Citation: Avner Friedman. PDE problems arising in mathematical biology[J]. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691
[1] | R. S. Cantrell, C. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh, 137A (2007), 497-518. doi: 10.1017/S0308210506000047 |
[2] | R. S. Cantrell, C. Cosner and Y. Lou, Evolution of dispersal and ideal free distribution, Math Biosc. Eng., 7 (2010), 17-36. doi: 10.3934/mbe.2010.7.17 |
[3] | X. Chen, S. Cui and A. Friedman, A hyperbolic free boundary problem modeling tumor growth: Asymptotic behavior, Trans. Amer. Math. Soc., 357 (2005), 4771-4804. doi: 10.1090/S0002-9947-05-03784-0 |
[4] | X. Chen and A. Friedman, A free boundary problem for elliptic-hyperbolic system: An application to tumor growth, SIAM J. Math. Anal., 35 (2003), 974-986. doi: 10.1137/S0036141002418388 |
[5] | X. Chen, R. Hambrock and Y. Lou, Evolution of conditional dispersal: A reaction-diffusion-advection model, J. Math. Biol., 57 (2008), 361-386. doi: 10.1007/s00285-008-0166-2 |
[6] | G. Craciun, A. Brown and A. Friedman, A dynamical system model of neurofilament transport in axons, J. Theoret. Biol., 237 (2005), 316-322. doi: 10.1016/j.jtbi.2005.04.018 |
[7] | S. Cui, Existence of a stationary solution for the modified Ward-King tumor growth model, Adv. in Appl. Math., 36 (2006), 421-446. doi: 10.1016/j.aam.2005.04.002 |
[8] | S. Cui and A. Friedman, A free boundary problem for a singular system of differential equations: An application to a model of tumor growth, Trans. Amer. Math. Soc, 355 (2003), 3537-3590. doi: 10.1090/S0002-9947-03-03137-4 |
[9] | J. Dockery, V. Huston, K. Mischaikow and M. Pernarowsky, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83. doi: 10.1007/s002850050120 |
[10] | M. A. Fontelos and A. Friedman, Symmetry-breaking bifurcations of free boundary problems in three dimensions, Asymptotic Anal., 35 (2003), 187-206. |
[11] | A. Friedman, A free boundary problem for a coupled system of elliptic, hyperbolic, and Stokes equations modeling tumor growth, Interfaces & Free Bound., 8 (2006), 247-261. doi: 10.4171/IFB/142 |
[12] | A. Friedman, A multiscale tumor model, Interfaces & Free Bound., 10 (2008), 245-262. doi: 10.4171/IFB/188 |
[13] | A. Friedman, Free boundary value problems associated with multiscale tumor models, Mathematical Modeling of Natural Phenomena, 4 (2009), 134-155. doi: 10.1051/mmnp/20094306 |
[14] | A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem arising in tumor model, Arch. Rat. Mech. Anal, 180 (2006), 293-330. doi: 10.1007/s00205-005-0408-z |
[15] | A. Friedman and B. Hu, Asymptotic stability for a free boundary problem arising in a tumor model, J. Diff. Eqs, 227 (2006), 598-639. doi: 10.1016/j.jde.2005.09.008 |
[16] | A. Friedman and B. Hu, Uniform convergence for approximate traveling waves in linear reaction-hyperbolic systems, Indiana Univ. Math. J., 56 (2007), 2133-2158. doi: 10.1512/iumj.2007.56.3044 |
[17] | A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem modeling tumor growth by Stokes equation, Math. Anal & Appl., 327 (2007), 643-664. doi: 10.1016/j.jmaa.2006.04.034 |
[18] | A. Friedman and B. Hu, Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39 (2007), 174-194. doi: 10.1137/060656292 |
[19] | A. Friedman and B. Hu, Stability and instability of Liapounov-Schmidt and Hopf bifurcations for a free boundary problem arising in a tumor model, Trans. Amer. Math. Soc., 360 (2008), 5291-5342. doi: 10.1090/S0002-9947-08-04468-1 |
[20] | A. Friedman and B. Hu, The role of oxygen in tissue maintenance: Mathematical modeling and qualitative analysis, Math. Mod. Meth. Appl. Sci, 18 (2008), 1-33. doi: 10.1142/S021820250800308X |
[21] | A. Friedman, B. Hu and C-Y Kao, Cell cycle control at the first restriction point and its effect on tissue growth, J. Math. Biol., 60 (2010), 881-907. doi: 10.1007/s00285-009-0290-7 |
[22] | to appear. |
[23] | A. Friedman, B. Hu and C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds, SIAM J. Math. Anal., 42 (2010), 2013-2040. doi: 10.1137/090772630 |
[24] | Disc. Cont. Dynam. Syst., to appear. |
[25] | A. Friedman and F. Reitich, Analysis of a mathematical model for growth of tumors, J. Math. Biol., 38 (1999), 262-284. doi: 10.1007/s002850050149 |
[26] | A. Friedman and F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth, Trans. Amer. Math. Soc., 353 (2001), 1587-1634. doi: 10.1090/S0002-9947-00-02715-X |
[27] | A. Friedman and C. Xue, A mathematical model for chronic wounds, Mathematical Biosciences and Engineering, 8 (2011), 253-261. doi: 10.3934/mbe.2011.8.253 |
[28] | C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs. non-local dispersal, Disc. Cont. Dynam. Sys. Series A., 26 (2010), 551-596. doi: 10.3934/dcds.2010.26.551 |
[29] | J. S. Lowengrub, H. B. Frieboes, F. Jin, Y-L Chuang, X. Li, P. Macklin, S. M. Wise and V. Christini, Nonlinear modeling of cancer: Bridging the gap between cells and tumors, Nonlinearity, 23 (2010), 1-91. doi: 10.1088/0951-7715/23/1/001 |
[30] | G. J. Pettet, C. P. Please, M. J. Tindall and D. L. S. McElwain, The migration of cells in multicell tumor spheroids, Bull. Math. Biol., 63 (2001), 231-257. |
[31] | M. C. Reed, S. Venakides and J. J. Blum, Approximate traveling waves in linear reaction-hyperbolic equations, SIAM J. Appl. Math., 50 (1990), 167-180. doi: 10.1137/0150011 |
[32] | F. Salvarani and J. L. Vazquez, The diffusive limit for Carleman-type kinetic models, Nonlinearity, 18 (2005), 1223-1248. doi: 10.1088/0951-7715/18/3/015 |
[33] | C. Xue, A. Friedmand and C. K. Sen, A mathematical model of ischemic cutaneous wounds, PNAS, 106 (2009), 16782-16787. |