to consider.

By a solution of (2.1) we mean a classical solution, that is, a function u ∈
C2,1(Ω× (0,∞)) ∩C(Ω̄× [0,∞)), such that (u,Du,D2u) takes values in O and all
relations in (2.1) are satisfied everywhere. We shall consider solutions such that

sup
t∈[0,∞)

‖u(·, t)‖L∞(Ω) <∞ (2.4)
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and the family of functions u(·, ·+ s), s ≥ 1, is equicontinuous on Ω̄× [0, 1], that is,

lim
h→0

sup
x,x̄∈Ω̄,t,t̄∈[0,1],
|t−t̄|,|x−x̄|<h

s≥1

|u(x, t+ s)− u(x̄, t̄+ s)| = 0 . (2.5)

We remark that using [19, Proposition 2.7], one can give sufficient conditions for
(2.5) to hold for any bounded solution of (2.1). This is true, for example, if G2 ≡ 0,
the function F (t, x, 0, 0, 0) +G1(t, x) is bounded, and ∂Ω satisfies the exterior cone
condition. The proof given in [19, Proposition 2.7] for G1 ≡ 0 applies here with just
a notational change.

For a solution u satisfying (2.4), (2.5), the set {u(·, t) : t ≥ 1} is relatively
compact in the space C(Ω̄). Consequently, the ω-limit set of u in C(Ω̄),

ω(u) := {φ : φ = limu(·, tn) for some tn →∞},
is nonempty and compact. Moreover,

dist(u(·, t), ω(u))→ 0 in C(Ω̄) as t→∞. (2.6)

We are ready to formulate our main symmetry result.

Theorem 2.2. Assume (D), (N1) – (N3), (G), and let u be a global solution of
(2.1) satisfying (2.4), (2.5), and (1.7). Then for each z ∈ ω(u)

z(−x1, x
′) = z(x1, x

′) ((x1, x
′) ∈ Ω)

and z is strictly decreasing in x1 in Ω0 = {x ∈ Ω : x1 > 0}. The latter holds in the
form zx1

< 0 provided zx1
∈ C(Ω0).

Note that without extra conditions, like boundedness of spatial derivatives of u,
we cannot in general assume that elements of ω(u) are differentiable.

By (2.6) and the compactness of ω(u) in C(Ω̄), condition (1.7) is equivalent to
the following condition:

for each z ∈ ω(u), one has z > 0 on Ω. (2.7)

One can give several sufficient conditions for (2.7). For example, assume that
the functions u(·, 0), G2, and F (·, ·, 0, 0, 0) +G1 are all nonnegative, and there exist
positive constant γ, t0 and a ball B ⊂ Ω such that

F (t, x, 0, 0, 0) +G1(x, t) ≥ γ (x ∈ B, t > t0). (2.8)

Let us indicate how (2.7) is derived from these conditions. First one uses the strong
comparison principle to show that u > 0 (note that u ≡ 0 is not a solution by (2.8)).
Next one shows that if x0 is the center of B, then u(x0, t) stays above a positive
constant as t → ∞. This is done by constructing a suitable subsolution: choose a
smooth function ϕ with a compact support contained in B such that ϕ(x0) = 1.
By (2.8) and (N1) there are positive constants ε0 and t0 such that

F (t, x, εϕ(x), εDϕ(x), εD2ϕ(x)) +G1(x, t) ≥ 0 ((x, t) ∈ B × [t0,∞)),

whenever ε ∈ (0, ε0). If ε ∈ (0, ε0) is chosen such that εϕ < u(·, t0) in B, then a
comparison argument gives εϕ < u(·, t) in B for all t ≥ t0. In particular u(x0, t) ≥ ε
for all t ≥ t0, hence z(x0) > 0 for each z ∈ ω(u). The proof of (2.7) is now completed
by a Harnack-type estimate for which we refer to [19, Proof of Theorem 2.5].

The following example shows that in general one cannot relax the strict positivity
condition to merely require that at least one z ∈ ω(u) be positive in Ω, even if
the nonsymmetric perturbation terms decay exponentially. This contrasts with the
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result of [19] which says that if G1 ≡ 0, G2 ≡ 0, then the relaxed positivity condition
is sufficient for the asymptotic symmetry and monotonicity result.

Example 2.3. Let I = (−2π, 2π), Ω = I × I, and fix β > 1. There is a continuous
function f : I × (0,∞)×R→ R, piecewise linear in the last variable with Lipschitz
constant β + 2, and a continuous function R : Ω̄× [0,∞)→ R satisfying

‖R(·, t)‖L∞(Ω) ≤ Ce−
β
25 t (t ≥ 0)

for some C = C(β) > 0 such that the problem

ut = ∆u+ f(t, y, u) +R(x, y, t), (x, y, t) ∈ Ω× (0,∞),

u = 0, (x, y, t) ∈ ∂Ω× (0,∞),

u > 0, (x, y, t) ∈ Ω× (0,∞),

has a global, bounded solution u with the following properties. There exist z, w ∈
ω(u) such that z > 0 in Ω, w > 0 in (0, 2π)× I, and w(0, y) = 0 for every y ∈ I. In
particular, since w satisfies the Dirichlet boundary condition, it is not monotone in
x on (0, 2π)× I.

See Section 5 for the detailed construction. Similar examples can be given with
G1 ≡ 0, and with ‖G2(·, t)‖L∞(∂Ω) decaying exponentially.

In Example 2.3, we emphasize the relation between the exponential decay of the
function R and the Lipschitz constants of f . In fact, R cannot have an arbitrarily
fast exponential decay rate. In general, it can be proved, that if the nonsymmetric
perturbation functions G1, G2 decay to zero with sufficiently fast exponential rate,
relative to the Lipschitz constant of the nonlinearity F , then Theorem 2.2 holds if
the strict positivity assumption (1.7) is relaxed to the weaker assumption requiring
the existence of just one positive function in ω(u). This result was mentioned in
the survey [20], with reference to the present paper. However, since this statement
requires a substantially different and rather involved proof, we decided not to include
it in this paper.

Our final remark in this section concerns problem (2.1), where Ω is a ball centered
at the origin and F satisfies the radial symmetry assumptions as in [19]. The
assumptions essentially say that condition (N3) holds after an arbitrary rotation
of the coordinate system. Then, assuming also the other hypotheses of Theorem
2.2, one obtains that all elements of ω(u) are radially symmetric, that is, they
are functions of |x| only. Since this result is deduced in a standard way from the
reflectional symmetry in any direction, we omit the details.

3. Estimates for linear equations. In this section, we state several estimates of
solutions of linear parabolic equations to which we will refer when using the method
of moving hyperplanes.

For an open set D ⊂ RN and for t < T , we denote by ∂P (D×(t, T )) the parabolic
boundary of D × (t, T ): ∂P (D × (t, T )) := (D × {t}) ∪ (∂D × [t, T ]). For bounded
sets U , U1 in RN or RN+1, the notation U1 ⊂⊂ U means Ū1 ⊂ U , diamU stands
for the diameter of U , and |U | for its Lebesgue measure (if it is measurable). The
open ball in RN centered at x with radius r is denoted by B(x, r). Symbols f+ and
f− denote the positive and negative parts of a function f : f± := (|f | ± f)/2 ≥ 0.

We consider time dependent elliptic operators L of the form

L(x, t) = akm(x, t)
∂2

∂xk∂xm
+ bk(x, t)

∂

∂xk
+ c(x, t) . (3.1)
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Definition 3.1. Given an open set U ⊂ RN , an interval I, and positive numbers
α0, β, we say that an operator L of the form (3.1) belongs to E(α0, β, U, I) if its
coefficients akm, bk, c are measurable functions defined on U × I and they satisfy

|akm|, |bk|, |c| ≤ β (k,m = 1, . . . , N),

akm(x, t)ξkξm ≥ α0|ξ|2 ((x, t) ∈ U × I, ξ = (ξ1, . . . , ξN ) ∈ RN ).

Let us briefly recall how linear equations arise when the method of moving
hyperplanes is applied to (2.1). For more details and explicit expressions using
Hadamard’s formulas see [19]. For any λ ∈ R, we set

Hλ := {x ∈ RN : x1 = λ},
Ωλ := {x ∈ Ω : x1 > λ},
` := sup{x1 ∈ R : (x1, x

′) ∈ Ω for some x′ ∈ RN−1}.
(3.2)

Further, let Pλ stand for the reflection in the hyperplane Hλ and for x ∈ Ω̄ let
xλ := Pλx.

Assume that Ω satisfies hypothesis (D), the nonlinearity F satisfies (N1) – (N3)
and the functions Gi, i = 1, 2 satisfy (G). Condition (D) in particular implies that
Pλ(Ωλ) ⊂ Ω for each λ ∈ [0, `). Let u be a global solution of (2.1) satisfying (2.4),
(2.5), and (1.7). By (N3),

F (t, xλ, Q(u, p, q)) ≥ F (t, x, u, p, q)

for any (t, u, p, q) ∈ [0,∞)×O, λ > 0, and any (x1, x
′) ∈ Ωλ. If uλ(x, t) := u(xλ, t),

we obtain

∂tu
λ ≥ F (t, x, uλ, Duλ, D2uλ) +G1(xλ, t), (x, t) ∈ Ωλ × (0,∞) .

Hence, the function wλ : Ω̄λ× (0,∞)→ R, wλ : (x, t) 7→ uλ(x, t)−u(x, t), λ ∈ [0, `)
satisfies

∂tw
λ(x, t) ≥ F (x, t, u(xλ, t), Du(xλ, t), D2u(xλ, t))

− F (x, t, u(x, t), Du(x, t), D2u(x, t)) +G1(xλ, t)−G1(x, t)

= Lλ(x, t)wλ + fλ(x, t), (x, t) ∈ Ωλ × (0,∞),

(3.3)

where Lλ ∈ E(α0, β,Ωλ, (0,∞)) and fλ is a measurable function satisfying

lim
t→∞

‖(fλ)−‖LN+1(Ωλ×(t,t+1)) = 0. (3.4)

Also, wλ satisfies the following boundary conditions

wλ(x, t) ≥ gλ(x, t) :=

{
u(xλ, t)−G2(x, t), (x, t) ∈ (∂Ωλ \Hλ)× (0,∞),

0, (x, t) ∈ (∂Ωλ ∩Hλ)× (0,∞) .

(3.5)
Note that (1.7) and the compactness of {u(·, t) : t ≥ 1} in C(Ω̄) imply

lim
t→∞

‖u−(·, t)‖L∞(∂Ωλ) = 0. (3.6)

This and (G) give

lim
t→∞

‖(gλ)−(·, t)‖L∞(∂Ωλ) = 0 . (3.7)

In the rest of this section we consider a general class of linear problems including
(3.3), (3.5). The symmetry of Ω plays no role in this consideration, thus one can
assume that Ω is any fixed bounded domain in RN .
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We fix positive constants β, α0 and consider the problem

vt ≥ L(x, t)v + f(x, t) , (x, t) ∈ U × (τ, T ), (3.8)

v ≥ g(x, t) , (x, t) ∈ ∂U × (τ, T ), (3.9)

where 0 ≤ τ < T ≤ ∞, U ⊂ Ω is an open set, L ∈ E(α0, β, U, (τ, T )), and f, g are
bounded measurable functions.

We say that v is a solution of (3.8) (or that it satisfies (3.8)) if it is an element

of the space W 2,1
N+1,loc(U × (τ, T )) and (3.8) is satisfied almost everywhere. By a

solution of (3.8), (3.9), we mean a solution of (3.8) which is continuous on Ū×(τ, T )
and satisfies (3.9) everywhere.

We now give estimates of solutions (3.8), (3.9) to be used in the next section.
We start with a version of the maximum principle for small domains. The first
such maximum principles were proved for elliptic equations [6, 7] (see also [8]). The
following result is an extension to nonhomogeneous linear equations of Lemma 3.5
from [19] and it can be proved along similar lines. However, a more general result,
[11, Lemma 3.5], is now available and we refer the reader to that paper for the
proof.

Lemma 3.2. Given any k > 0, there exists δ = δ(α0, β,N, diam Ω, k) such that for
any open set U ⊂ Ω with |U | < δ and any 0 ≤ τ < T ≤ ∞ the following holds. If
v ∈ C(Ū × [τ, T )) is a solution of (3.8), (3.9), with L ∈ E(α0, β, U, (τ, T )), then

‖v−(·, t)‖L∞(U) ≤ 2 max{e−k(t−τ)‖v−(·, τ)‖L∞(U), ‖g−‖L∞(∂U×(τ,t))}
+ C‖f−‖LN+1(U×(τ,t)) (t ∈ (τ, T )),

(3.10)

where C depends only on N, β, α0, diam (Ω).

Corollary 3.3. There exists δ = δ(α0, β,N, diam Ω) such that for any open set
U ⊂ Ω with |U | < δ and any 0 ≤ τ0 < ∞ the following holds. If v ∈ C(Ū ×
[τ0,∞)) ∩ L∞(Ū × [τ0,∞)) satisfies (3.8), (3.9) with L ∈ E(α0, β, U, (τ0,∞)) and

lim
t→∞

‖g−(·, t)‖L∞(U) = lim
t→∞

‖f−‖LN+1(U×(t,t+1)) = 0, (3.11)

then
lim
t→∞

‖v−(·, t)‖L∞(U) = 0 .

Proof. Choose δ > 0 such that the conclusion of Lemma 3.2 holds for k = ln 4. If
t > τ0 + 1, applying estimate (3.10) with τ = t− 1, we obtain

‖v−(·, t)‖L∞(U) ≤ 2 max{1

4
‖v−(·, t− 1)‖L∞(U), ‖g−‖L∞(∂U×(t−1,t)}

+ C‖f−‖LN+1(U×(t−1,t)) (t ∈ (τ0 + 1,∞)) ,
(3.12)

where C is independent of t. Take a sequence tn →∞ such that

lim ‖v−(·, tn)‖L∞(U) = σ := lim sup
t→∞

‖v−(·, t)‖L∞(U).

Then (3.12) and (3.11) give σ ≤ σ/2, hence σ = 0.

If Q is an open bounded subset of RN+1, u : Q → R is a bounded, continuous
function, and p > 0, we set

[u]p,Q :=

(
1

|Q|

∫
Q

|u|p dx dt
) 1
p

.

The following lemma is proved in [19, Lemma 3.5].
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Lemma 3.4. Given d > 0, ε > 0, θ > 0 there are positive constants κ, κ1, p
determined only by N, diam Ω, α0, β, d, ε, and θ with the following properties. Let
D and U be domains in Ω with D ⊂⊂ U , dist (D̄, ∂U) ≥ d, |D| > ε, and let
L ∈ E(α0, β, U, (τ, τ + 4θ)), f ∈ LN+1(U × (τ, τ + 4θ)). If v ∈ C(Ū × [τ, τ + 4θ])
satisfies (3.8) with T = τ + 4θ, then

inf
D×(τ+3θ,τ+4θ)

v(x, t) ≥ κ[v+]p,D×(τ+θ,τ+2θ) − e4βθ sup
∂P (U×(τ,τ+4θ))

v−

− κ1‖f−‖LN+1(U×(τ,τ+4θ)) .
(3.13)

4. Proofs of the symmetry results. Throughout this section, we assume that
Ω ⊂ RN is a bounded domain satisfying (D), F satisfies (N1) – (N3), and G1, G2

satisfy (G). Also we assume that u is a solution of (2.1) satisfying (2.4), (2.5), and
(1.7).

We use the notation from Section 3 (see (3.2)). For any function g : Ω→ R, and
any λ ∈ [0, `) we denote

Vλg(x) := g(xλ)− g(x) (x ∈ Ωλ).

Further, for the solution u, we let

wλ(x, t) := Vλu(x, t) = u(xλ, t)− u(x, t) (x ∈ Ωλ, t > 0) .

As shown in Section 3, the function wλ solves a linear problem (3.3), (3.5), with
L ∈ E(α0, β,Ωλ, (0,∞)), and with measurable functions fλ, gλ satisfying (3.4),
(3.7), respectively. Hence the estimates from Section 3 are applicable to wλ. We
use this observation below, usually without notice.

We carry out the process of moving hyperplanes in the following way. Starting
from λ = `, we move λ to the left as long as the following property is satisfied

lim
t→∞

‖(wλ(·, t))−‖L∞(Ωλ) = 0. (4.1)

In Lemma 4.2 below we show that (4.1) holds for all λ < ` close to `. Defining

λ0 := inf{µ > 0 : lim
t→∞

‖(wλ(·, t))−‖L∞(Ωλ) = 0 for each λ ∈ [µ, `)}, (4.2)

our goal will be to prove that λ0 = 0.

Remark 4.1. Note that, by compactness of {u(·, t) : t ≥ 0} in C(Ω̄), (4.1) is
equivalent to Vλz ≥ 0 in Ωλ for each z ∈ ω(u). Thus, by continuity,

Vλz(x) ≥ 0 (x ∈ Ωλ, z ∈ ω(u), λ ∈ [λ0, `)). (4.3)

This implies that z ∈ ω(u) is nonincreasing in x1 in Ωλ0
. Indeed, if (x1, x

′), (x̃1, x
′)

are points in Ωλ0 with x1 > x̃1, then Vλz ≥ 0 with λ = (x1 + x̃1)/2 > λ0 gives
z(x1, x

′) ≥ z(x̃1, x
′).

Lemma 4.2. If δ = δ(α0, β,N, diam Ω) > 0 is as in Corollary 3.3, then (4.1) holds
whenever |Ωλ| < δ. Consequently, λ0 < `.

Proof. Corollary 3.3 applied to v = wλ implies (4.1), whenever |Ωλ| < δ. Since this
is true for all λ < ` sufficiently close to `, we have λ0 < `.

Lemma 4.3. For any λ > 0 with λ0 ≤ λ < ` and any z ∈ ω(u), we have Vλz > 0
in Ωλ.
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Proof. Fix arbitrary λ > 0 with λ0 ≤ λ < ` and z ∈ ω(u). Let Uλ be any connected
component of Ωλ. We have z > 0 in Ω by (2.7) and z = 0 on ∂Ω. Consequently,
Vλz 6≡ 0 in Uλ. By Remark 4.1, Vλz is a nonnegative continuous function, thus
there exist an open ball B0 ⊂⊂ Uλ and d0 > 0 such that

Vλz(x) > 4d0 (x ∈ B0) .

Choose an increasing sequence (tk)k∈N converging to ∞ such that u(·, tk) → z in
C(Ω̄). Then wλ(·, tk) → Vλz, and therefore wλ(·, tk) > 2d0 in B̄0 for all k > k0, if
k0 is large enough. By the equicontinuity property (2.5), there is ϑ > 0 independent
of k, such that

wλ(x, t) > d0 ((x, t) ∈ B̄0 × [tk − 4ϑ, tk], k > k0) .

Since λ0 ≤ λ, one has ‖(wλ)−(·, t)‖L∞(Uλ) → 0 as t → ∞. Fix an arbitrary
domain D ⊂⊂ Uλ with B0 ⊂⊂ D. An application of Lemma 3.4 with (v, τ, θ, f) =
(wλ, tk, ϑ, f

λ) yields

wλ(x, t) ≥ κ[(wλ)+]p,D×(tk−3ϑ,tk−2ϑ) − sup
Uλ×(tk−4ϑ,tk)

e4βϑ(wλ)−

− κ1‖(fλ)−‖LN+1(Uλ×(tk−4ϑ,tk)) ((x, t) ∈ D × [tk − ϑ, tk]),

where κ, κ1, and p do not depend on k. Since the last two terms converge to zero
as k → ∞ and the first term stays bounded from below by a positive constant
(independent of k), there are d1 > 0 and k1 ≥ k0 (depending on D) such that

wλ(x, t) ≥ d1 ((x, t) ∈ D̄ × [tk − ϑ, tk], k ≥ k1) .

Choose t = tk and let k →∞ to obtain

Vλz(x) > 0 (x ∈ D).

Since D was an arbitrary domain with B0 ⊂⊂ D ⊂⊂ Uλ, Vλz > 0 in Uλ.

In our last preliminary lemma, we establish a strict monotonicity property of the
functions in ω(u). Note that the requirement that Ωλ0

be connected will be verified
by condition (D), once we prove that λ0 = 0.

Lemma 4.4. If Ωλ0
is connected, then each z ∈ ω(u) is strictly decreasing in x1 in

Ωλ0
. If zx1

∈ C(Ωλ0
), then zx1

< 0.

Proof. Fix any z ∈ ω(u). For h > 0 let Ωhλ0
:= Ωλ0 ∩ {x ∈ Ω : x+ he1 ∈ Ω} and

dhz(x) :=
z(x+ he1)− z(x)

h
(x ∈ Ωhλ0

) .

By Remark 4.1, dhz ≤ 0 in Ωhλ0
for all z ∈ ω(u).

We claim that if h > 0 and U is a connected component of Ωhλ0
, then either

dhz ≡ 0 in U or dhz < 0 in U .
The proof of this statement is similar to the proof of Lemma 4.3. Assume dhz 6≡ 0

in U . Then there is a ball B ⊂⊂ Ωhλ0
and ρ0 > 0 such that

dhz(x) < −4ρ0 (x ∈ B). (4.4)

Set

dhu(x, t) :=
u(x+ he1, t)− u(x, t)

h
((x, t) ∈ Ωhλ0

× (0,∞)) .



684 JURAJ FÖLDES AND PETER POLÁČIK

Similarly as with wλ, hypotheses (N1)-(N3) and Hadamard’s formulas (see [19])
imply that

(dhu)t ≤ L(x, t)(dhu) + fh(x, t), (x, t) ∈ Ωhλ0
× (0,∞), (4.5)

where L ∈ E(α0, β,Ω
h
λ0
, (0,∞)) and fh is a measurable function with

lim
t→∞

‖fh‖LN+1(Ωhλ0
×(t,t+1)) = 0.

Let (tk)k∈N be an increasing sequence converging to ∞ such that u(·, tk) → z
in C(Ω̄). Then dhu(·, tk) → dhz in C(Ω̄hλ0

), and therefore there is k0 such that
dhu(·, tk) < −2ρ0 in B for all k > k0. The equicontinuity assumption (2.5) yields
ϑ > 0, independent of k, such that dhu(x, t) < −ρ0 for all x ∈ B, t ∈ [tk − 4ϑ, tk],
and k > k0.

Since dhz̃ ≤ 0 in Ωhλ0
for all z̃ ∈ ω(u),

lim
t→∞

‖(dhu)+(·, t)‖L∞(Ωhλ0
) = 0 . (4.6)

Let D ⊂⊂ U be any domain with B ⊂⊂ D. Applying Lemma 3.4 in a similar
way as in the proof of Lemma 4.3, we obtain

dhu(x, tk) ≤ −ρ1 < 0 (x ∈ D̄, k ≥ k1) , (4.7)

where ρ1 = ρ1(D) > 0 is independent of k and k1 = k1(D) is a sufficiently large
integer. Passing to the limit, as k →∞, in (4.7), we obtain

dhz(x) ≤ −ρ1 (x ∈ D̄). (4.8)

In particular, dhz < 0 in D̄ and since the domain D with B ⊂⊂ D ⊂⊂ U was
arbitrary, the claim is proved.

Now, if dh0
z(x̃) = 0 for some h0 > 0 and x̃ ∈ Ωh0

λ0
, then from the monotonicity

of z it follows that dhz(x̃) = 0 for all 0 < h ≤ h0. Then the claim implies that for
each h ∈ (0, h0) one has dhz ≡ 0 in the connected component of Ωhλ0

containing x̃.
Since Ωλ0

is connected, this clearly implies that z is constant in x1 in Ωλ0
, hence, by

the boundary condition, z ≡ 0 in Ωλ0
. This would contradict (2.7), hence no such

h0 > 0 and x̃ can exist. Therefore dhz < 0 in Ωhλ0
for all h > 0, and consequently z

is strictly decreasing in x1.
To prove the last conclusion assume that zx1

∈ C(Ωλ0
). Since zx1

6≡ 0 in Ωλ0
,

we can choose a ball B ⊂⊂ Ωλ0
and ρ0 > 0, both independent of h, such that (4.4)

holds for all sufficiently small h > 0. The connectedness of Ωλ0
implies that given

any x ∈ Ωλ0 , if h > 0 is small enough, then x and B̄ lie in the same connected
component of Ωhλ0

. Hence there is a domain D containing both x and B̄ such that

D ⊂⊂ Ωhλ0
for each sufficiently small h > 0. Estimate (4.8) then holds with ρ1

independent of h, which gives in particular zx1
(x) < 0.

Proof of Theorem 2.2. Let λ0 ≥ 0 be as in (4.2). We show that λ0 = 0. Assume
λ0 > 0. For each z ∈ ω(u) we have z > 0 by assumption and this implies Vλ0z 6≡ 0
on ∂Ωλ0 \ Hλ0 . Thus by Lemma 4.3, Vλ0z > 0 in Ωλ0 . Choose δ as in Corollary
3.3 and fix a compact set K ⊂ Ωλ0

with |Ωλ0
\K| ≤ δ/2. By the compactness of

ω(u) ⊂ C(Ω̄), there is d0 > 0 such that

Vλ0
z(x) > 4d0 (x ∈ K, z ∈ ω(u)) .

This implies that there exists t0 > 0 such that

wλ0(x, t) > 2d0 ((x, t) ∈ K × (t0,∞)) .



ASYMPTOTIC SYMMETRY 685

The equicontinuity assumption (2.5) implies that if λ is sufficiently close to λ0, then

wλ(x, t) > d0 ((x, t) ∈ K × (t0,∞)) . (4.9)

Let λ ∈ [0, λ0] be close enough to λ0 so that (4.9) holds together with |Ωλ \Ωλ0 | <
δ/2. Then |Ωλ \ K| < δ and an application of Corollary 3.3 with (U, τ, v, f) =
(Ωλ \K, t0, wλ, fλ) gives

lim
t→∞

‖(wλ(·, t))−‖L∞(Ωλ) = 0,

a contradiction to the definition of λ0. This contradiction shows that λ0 = 0. Hence
V0z ≥ 0 for all z ∈ ω(u).

Now, the problem (2.1) and the assumptions of the theorem are invariant under
the transformation x1 → −x1. Therefore, applying the above conclusion to the
function u(−x1, x

′, t), we obtain V0z ≤ 0 in Ω0 for all z ∈ ω(u). Hence, V0z ≡ 0 in
Ω0, or equivalently

z(−x1, x
′) = z(x1, x

′) ((x1, x
′) ∈ Ω, z ∈ ω(u)) .

The remaining statements of the theorem follow from Lemma 4.4.

5. Details for Example 2.3. Recall the notation I = (−2π, 2π), Ω = I × I. Let
β be an arbitrary fixed number in (1,∞).

The key part of our construction deals with the following one-dimensional prob-
lem

ut = uxx + f(t, u) +R(x, t), (x, t) ∈ I × (0,∞) ,

u = 0, (x, t) ∈ ∂I × (0,∞) ,

u ≥ 0, (x, t) ∈ I × (0,∞) .

(5.1)

Our goal is to find a continuous function f : I × (0,∞)×R→ R, which is piecewise
linear in the second variable with Lipschitz constant β+1, and a continuous function
R : Ī × [0,∞)→ R satisfying

‖R(·, t)‖L∞(Ω) ≤ Ce−
β
25 t (t ≥ 0)

for some C = C(β) > 0 such that (5.1) has a global, bounded solution u with the
following properties. There exist g, h ∈ ω(u) (ω-limit set in C[−2π, 2π]) such that
h > 0 in I, g > 0 in (0, 2π), and g(0) = 0. Once such functions have been found, the
construction for Example 2.3 is completed in two simple steps as follows. First we
modify the functions u and R to achieve u > 0 (note that in (5.1) we only require
u ≥ 0). This is done by adding to u a smooth function v : Ī× [0,∞) such that v > 0
in I × [0,∞), v(−2π, t) = v(2π, t) = 0 for all t ∈ [0,∞), and ‖H(·, t)‖L∞(I) ≤ e−βt,
where H is any of the functions v, vx, vxx, or vt. Then ũ := u + v is a positive
solution of (5.1), if R(x, t) is replaced with the function

R̃(x, t) := ũt(x, t)− ũxx(x, t)− f(t, ũ(x, t))

= [f(t, u(x, t))− f(t, ũ(x, t))] + vt(x, t)− vxx(x, t) +R(x, t).

Since f is Lipschitz in u, the continuous function R̃ has the same exponential decay
as R: ‖R̃(·, t)‖L∞(I) ≤ Ce−tβ/25, possibly with a larger constant C. Of course, u and
ũ have the same ω-limit sets, so we have a positive solution of the one-dimensional
problem as desired.

The second step is to use this example and separation of variables to obtain a
solution of the problem on Ω. This is done in much the same way as in [19, Example
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2.3]. One takes U(x, y, t) = ũ(x, t)ψ(y), with ψ(y) = cos(y/4). Then U is a positive
solution of the problem

Ut = ∆U + f∗(t, y, U) +R∗(x, y, t), (x, y) ∈ Ω, t > 0, (5.2)

U = 0, (x, y) ∈ ∂Ω, t > 0, (5.3)

where

f∗(t, y, U) =


f

(
t,

U

ψ(y)

)
ψ(y) +

1

16
U if |y| 6= 2π,

1

16
U if |y| = 2π

and R∗(x, y, t) = R̃(x, t)ψ(y). Clearly f∗ is continuous in all variables and it is
Lipschitz continuous in U with Lipschitz constant LipU f

∗ = Lipu f + 1/16 ≤ β+ 2.
The functions z := hψ,w := gψ are contained in ω(U) and have the properties as
stated in Example 2.3.

Let us now return to the one-dimensional problem (5.1). Set

h(x) = cos
(x

4

)
, g(x) =

1− cos(x)

2
(x ∈ I) .

These are the functions we want to be contained in the ω-limit set of a solution
u. Our strategy is to first find a nonlinearity f(t, u) such that the equation ut =
uxx + f(t, u) has four distinctive regimes occurring, in succession, on disjoint time
intervals: in the first regime, there is a solution which decreases from its initial
condition h to a small multiple of h; in the second one, a solution increases from
a small multiple of g to g; in the third one, a solution decreases from its initial
condition g to another small multiple of g; and, finally, in the forth regime, a
solution increases from a small multiple of h back to h. Using a suitable perturbation
function R(x, t), we then connect the solutions in these four regimes. Repeating the
cycle infinitely many times, we produce a solution u of (5.1) such that h, g ∈ ω(u).
Care is needed in the construction to guarantee that the function R has the indicated
exponential decay.

We now give the details. To simplify the notation, for any function ζ of the
variables x ∈ I, u ∈ R, and t ≥ 0, ST ζ stands for the time shift of ζ:

ST [ζ(x, u, t)] := ζ(x, u, t− T ) (T < t) .

Let s : [0, 1]→ [0, 1] and m : [0, 1]→ R be smooth functions such that

s(0) = 1, s(1) = 0, s′(0) = s′(1) = −β
2
, |s′| < β,

m(0) = m(1) = 1, m′(0) = −m′(1) = β, m ≥ 1, |m′| ≤ β

(for the existence of s we invoke the condition β > 1). For n = 1, 2, . . . , let

bn :=
5n

4
− 1, an := e−βbn .
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Define functions un : Ī × [0, 4bn + 4]→ R and fn : [0, 4bn + 4]× R as follows:

un(x, t) :=



e−βth(x) t ∈ [0, bn),

Sbn [an(s2(t)h(x) + (1− s(t))2g(x))] t ∈ [bn, bn + 1),

Sbn+1[ane
βtg(x)] t ∈ [bn + 1, 2bn + 1),

S2bn+1[m(t)g(x)] t ∈ [2bn + 1, 2bn + 2),

S2bn+2[e−βtg(x)] t ∈ [2bn + 2, 3bn + 2),

S3bn+2[an(s2(t)g(x) + (1− s(t))2h(x))] t ∈ [3bn + 2, 3bn + 3),

S3bn+3[ane
βth(x)] t ∈ [3bn + 3, 4bn + 3),

S4bn+3[m(t)h(x)] t ∈ [4bn + 3, 4bn + 4],

where x ∈ Ī, and

fn(t, u) :=

(−β + 1
16 )u t ∈ [0, bn),

Sbn [(1− t)(−β + 1
16 )u+ t((1 + β)u− an

2 )] t ∈ [bn, bn + 1),

Sbn+1[(β + 1)u− an
2 e

βt] t ∈ [bn + 1, 2bn + 1),

S2bn+1[(m
′(t)

m(t) + 1)u− m(t)
2 ] t ∈ [2bn + 1, 2bn + 2),

S2bn+2[(1− β)u− 1
2e
−βt] t ∈ [2bn + 2, 3bn + 2),

S3bn+2[(1− t)((1− β)u− an
2 ) + t(β + 1

16 )u] t ∈ [3bn + 2, 3bn + 3),

S3bn+3[(β + 1
16 )u] t ∈ [3bn + 3, 4bn + 3),

S4bn+3[(m
′(t)

m(t) + 1
16 )u] t ∈ [4bn + 3, 4bn + 4] ,

where u ∈ R. One easily verifies that that un ∈ C2,1(I × [0, 4bn + 4)] and fn is a
continuous function on [0, 4bn+4)]×R, which is piecewise linear in u with Lipschitz
constant β + 1. Also the following relations are straightforward to verify:

un(0, t) = un(1, t) = 0 (t ∈ [0, 4bn + 4]), (5.4)

un(·, 0) = un(·, 4bn + 4) = h, (5.5)

(un)t(·, 0) = (un)t(·, 4bn + 4) = −βh, (5.6)

un(·, 2bn + 1) = g, (5.7)

fn(0, u) = fn(4bn + 4, u) = (−β +
1

16
)u (u ∈ R), (5.8)

(un)t(x, t)− (un)xx(x, t)− fn(t, un(x, t)) = 0

(x ∈ I, t ∈ [0, 4bn + 4] \ ((bn, bn + 1) ∪ (3bn + 2, 3bn + 3))). (5.9)

The four different regimes mentioned in the above outline are active on the “long”
time intervals, that is, those intervals in the definitions of un and fn that have the
length bn.

Next define Rn by

Rn(x, t) := (un)t(x, t)− (un)xx(x, t)− fn(t, un(x, t)) ((x, t) ∈ I × [0, 4bn + 4]) .
(5.10)

By (5.9), Rn(·, t) 6= 0 only if t ∈ (bn, bn+1)∪ (3bn+2, 3bn+3). An easy calculation
shows that Rn is a continuous function with

‖Rn(·, t)‖L∞(I) ≤ Can (t ∈ [0, 4bn + 4]), (5.11)

where C is independent of n (it depends on β).
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Finally, to complete the construction, set

T0 := 0, Tn :=

n∑
i=1

(4bi + 4) =
5

4
(5n − 1)

(recalling that bi := 5i/4− 1) and

u(x, t) := STnun(x, t), f(t, u) := STnfn(t, u), R(x, t) := STnRn(x, t)

((x, u, t) ∈ I × R× [Tn, Tn+1), n ∈ N ∪ {0}) .

It follows from (5.5), (5.6), and (5.8), that u ∈ C2,1(Ī × [0,∞)), f and R are
continuous on Ī × [0,∞), and f is Lipschitz in u with Lipschitz constant β + 1.
Clearly, u is bounded and u ≥ 0 everywhere. By (5.10) and (5.4), u is a solution of
(5.1), and by (5.5), (5.7), h, g ∈ ω(u).

It remains to show that R has the specified exponential decay. Given any t > 0,
pick the integer n for which 5(5n − 1)/4 ≤ t < 5(5n+1 − 1)/4. Then, by (5.11),

‖R(·, t)‖L∞(I) ≤ Can = Ce−βbn = Ce−β( 5n

4 −1) ≤ Ce−β( t25−
19
20 ) = C̃e−

β
25 t,

where C̃ = C̃(β) is a constant independent of t.
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