A link between microscopic and macroscopic models of self-organized aggregation

  • Received: 01 March 2012 Revised: 01 July 2012
  • Primary: 35K55, 60K35; Secondary: 82C22, 92D25.

  • In some species, one of the roles of pheromones is to influence aggregation behavior. We first propose a macroscopic cross-diffusion model for the self-organized aggregation of German cockroaches that includes directed movement due to an aggregation pheromone. We then propose a microscopic particle model which is set into context with the macroscopic model. Our goal is to link the macroscopic and microscopic descriptions by using the singular and the hydrodynamic limit procedures. A hybrid model related to the macroscopic and microscopic models is also proposed as a cockroach aggregation model. This hybrid model assumes that each individual responds to pheromone concentration and moves by two-mode simple symmetric random walks. It shows that even though the movement of individuals is not directed, two-mode simple symmetric random walks and effect of the pheromone result in self-organized aggregation.

    Citation: Tadahisa Funaki, Hirofumi Izuhara, Masayasu Mimura, Chiyori Urabe. A link between microscopic and macroscopic models of self-organized aggregation[J]. Networks and Heterogeneous Media, 2012, 7(4): 705-740. doi: 10.3934/nhm.2012.7.705

    Related Papers:

  • In some species, one of the roles of pheromones is to influence aggregation behavior. We first propose a macroscopic cross-diffusion model for the self-organized aggregation of German cockroaches that includes directed movement due to an aggregation pheromone. We then propose a microscopic particle model which is set into context with the macroscopic model. Our goal is to link the macroscopic and microscopic descriptions by using the singular and the hydrodynamic limit procedures. A hybrid model related to the macroscopic and microscopic models is also proposed as a cockroach aggregation model. This hybrid model assumes that each individual responds to pheromone concentration and moves by two-mode simple symmetric random walks. It shows that even though the movement of individuals is not directed, two-mode simple symmetric random walks and effect of the pheromone result in self-organized aggregation.


    加载中
    [1] M. Bendahmane, T. Lepoutre, A. Marrocco and B. Perthame, Conservative cross diffusions and pattern formation through relaxation, J. Math. Pures Appl., 92 (2009), 651-667. doi: 10.1016/j.matpur.2009.05.003
    [2] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz and E. Bonabeau, "Self-Organization in Biological Systems," Princeton University Press, Princeton, NJ, 2003.
    [3] A. De Masi, S. Luckhaus and E. Presutti, Two scales hydrodynamic limit for a model of malignant tumor cells, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 257-297. doi: 10.1016/j.anihpb.2006.03.003
    [4] .
    [5] S.-I. Ei, H. Izuhara and M. Mimura, Infinite dimensional relaxation oscillation in aggregation-growth systems, Discrete and Continuous Dynamical Systems, Series B, 17 (2012), 1859-1887. doi: 10.3934/dcdsb.2012.17.1859
    [6] L. C. Evans, "Partial Differential Equations," American Mathematical Society, Providence, RI, 1998.
    [7] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3
    [8] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber Deutsch Math., 105 (2003), 103-165.
    [9] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. II, Jahresber Deutsch Math., 106 (2004), 51-69.
    [10] M. Iida, M. Mimura and H. Ninomiya, Diffusion, Cross-diffusion and Competitive interaction, J. Math. Biol., 53 (2006), 617-641. doi: 10.1007/s00285-006-0013-2
    [11] S. Ishii, An aggregation pheromone of the German cockroach, Blattella germanica (L.), Appl. Ent. Zool., 5 (1970), 33-41.
    [12] S. Ishii and Y. Kuwahara, An aggregation pheromone of the German cockroach Blattella germanica L. (Orthoptera: Blattelidae), Appl. Ent. Zool., 2 (1967), 203-217.
    [13] S. Ishii and Y. Kuwahara, Aggregation of German Cockroach (Blattella germanica) Nymphs, Experientia, 24 (1968), 88-89.
    [14] R. Jeanson, C. Rivault, J. -L. Deneubourg, S. Blanco, R. Fournier, C. Jost and G. Theraulaz, Self-organized aggregation in cockroaches, Animal Behavior, 69 (2005), 169-180.
    [15] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399-415.
    [16] C. Kipnis and C. Landim, "Scaling Limits of Interacting Particle Systems," Springer, 1999.
    [17] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Transl. Math. Monographs, 23, Amer. Math. Soc., Providence, R.I. 1967.
    [18] M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64. doi: 10.1007/BF00276035
    [19] M. Mimura and M. Nagayama, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability, Chaos, 7 (1997), 817-826. doi: 10.1063/1.166282
    [20] D. Morale, V. Capasso and K. Oelschläger, An interacting particle system modeling aggregation behavior: from individuals to populations, J. Math. Biol., 50 (2005), 49-66. doi: 10.1007/s00285-004-0279-1
    [21] H. Murakawa, A relation between cross-diffusion and reaction-diffusion, Discrete and Continuous Dynamical Systems, Series S, 5 (2011), 147-158. doi: 10.3934/dcdss.2012.5.147
    [22] A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives," Springer-Verlag, 2001.
    [23] H. G. Othmer and A. Stevens, Aggregation, blow up and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081. doi: 10.1137/S0036139995288976
    [24] J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), 189-192.
    [25] R. Schaaf, Stationary solutions of chemotaxis systems, Trans. AMS, 292 (1985), 531-556. doi: 10.2307/2000228
    [26] A. Stevens, A stochastic cellular automaton modeling gliding and aggregation of myxobacteria, SIAM J. Appl. Math., 61 (2000), 172-182. doi: 10.1137/S0036139998342053
    [27] A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, SIAM J. Appl. Math., 61 (2000), 183-212. doi: 10.1137/S0036139998342065
    [28] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99. doi: 10.1016/0022-5193(79)90258-3
    [29] R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis," AMS Chelsea Publishing, Providence, RI, 2001.
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4946) PDF downloads(180) Cited by(13)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog