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Abstract. In some species, one of the roles of pheromones is to influence ag-
gregation behavior. We first propose a macroscopic cross-diffusion model for

the self-organized aggregation of German cockroaches that includes directed

movement due to an aggregation pheromone. We then propose a microscopic
particle model which is set into context with the macroscopic model. Our goal

is to link the macroscopic and microscopic descriptions by using the singu-

lar and the hydrodynamic limit procedures. A hybrid model related to the
macroscopic and microscopic models is also proposed as a cockroach aggre-

gation model. This hybrid model assumes that each individual responds to

pheromone concentration and moves by two-mode simple symmetric random
walks. It shows that even though the movement of individuals is not directed,

two-mode simple symmetric random walks and effect of the pheromone result

in self-organized aggregation.

1. Introduction. Aggregation is common in several species of insects, birds, fish,
and other animals and is considered to be favorable to survival. In order to aggre-
gate effectively, some organisms produce and respond to chemical substances called
pheromones. Pheromones that are responsible for the aggregation of organisms are
referred to as aggregation pheromones. (For instance [2][22].)

In this paper, we are concerned with the aggregation phenomenon of German
cockroaches (Blattela germanica), which is well documented (see [11][12][13]). These
cockroaches both secrete and detect an aggregation pheromone in order to maintain
a suitable population density. Experimental evidence has shown that the movement
of these cockroaches depends on the concentration of the aggregation pheromone,
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that is, if the concentration is low, they walk around actively, whereas if it is high,
they become less active or remain stationary. When the concentration is at an
intermediate level, their movement is not so clear, but it seems that they move
towards areas of higher concentration of the pheromone ([12]).

We propose a phenomenological macroscopic model of nonlinear partial differ-
ential equations (PDEs) to describe aggregation at the population level. From
experimental observation ([12]), we can assume that the population movement is
due either to diffusion or to movement directed by the aggregation pheromone,
depending on the pheromone concentration.

Denoting the population density of individuals by u(t, x) and the pheromone
concentration by v(t, x) at time t and position x, we propose the following cross-
diffusion system for the unknowns u and v:{

ut = ∆((d+ αH(v))u),

vt = D∆v + au− bv, t > 0, x ∈ Ω, (1.1)

where d, α, D, a, and b are positive constants, and H(v) is a monotonically de-
creasing sigmoid type function of v satisfying 0 ≤ H(v) ≤ 1. One explicit form of
H(v) is

H(v) =
1− tanh(γ(v − v∗))

2
(1.2)

for some positive constants γ and v∗, which will be used in the numerical compu-
tations presented below. The derivation and explanation of (1.1) will be discussed
in Section 2. When the equation for u in (1.1) is rewritten as

ut = div((d+ αH(v))∇u) + αdiv(uH ′(v)∇v),

we know that the parameter α in the second term determines the strength of the
directed movement. (1.1) is very close to the well known Keller-Segel model [15]:{

ut = d∆u− div(u∇χ(v)),

vt = D∆v + au− bv, t > 0, x ∈ Ω,

which describes the aggregation dynamics of amoeba cells conducted by chemoat-
tractant cAMP. Here the function χ(v) is a sensitivity function of v. (On the review
of chemotaxis equations, see [7], [8], [9] and reference therein. )

We consider (1.1) in a bounded domain Ω ⊂ RN (N ∈ N) with boundary condi-
tions

∂u

∂ν
=
∂v

∂ν
= 0, t > 0, x ∈ ∂Ω, (1.3)

where ν is the outward-pointing unit normal vector on the smooth boundary ∂Ω
and with initial conditions {

u(0, x) = u0(x),

v(0, x) = v0(x),
x ∈ Ω. (1.4)

If the parameter α in (1.1) is zero, the equation for u in (1.1) is simply reduced to
the diffusion equation ut = d∆u, so that u tends to a uniform state even if u0 is
spatially inhomogeneous. Therefore, for small α, one could expect that aggregation
is never maintained (see Figure 1.1). For appropriately large α, however, Figure
1.2 indicates the occurrence of self-organized aggregation, even when the initial
conditions are for an almost uniformly distributed population. This indicates that a
directed movement effect is essential in order to form aggregation in (1.1). Moreover,
suppose that there is a shelter at a corner in which the pheromone concentration is
relatively high compared with other areas. Then, the population that was initially
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Figure 1.1. Snapshots of the two-dimensional pattern dynamics
in (1.1), (1.3), and (1.4). The left and right figures describe u and
v, respectively, at the indicated time. The parameter values and
domain size are a = b = 1, d = 0.005, α = 0.00005, D = 0.1,
γ = 20, v∗ = 1, and Ω = (0, 5)× (0, 5).

almost uniformly distributed will eventually gather to that corner (see Figure 1.3).
This numerical result qualitatively resembles the experimental observations of Ishii
and Kuwahara [12].

A key question is: what kind of microscopic model is set into context with (1.1)?
In order to answer this question, we derived the following reaction-diffusion system
that approximates the cross-diffusion system (1.1):

U1t = d∆U1 +
1

ε
(k(V )U2 − h(V )U1),

U2t = (d+ α)∆U2 −
1

ε
(k(V )U2 − h(V )U1),

Vt = D∆V + a(U1 + U2)− bV,

(1.5)

where k(s) and h(s) are respectively monotonically increasing and decreasing func-
tions for s ≥ 0. U1 and U2 are the subpopulation densities of u, which indicate the
less motile and motile population densities, respectively, and convert to each other
with the rates k(V )/ε and h(V )/ε. Adding the equations for U1 and U2, and taking
U := U1 + U2, we obtain

Ut = d∆U + α∆U2. (1.6)

By letting ε → 0, we can formally derive k(V )U2 − h(V )U1 = 0 from the first and

second equations in (1.5) and obtain U2 = h(V )
k(V )+h(V )U . Applying this result to

(1.6), (1.1) is formally obtained under a condition H(V ) = h(V )
h(V )+k(V ) , so that we

expect that (1.1) is approximated by (1.5) when ε is sufficiently small. The rigorous
convergence of a solution of (1.5) to that of (1.1) as ε tends to zero will be shown
in Sections 3 and 4.

It is well known from an experiment that each cockroach can be in two states,
moving and stopped([14]). From this fact, we propose a microscopic model that



708 T. FUNAKI, H. IZUHARA, M. MIMURA AND C. URABE

Figure 1.2. Snapshots of two-dimensional self-organized aggre-
gation dynamics in (1.1), (1.3), and (1.4), where u0(x) ≡ 1 and
v0(x) ≡ 1 with small perturbation. The left and right figures de-
scribe u and v, respectively, at the indicated time. The parameter
values and domain size are a = b = 1, d = 0.005, α = 0.515,
D = 0.1, γ = 20, v∗ = 1, and Ω = (0, 5)× (0, 5).

is associated with the reaction-diffusion system (1.5). At the microscopic level, we
simply represent the German cockroaches as particles. These particles can have
two internal states, that is, less active (L) and active (A) states. The macroscopic
population densities of particles with L and A states are given by U1 and U2,
respectively. The evolutional law of the particle system is prescribed as follows:

(A.1) Each particle moves according to a simple symmetric random walk on an
N -dimensional square lattice with a jump rate of d if it is L-type or a rate of d+α
if it is A-type.

(A.2) Each particle secretes a diffusive chemical substance of aggregation pheromone
with a constant rate a, which evaporates at a constant rate b.

(A.3) Each particle may occasionally change its state from L to A, and vice versa,
with the rate of change depending on the amount of pheromone at the position
where the particle is located.

After taking a diffusive scaling limit for the microscopic system, we can derive
(1.5) as its macroscopic equations, at least under the periodic boundary condition.
This procedure is called the hydrodynamic limit, and an important role is played
by the averaging effect due to the local ergodicity. A detailed description of the
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Figure 1.3. Snapshots of the two-dimensional pattern dynamics
in (1.1), (1.3), and (1.4) when suitable pheromone concentration is
initially put on a corner. The left and right figures describe u and
v, respectively, at the indicated time. The parameter values and
domain size are a = b = 1, d = 0.005, α = 0.515, D = 0.1, γ = 20,
v∗ = 1, and Ω = (0, 1)× (0, 1).

microscopic particle system will be presented in Section 5. Figure 1.4 shows the
dynamics generated by the microscopic particle system. One can see that initially
uniformly distributed cockroach particles form aggregation due to the effects of
switching and pheromone as time evolves.

This paper is organized as follows: in Section 2, we propose a macroscopic cross-
diffusion model including the aggregation pheromone effect introduced in Section 1.
In Sections 3 and 4, we discuss the derivation of a reaction-diffusion system (1.5),
and, by using the singular limit procedure as ε tends to zero, we prove that it ap-
proximates the cross-diffusion system (1.1). In Section 5, we use the hydrodynamic
scaling limit procedure to prove the convergence of the microscopic particle system
to the reaction-diffusion system that we introduced in Section 3. In Section 6, we
propose a hybrid model related to (1.1) and the microscopic particle system, and we
demonstrate with numerical simulations that it leads to self-organized aggregation.
Finally, in Section 7, we present some concluding remarks on our results.

2. A macroscopic cross-diffusion model with aggregation pheromone. In
this section, we discuss the derivation and explanation of the macroscopic cross-
diffusion model (1.1). Experimental observation indicates that if the pheromone
concentration is low, individuals walk around actively, whereas if it is high, they
become less active and tend to remain in the same location. At intermediate concen-
trations, the individuals seem to move toward the areas with a higher concentration
of the pheromone([12]). We thus suppose that the population density u is phe-
nomenologically described by the following three distinct equations, depending on
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Figure 1.4. Snapshots of time evolution of the microscopic par-
ticle system at time 50, 1000 and 4000. The gray circles in the left
and right figures denote cockroach particles and pheromone parti-
cles, respectively. The gray scale in the right figures indicates the
amount of the pheromone particles. The number of the cockroach
particles is 500 and the system size is [0, 52]× [0, 52].

the pheromone concentration v:
ut = (d+ α)∆u, if v is small,

ut = div(d1(v)∇u) + div(u∇d2(v)), if v is medium,

ut = d∆u, if v is large,

(2.1)
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where d and α are positive constants, and di(v)(i = 1, 2) are non-negative and
monotonically decreasing in v. The first and third diffusion equations in (2.1) are
derived from the requirement that each individual become active or less active,
respectively, depending on the pheromone concentration. The second equation in
(2.1) is a variation of the Keller-Segel equations that describe chemotactic movement
([15]). We assume that the diffusion rate d1(v) is approximately linearly interpolated
between d+α and d, and, for simplicity, we assume that d1(v) = d2(v). The second
equation of (2.1) can then be rewritten as

ut = ∆(d1(v)u), (2.2)

which is the cross-diffusion equation that arises in mathematical ecology ([28]). If
we take d1(v) = d + αH(v) as a monotonically decreasing function, where H(v) is
a sigmoid type function of v with 0 ≤ H(v) ≤ 1, as shown in Figure 2.1, we find
that (2.1) is approximated by

ut = ∆((d+ αH(v))u) for all v. (2.3)

One explicit form of H(v) is (1.2). The value of H(v) reflects both diffusion and
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Figure 2.1. Function form of H(v). From the profile of H(v),
the region is divided into three subregions, where H(v) ≈ 1 and
H ′(v) ≈ 0 for small v (region 1), H(v) ≈ 0 and H ′(v) ≈ 0 for large
v (region 3), and 0 < H(v) < 1 and H ′(v) < 0 for medium v (region
2).

directed movement because equation (2.3) can be decomposed into

ut = div((d+ αH(v))∇u) + αdiv(uH ′(v)∇v). (2.4)

The first term of (2.4) is a nonlinear diffusion of Fickian type, and the second one
implies directed movement, depending on the gradient of v. Let us explain (2.4)
more precisely. Figure 2.1 indicates that the sigmoid type function H(v) is divided
into three parts depending on v. For small v (region 1 in Figure 2.1), H(v) ≈ 1 and
H ′(v) ≈ 0, and for large v (region 3 in Figure 2.1), H(v) ≈ 0 and H ′(v) ≈ 0. On
the other hand, for medium v, 0 < H(v) < 1, and H ′(v) is negative and not close to
zero (region 2 in Figure 2.1). In other words, in the first term of (2.4), for small v,
the diffusion rate is almost d+α; conversely, for large v, the diffusion rate is nearly
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d. Due to H ′(v) ≈ 0 in these regions, effect of the directed movement disappears.
For medium v, however, directed movement in the second term in (2.4) is effective.
We thus find that the cross-diffusion system (2.3) could approximate (2.1). We
assume that (2.3) is coupled with the equation for pheromone concentration v given
by

vt = D∆v + au− bv,
where D is the diffusion rate of aggregation pheromone, and a and b are the secretion
rate and the evaporation rate, respectively. All of the parameters are positive
constants. As shown in Figure 1.2, we find that the directed movement effect due to
H(v) generates aggregation in a self-organized way, even if the initial distribution of
u and v are almost spatially homogeneous. However, if the total population density
is either small or large enough, since the amount of secreted pheromone is also small
or large enough, (1.1) is approximately described by the diffusion equation, so that
we may expect that aggregation does not occur. That is to say, if an average value
1
|Ω|
∫

Ω
u0(x)dx = u is either small or large, we expect that a constant equilibrium

solution (u, v) with v = a
bu of (1.1) and (1.3) is stable, while for medium u, (u, v)

seems to be unstable. In the next subsection, we discuss the stability of the constant
equilibrium solution (u, v).

2.1. Stationary problem in one-dimension. In this subsection, we analyze the
linear stability of the constant equilibrium solution (u, abu) that is parametrized by
u > 0. We consider the following one-dimensional system in a finite interval (0, L):{

ut = ((d+ αH(v))u)xx,

vt = Dvxx + au− bv, t > 0, x ∈ (0, L), (2.5)

with zero-flux boundary conditions

ux = vx = 0, t > 0, x = 0, L. (2.6)

Substituting u = u+ ũ and v = a
bu+ ṽ into (2.5) and neglecting higher-order terms

leads to a linearized system from (2.5):{
ũt = (d+ αH(abu))ũxx + αH ′(abu)uṽxx,

ṽt = Dṽxx + aũ− bṽ,

where H ′ implies the first derivative with respect to v. By simple calculations, we
can obtain the bifurcation curves of the constant equilibrium solution (u, abu) for
each of the Fourier modes. Figure 2.2 shows the stable and unstable regions of
(u, abu) in the (u, α)-plane. Γn (n = 1, 2, · · · ) in Figure 2.2 are defined by

Γn =
{

(u, α) ⊂ R2|
(
d+ αH(

a

b
u)
)

(D(nπ)2 + b) + αaH ′(
a

b
u)u = 0

}
.

From Figure 2.2, we know that for a sufficiently small α, the constant equilibrium
solution (u, abu) is always stable for any u. This explains the numerical result as
shown in Figure 1.1. However, for suitably fixed α, the stability of (u, abu) changes,
depending on u. For either small or large u, (u, abu) is stable, while for medium u,
it is unstable. Such destabilization is called cross-diffusion induced instability([18]).
As a consequence of the instability, non-constant equilibrium solutions bifurcate
from the constant equilibrium solution branch when u is varied. By using AUTO
([4]), Figure 2.3 shows a global bifurcation diagram of the equilibrium solutions of
(2.5) and (2.6). We can see from Figure 2.3 that as u increases, the branches of the
non-constant equilibrium solution bifurcate from the stable trivial branch (u, abu)
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Figure 2.2. Stable and unstable regions for the uniform equilib-
rium solution (u, abu). The horizontal and vertical axes are u and
α, respectively. Curves in the figure are the zero eigenvalue curves
for each of the Fourier cosine modes. The parameter values are
a = b = 1, d = 0.05, D = 0.1, γ = 20, v∗ = 1, and L = 1.

Figure 2.3. Bifurcation diagram of (2.5) and (2.6). The hor-
izontal and vertical axes denote u and the value u(x) at x = 0,
respectively. The solid and dashed curves represent stable and un-
stable branches, respectively. The symbol � indicates the pitchfork
bifurcation points. The parameter values are the same as the ones
in Figure 2.2, and α = 0.15.

through pitchfork bifurcation at approximately u = 0.93. Though these nontrivial
branches are unstable due to subcritical bifurcation, they become stable through
saddle-node bifurcations at approximately u = 0.78. Such stable non-constant equi-
librium solutions exhibit self-organized aggregating patterns, as shown in Figure 2.4.
From these results, we know that the self-organized aggregating patterns emerge as a
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0.0 1.0

Figure 2.4. Profiles of stable non-constant equilibrium solutions
at u = 1 in Figure 2.3. The solid and dashed curves indicate u and
v, respectively. The parameters are the same as the ones in Figure
2.3.

consequence of the instability of the constant equilibrium solution (u, abu). Though
we have numerically obtained the global bifurcation diagram by AUTO, rigorous
global bifurcation analysis of the generalized Keller-Segel model that includes (1.1)
is investigated in [25].

3. A reaction-diffusion model with aggregation pheromone. Our goal is to
propose a microscopic model which is set into context with the macroscopic cross-
diffusion model (1.1). For this purpose, as a first step, we derive a reaction-diffusion
system that approximates (1.1) at the macroscopic level. As mentioned above, we
have seen that the function H(v) possesses three parts depending on v, namely,
H(v) ≈ 1, 0 < H(v) < 1 and H(v) ≈ 0 for small, medium, and large v, respectively.
Let us define a non-negative function K(v) by K(v) := 1 − H(v). We know that
K(v) possesses a similar property, such that K(v) ≈ 0, 0 < K(v) < 1, and K(v) ≈ 1
for small, medium and large v, respectively. Then, the equation for u in (1.1) can
be written as

ut = ∆((d(K(v) +H(v)) + αH(v))u)

= d∆(K(v)u) + (d+ α)∆(H(v)u).

Defining u1 and u2 as u1 := K(v)u and u2 := H(v)u, u can be formally split into
two subpopulation densities u1 and u2, with u1 + u2 = u, such that

(u1 + u2)t = d∆u1 + (d+ α)∆u2. (3.1)

This suggests that the cross-diffusion may be approximated by diffusion processes,
and so the following reaction-diffusion system for u1 and u2 is considered:

u1t = d∆u1 + F (u1, u2),

u2t = (d+ α)∆u2 − F (u1, u2),
(3.2)

for some suitable function F (u1, u2). The system (3.2) implies that u is split into
u1 and u2, which indicate less active and active population densities with some
interaction between u1 and u2, as described by F (u1, u2). Since u1 = K(v)u, and
u2 = H(v)u, we obtain the relation H(v)u1 = K(v)u2. We note that this relation
is achieved as a stationary state of the following system of ordinary differential
equations:

u1t = (k(v)u2 − h(v)u1),

u2t = −(k(v)u2 − h(v)u1),
(3.3)

provided that H(v) = h(v)
k(v)+h(v) and K(v) = k(v)

h(v)+k(v) . The functions h(s) and k(s)

are respectively the monotonically decreasing and increasing functions satisfying
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h(s) + k(s) ≥ µ > 0 for any s ≥ 0, where µ is a positive constant. (3.3) indicates
conversion between u1 and u2 depending on v. If v is low, then u1 converts into u2.
Similarly, if v is high, then u2 converts into u1. If we introduce a fast time scale
τ = εt in (3.3), then (3.3) can be rewritten as

u1t =
1

ε
(k(v)u2 − h(v)u1),

u2t = −1

ε
(k(v)u2 − h(v)u1),

(3.4)

where we replaced τ by t again. In order to approximate the cross-diffusion system
(1.1), we can combine (3.4) with (3.2) under the condition that ε is sufficiently small.
Therefore, we obtain the following reaction-diffusion system with a sufficiently small
parameter ε > 0:

U1t = d∆U1 +
1

ε
(k(V )U2 − h(V )U1),

U2t = (d+ α)∆U2 −
1

ε
(k(V )U2 − h(V )U1),

Vt = D∆V + a(U1 + U2)− bV,

t > 0, x ∈ Ω. (3.5)

Here U1 and U2 imply the population densities of the less active state with diffusion
rate d and the active one with diffusion rate d + α, respectively, and V represents
the pheromone concentration. If V is high, U2 changes into the less active state U1,
and if V is low, U1 changes into the active state U2, where 1/ε represents the rate
of switching. We here assume that the conversion process takes place much faster
than the diffusion process. One explicit forms of h(s) and k(s) are

h(s) =
1− tanh(γ(s− v∗))

2
and k(s) =

1 + tanh(γ(s− v∗))
2

(3.6)

for some constants γ and v∗, which will be used in the numerical computations
below. In this case, since h(s) + k(s) = 1, H(s) and K(s) are identical with h(s)
and k(s), respectively. We now consider (3.5) in a bounded domain Ω ⊂ RN with
boundary conditions

∂U1

∂ν
=
∂U2

∂ν
=
∂V

∂ν
= 0, t > 0, x ∈ ∂Ω, (3.7)

and initial conditions 
U1(0, x) = U10(x),

U2(0, x) = U20(x),

V (0, x) = V0(x),

x ∈ Ω. (3.8)

A question then arises: let (uε1(t, x)), uε2(t, x)), vε(t, x)) be the solution of (3.5),
(3.7), and (3.8). Does the pair of functions (uε1(t, x) + uε2(t, x), vε(t, x)) converge to
a solution (u(t, x), v(t, x)) of (1.1), (1.3), and (1.4) as ε tends to zero? This question
is answered by the following convergence result:

Theorem 3.1. Arbitrarily set T > 0. Let (uε1(t, x), uε2(t, x), vε(t, x)) be the solu-
tion of (3.5), (3.7), and (3.8) in QT := (0, T ) × Ω. There exists a weak solution
(u(t, x), v(t, x)) of (1.1), (1.3), and (1.4) in QT and subsequences {uεk1 }, {u

εk
2 }, and

{vεk} of {uε1}, {uε2}, and {vε} such that

uεk1 + uεk2 ⇀ u weakly in L2(QT )

vεk → v strongly in L2(QT ), a.e. in QT and

weakly in L2((0, T );H1(Ω)) ∩H1((0, T ); (H1(Ω))′)
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as εk → 0.

This theorem will be proved in Section 4. Figure 3.1 shows the aggregation pattern
generated by (3.5), (3.7), and (3.8) when ε is sufficiently small. Surprisingly, Figure

Figure 3.1. Snapshots of two-dimensional pattern dynamics in
(3.5), (3.7), and (3.8) with ε = 0.0001. The initial conditions are
same as the ones in Figure 1.2, where U10(x)+U20(x) = u0(x), and
V0(x) = v0(x) on x ∈ Ω. The left and right figures describe U1 +U2

and V , respectively, at the indicated time. Other parameter values
and the domain size are the same as the ones in Figure 1.2.

3.1 is extremely similar to Figure 1.2 under the initial condition satisfying U10 +
U20 = u0 and V0 = v0, in spite of the fact that the reaction-diffusion system (3.5)
no longer possesses directed movement caused by an aggregation pheromone.

The convergence theorem 3.1 holds in the finite time interval [0, T ]. There is,
however, no information on the asymptotic behavior of the solutions. In the next
subsection, we will discuss both the stability of the constant equilibrium solution(
K(abU)U,H(abU)U, abU

)
and the global structure of the equilibrium solutions for

the one-dimensional stationary problem of the reaction-diffusion system.
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3.1. Stationary problem in one-dimension. A constant equilibrium solution
of the one-dimensional reaction-diffusion system

U1t = dU1xx +
1

ε
(k(V )U2 − h(V )U1),

U2t = (d+ α)U2xx −
1

ε
(k(V )U2 − h(V )U1),

Vt = DVxx + a(U1 + U2)− bV,

t > 0, x ∈ (0, L), (3.9)

with boundary conditions

U1x = U2x = Vx = 0, t > 0, x = 0, L, (3.10)

is
(
K(abU)U,H(abU)U, abU

)
withK(s) = k(s)

h(s)+k(s) andH(s) = h(s)
h(s)+k(s) , parametri-

zed by U := 1
L

∫ L
0

(U1 + U2) dx. By a calculation similar to (2.5), we can obtain the

stable and unstable regions in the (U,α)-plane, as shown in Figure 3.2, where the
bifurcation curves Γn (n = 1, 2, · · · ) are defined by

Γn :=

{
(U,α) ⊂ R2|ABC − a

ε2
k(
a

b
U)η +

a

ε2
h(
a

b
U)η

− aB 1

ε
η + aA

1

ε
η − C 1

ε2
h(
a

b
U)k(

a

b
U) = 0

}
,

where

A = −d(nπ)2 − 1

ε
h(
a

b
U),

B = −(d+ α)(nπ)2 − 1

ε
k(
a

b
U),

C = −D(nπ)2 − b,

η = k′(
a

b
U)H(

a

b
U)U − h′(a

b
U)K(

a

b
U)U.

We find that Figure 3.2 (ε = 0.0001) is quite similar to Figure 2.2. For small
α, the constant equilibrium solution

(
K(abU)U,H(abU)U, abU

)
is stable for any U .

For a suitably fixed α, its stability varies according to U . From the viewpoint of
linear stability analysis, we can regard (3.5) as a reaction-diffusion system of the
substrate-depletion type, such as the Gray-Scott model([24]) and an exothermic
reaction-diffusion system([19]), where U2 and V are viewed as fuel and temperature,
respectively. We already know that these substrate-depletion systems cause Turing’s
diffusion-induced instability. Therefore, we can say that the cross-diffusion induced
instability and Turing’s diffusion-induced instability are due to similar mechanisms.

Next, by using AUTO ([4]), we produced a diagram of the global bifurcation
of the equilibrium solutions of (3.9) and (3.10). The global bifurcation structure
of (3.9) and (3.10) in Figure 3.3 is extremely similar to that of (2.5) and (2.6) in
Figure 2.3. Stable non-constant equilibrium solutions of (3.9) and (3.10) exhibit
self-organized aggregating patterns, as shown in Figure 3.4. We know that the
solution profiles in Figure 3.4 resemble those in Figure 2.4. From these results, one
can expect that the convergence result will also hold for the two stationary problems
(2.5) and (2.6), and (3.9) and (3.10), although this is yet to be shown.

4. Singular limit as ε → 0. In the previous section, we formally derived the
three-component reaction-diffusion system (3.5) introducing subpopulation densi-
ties U1 and U2. It is expected that the total population density U1 + U2 of (3.5)
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Γ4

Γ2
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Γ3

Figure 3.2. Stable and unstable regions for the uniform equilib-
rium solution

(
K(abU)U,H(abU)U, abU

)
. The horizontal and ver-

tical axes are U and α, respectively. Curves in the figure are the
zero eigenvalue curves for each of the Fourier cosine modes. The
parameter values are a = b = 1, d = 0.05, D = 0.1, γ = 20, v∗ = 1,
ε = 0.0001, and L = 1.

Figure 3.3. Bifurcation diagram of (3.5) and (3.7). The hori-
zontal and vertical axes denote U and the value U1(x) + U2(x) at
x = 0, respectively. The solid and dashed curves indicate stable
and unstable branches, respectively. The symbol � indicates the
pitchfork bifurcation points. The parameter values are the same as
the ones in Figure 3.2, and α = 0.15.

approximates the population density u of the two-component cross-diffusion system
(1.1) for sufficiently small ε. In this section, we show the convergence of the function
pair (uε1 + uε2, v

ε), as ε tends to zero, which comes from an ε-parameter family of
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2.0

0.0
0.0 1.0

Figure 3.4. The profiles of stable non-constant equilibrium solu-
tions at U = 1 in Figure 3.3. The solid and dashed curves indicate
U1 + U2 and V , respectively. The parameters are the same as the
ones in Figure 3.3.

the three-component reaction-diffusion system

uε1t = d∆uε1 +
1

ε
(k(vε)uε2 − h(vε)uε1),

uε2t = (d+ α)∆uε2 −
1

ε
(k(vε)uε2 − h(vε)uε1),

vεt = D∆vε + a(uε1 + uε2)− bvε,

t ∈ (0, T ) x ∈ Ω,

∂uε
1

∂ν =
∂uε

2

∂ν = ∂vε

∂ν = 0, t ∈ (0, T ) x ∈ ∂Ω,
uε1(x, 0) = uε10(x),

uε2(x, 0) = uε20(x),

vε(x, 0) = vε0(x),

x ∈ Ω,

(4.1)

to a solution (u, v) of the following two-component cross-diffusion system,

ut = ∆((d+ αH(v))u),

vt = D∆v + au− bv, t ∈ (0, T ) x ∈ Ω,

∂u
∂ν = ∂v

∂ν = 0, t ∈ (0, T ) x ∈ ∂Ω,
u(x, 0) = u0 := u10(x) + u20(x),

v(x, 0) = v0(x),
x ∈ Ω,

(4.2)

in a rigorous way. For this purpose, we impose the following assumptions:
{uε10}, {uε20}, and {vε} are C3(Ω) non-negative functions, and uε10 → u10, uε20 → u20,
and vε0 → v0 in L2(Ω) as ε → 0. k(s) and h(s) are, respectively, C2 non-negative
functions satisfying 0 ≤ k(s), h(s) ≤ ξ and k(s) + h(s) ≥ µ for s ≥ 0, where ξ and
µ are positive constants. Typical choice is (3.6).

We first affirm existence of a solution of (4.1). The proof is shown in the Appen-
dix.

Theorem 4.1 (existence of a classical solution). We have a classical solution
(u1, u2, v) ∈ (C2,1(QT ))3 of (4.1).

We now define a weak solution for (4.2).

Definition 4.2. We call

u ∈ L2(QT )

and

v ∈ L∞((0, T );L2(Ω)) ∩ L2((0, T );H1(Ω)) ∩H1((0, T ); (H1(Ω))′)
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a weak solution of (4.2) if (u, v) satisfies

−
∫ ∫

QT

uφt −
∫

Ω

u0φ(0, ·) =

∫ ∫
QT

(d+ αH(v))u ·∆φ

for any φ ∈ C2,1(QT ) with ∂xφ · ν = 0 on ∂Ω and φ(·, T ) = 0 and

−
∫ ∫

QT

vψt −
∫

Ω

v0ψ(0, ·) =

∫ ∫
QT

−∇v · ∇ψ + (au− bv)ψ

for any ψ ∈ C1,1(QT ) with ψ(·, T ) = 0.

4.1. A priori estimate. Let us start the proof of a rigorous passage by using a
priori estimates uniformly in ε.

Lemma 4.3. Let u1, u2, v be solutions in C2(QT ) of the problem (4.1). Then for
all t ∈ [0, T ] and x ∈ Ω, we have u1(x, t) ≥ 0,u2(x, t) ≥ 0, v(x, t) ≥ 0.

Proof. The proof follows from the maximum principle.

Lemma 4.4 (L2 estimate for u1 and u2). We have that

‖uε1 + uε2‖L2(QT ) ≤ C.
Moreover,

‖uε1‖L2(QT ) + ‖uε2‖L2(QT ) ≤ C,
where C is a positive constant.

Hereafter, let C be a generic positive constant independent of u1, u2, v and ε.
For the proof of Lemma 4.4, we use the following lemma:

Lemma 4.5 ([1]). We consider a smooth bounded subset Ω ⊂ RN and assume that
ρ satisfies 

∂ρ
∂t = ∆(M(t, x)ρ) in QT ,
∂(Mρ)
∂ν = 0 in ∂Ω,

ρ(0, x) = ρ0(x) in Ω,

where M is a smooth positive function. Then for all T > 0,

‖
√
Mρ‖L2(QT ) ≤ C(Ω)‖ρ0‖L2(Ω) + 2〈ρ0〉‖

√
M‖L2(QT ),

where C(Ω) is the constant of Poincaré Wirtinger’s inequality and 〈ρ0〉 is the average
1
|Ω|
∫

Ω
ρ0dx.

Proof of Lemma 4.4. Adding the first and second equations of (4.1), we obtain

(uε1 + uε2)t = ∆(duε1 + (d+ α)uε2).

Here for

0 < d ≤M :=
duε1 + (d+ α)uε2

uε1 + uε2
≤ d+ α,

applying Lemma 4.5, we have

‖uε1 + uε2‖L2(QT ) ≤ C(‖uε10 + uε20‖L2(Ω) + 1).

Furthermore, thanks to the non-negativity of uε1 and uε2 from Lemma 4.3, and
‖uε1 + uε2‖L2(QT ) ≤ C, we know that ‖uε1‖L2(QT ) ≤ C and ‖uε2‖L2(QT ) ≤ C.

Lemma 4.6. We have

ess sup
t∈[0,T ]

∫
Ω

|vε(t)|2 +

∫ ∫
QT

|vε|2 +

∫ ∫
QT

|∇vε|2 ≤ C.
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Proof. Multiplying the equation for vε in (4.1) by vε, integrating over Ω, and using
integration by parts, we have

1

2

∂

∂t

∫
Ω

|vε|2 +D

∫
Ω

|∇vε|2 + b

∫
Ω

|vε|2 = a

∫
Ω

(uε1 + uε2)vε.

On the right-hand side, we know∫
Ω

(uε1 + uε2)vε ≤ 1

2

∫
Ω

|uε1 + uε2|2 +
1

2

∫
Ω

|vε|2,

where we used the non-negativity of u1, u2, and v from Lemma 4.3 and Young’s
inequality. Combining these inequalities and integrating over (0, T ),

1

2

∫
Ω

|vε(T )|2 +D

∫ ∫
QT

|∇vε|2 + b

∫ ∫
QT

|vε|2

≤ C(1 +

∫ ∫
QT

|vε|2)

is obtained where we used Lemma 4.4. Thanks to the Gronwall inequality, for any
T > 0, ∫

Ω

|vε(T )|2 +

∫ ∫
QT

|∇vε|2 +

∫ ∫
QT

|vε|2 ≤ C.

Lemma 4.7. The family {vεt } is bounded in L2((0, T ); (H1(Ω))′) uniformly with
respect to ε.

Proof. We multiply the equation for vε in (4.1) by ζ ∈ L2((0, T );H1(Ω)) and inte-
grate over QT . Then, after integration by parts, we obtain∫ T

0

〈vεt , ζ〉 = −D
∫ ∫

QT

∇vε · ∇ζ +

∫ ∫
QT

{a(uε1 + uε2) + bvε}ζ.

Hence from Lemmas 4.4 and 4.6, we have∣∣∣∣∣
∫ T

0

〈vεt , ζ〉

∣∣∣∣∣ ≤M‖ζ‖L2((0,T );H1(Ω)),

where M is a positive constant independent of ε and ζ. If we denote the duality
product between H1(Ω) and (H1(Ω))′ by 〈·, ·〉, we have shown that∣∣∣∣∣

∫ T

0

〈vεt , ζ〉

∣∣∣∣∣ ≤M‖ζ‖L2((0,T );H1(Ω))

for all ζ ∈ L2((0, T );H1(Ω)). This means that

‖vεt ‖L2((0,T );(H1(Ω))′) ≤M.
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4.2. Proof of Theorem 3.1. We now prove Theorem 3.1. We deduce from Lem-
mas 4.4, 4.6, and 4.7 that the families {uε1}, {uε2}, and {vε} are bounded in L2(QT ),
L2(QT ), and L∞((0, T );L2(Ω)) ∩ L2((0, T );H1(Ω)) ∩H1((0, T ); (H1(Ω))′), respec-
tively. Since L2((0, T );H1(Ω)) ∩ H1((0, T ); (H1(Ω))′) is precompact in L2(QT )
(Thorem 2.1 in [29]), there exist subsequences {uεk1 }, {u

εk
2 }, and {vεk} of {uε1},

{uε2}, and {vε}, and functions u1, u2 ∈ L2(QT ) and v ∈ L∞((0, T );L2(Ω)) ∩
L2((0, T );H1(Ω)) ∩H1((0, T ); (H1(Ω))′) such that

uεk1 ⇀ u1, uεk2 ⇀ u2

weakly in L2(QT ) and
vεk → v

strongly in L2(QT ), a.e. in QT and weakly in L2((0, T );H1(Ω)) ∩H1((0, T );
(H1(Ω))′) as εk → 0. Therefore, we find that k(vεk) → k(v) and h(vεk) → h(v)
strongly in L2(QT ) and a.e. in QT as εk → 0. When we multiply the equation for
uε1 by ϕ ∈ C∞0 (QT ) and integrate over QT , we deduce

−ε
∫ ∫

QT

uε1ϕt = εd

∫ ∫
QT

uε1∆ϕ+

∫ ∫
QT

(k(vε)uε2 − h(vε)uε1)ϕ,

where we used integration by parts. In this expression, we take εk → 0 along the
subsequences, so that we have

0 =

∫ ∫
QT

(k(v)u2 − h(v)u1)ϕ =

∫ ∫
QT

(u2(k(v) + h(v))− h(v)(u1 + u2))ϕ

for all ϕ ∈ C∞0 (QT ). This means that u2 = h(v)(u1+u2)
k(v)+h(v) a.e. in QT . We add the

equations for uε1 and uε2, multiply by φ ∈ C2,1(QT ) with ∂xφ · ν = 0 on ∂Ω and
φ(·, T ) = 0, and integrate over QT . We then have

−
∫ ∫

QT

(uε1 + uε2)φt −
∫

Ω

(uε10 + uε20)φ(·, 0) =

∫ ∫
QT

(d(uε1 + uε2) + αuε2) ∆φ.

Letting εk → 0 along the subsequences,

−
∫ ∫

QT

uφt −
∫

Ω

u0φ(·, 0) =

∫ ∫
QT

(
d+ α

h(v)

k(v) + h(v)

)
u∆φ,

where we denote u1 + u2 and u10 + u20 by u and u0, respectively. Similarly, in the
equation for vε, for any ϕ ∈ C1,1(QT ) with ϕ(·, T ) = 0,

−
∫ ∫

QT

vεϕt −
∫

Ω

vε0ϕ(·, 0) = −D
∫ ∫

QT

∇vε · ∇ϕ+ (a(uε1 + uε2)− bvε)ϕ.

Sending εk to zero along the subsequences, we obtain

−
∫ ∫

QT

vϕt −
∫

Ω

v0ϕ(·, 0) = −D
∫ ∫

QT

∇v · ∇ϕ+ (au− bv)ϕ.

We conclude the proof of Theorem 3.1.

5. A system of weakly interacting random walks. In the previous section, we
studied the reaction-diffusion system (3.5), which is equivalent to (1.5) in Section
1. In this section, we will show that such a macroscopic system can be derived
from a certain underlying microscopic system by taking a suitable space-time scal-
ing limit that connects microscopic and macroscopic systems. Since ε is arbitrarily
fixed in this section, and the factor 1/ε can be included in the functions h and
k, we can assume ε = 1 without loss of generality. In the previous sections, we
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imposed the zero-flux boundary condition on (3.5). However, to avoid certain tech-
nical difficulties, we will discuss the system under the periodic boundary condition
instead of the Neumann boundary condition (3.7), so we take Ω = TN , where
TN ≡ (R/Z)N (= [0, 1)N by identifying 1 with 0) is an N -dimensional torus.

Corresponding to the macroscopic population densities U1 of the less active (L)
state and U2 of the active (A) state, we consider at the microscopic level families
of finitely many random walks {Xn,L(t)}n=1,2,... and {Xn,A(t)}n=1,2,... moving on
a discrete torus TNM = (Z/MZ)N (= {1, 2, . . . ,M}N by identifying M + 1 with
1). The ratio of the typical lengths at the macroscopic and microscopic levels is
denoted by M ∈ N, which plays the role of a scaling parameter, so that TNM is the
(discretized) microscopic region corresponding to TN . Here, Xn,L(t) ∈ TNM denotes
the position of the n-th L-type particle at time t ≥ 0, while Xn,A(t) denotes that
of the n-th A-type particle. We consider random walks with continuous time t and
with jump rates (jump speeds) of Xn,L(t) and Xn,A(t), which are given by the
positive constants d1 and d2, respectively. Particles following these random walks
move independently, but change their internal states from L to A, and vice versa,
with rates that depend on the strength of the pheromone at the position where each
particle is currently located. We will assume that the amount of pheromone at each
site is measured by a non-negative integer at the microscopic level. The pheromone
also spreads by performing independent random walks with positive rate D, and it
is created proportionally to the total number of particles at each site with a constant
rate a, and it evaporates with rate b.

For our purpose, it is unnecessary to distinguish particles (random walkers) by
numbering them by n. We are only concerned with the number of particles with
states L and A at each site i ∈ TNM and time t ≥ 0, which are denoted by ξi(t) and
ηi(t) and defined from {Xn,L(t)} and {Xn,A(t)} by

ξi(t) =
∑
n

1{Xn,L(t)=i}, and ηi(t) =
∑
n

1{Xn,A(t)=i},

respectively.
The basic idea behind our scaling limit as M → ∞ is the local average due to

the so-called local ergodicity. Under the change of scales in space and time, a longer
time elapses in the microscopic system compared with the macroscopic system. In
fact, we introduce a diffusive scaling in time so that t at the macroscopic level
is scaled to M2t at the microscopic level. This is also true for space, namely, a
small region at the macroscopic scale is enlarged by M and becomes extremely
large at the microscopic scale. This yields an averaging effect in space and time for
any rapid fluctuations that occur in the microscopic system, and one can replace
microscopic (complex) functions by their ensemble averages. Here, the ensembles
represent the equilibrium states of the family of random walks on the infinite whole
lattice ZN , which is obtained from TNM as M →∞. Because of the conservation of
particle numbers under time evolution, the equilibrium states are not unique but
are parameterized by particle densities. Therefore, the averages for the microscopic
system should be taken with respect to different ensembles at each corresponding
location in macroscopic time and space (t, x). This kind of averaging results in
a property called the local ergodicity. Note that the particles change their states
from L to A, and vice versa, but that these rates are very small, and therefore this
process does not change the equilibrium state. This limiting procedure is called a
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hydrodynamic limit and, as a basic reference, we refer to the book of Kipnis and
Landim [16].

5.1. Microscopic system. Let us formulate our microscopic model more precisely.

Let X = ZZN

+ with Z+ = {0, 1, 2, . . .} be the configuration space of a particle system

on ZN and denote its elements by ξ = (ξi)i∈ZN , η or ζ. We also consider the

configuration space XM = ZTN
M

+ on TNM and denote its elements by ξ = (ξi)i∈TN
M

and

others. For each i ∈ ZN (or i ∈ TNM ), ξi ∈ Z+ represents the number of particles
located at site i. We consider an operator L0 acting on a function f = f(ξ) on X
determined by

L0f(ξ) =
∑

i∈ZN ,e∈ZN :|e|=1

ξi1{ξi≥1}
(
f(ξi,i+e)− f(ξ)

)
,

where ξi,j ∈ X , i, j ∈ ZN is defined from ξ ∈ X satisfying ξi ≥ 1 by

(ξi,j)k =


ξi − 1, k = i,

ξj + 1, k = j,

ξk, k 6= i, j,

and represents the configuration obtained from ξ after one particle jumps from i
to j. The operator L0 generates a system of independent (continuous-time) simple
symmetric random walks ξ(t) = (ξi(t))i∈ZN on ZN , which make only jumps to
neighboring sites. The jump rate, which is given by ξi in L0, means that each
particle has the same jump rate 1. We write 1{ξi≥1} in L0 for ξi,i+e to be defined,
but we may actually drop it since ξi = 0 if 1{ξi≥1} = 0. The operator L0 can also
be defined on XM :

L0f(ξ) =
∑

i∈TN
M ,e∈ZN :|e|=1

ξi1{ξi≥1}
(
f(ξi,i+e)− f(ξ)

)
,

for a function f = f(ξ) on XM , where i+e is defined in modulo M in a component-
wise fashion.

Let YM = X 3
M , and denote its elements by (ξ, η, ζ). Consider an operator L

which acts on a function F = F (ξ, η, ζ) on YM , uses the scaling parameter M , and
is determined by

LF (ξ, η, ζ) =d1{L0F (·, η, ζ)}(ξ) + d2{L0F (ξ, ·, ζ)}(η) +D{L0F (ξ, η, ·)}(ζ)

+
1

M2

∑
i∈TN

M

K(ζi)ηi1{ηi≥1}{F (ξi,+, ηi,−, ζ)− F (ξ, η, ζ)}

+
1

M2

∑
i∈TN

M

H(ζi)ξi1{ξi≥1}{F (ξi,−, ηi,+, ζ)− F (ξ, η, ζ)}

+
a

M2

∑
i∈TN

M

(ξi + ηi){F (ξ, η, ζi,+)− F (ξ, η, ζ)}

+
b

M2

∑
i∈TN

M

ζi1{ζi≥1}{F (ξ, η, ζi,−)− F (ξ, η, ζ)},

where ξi,+ and ξi,− ∈ XM are defined from ξ by

(ξi,+)k =

{
ξi + 1, k = i,

ξk, k 6= i,
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and

(ξi,−)k =

{
ξi − 1, k = i,

ξk, k 6= i,

respectively. These represent the configuration after the creation and annihilation
of a particle at site i, respectively. Note that ξi,− is defined only for configurations
ξ ∈ XM satisfying ξi ≥ 1. In the definition of the operator L, d1, d2, D, a, and b
are positive constants, and H and K are given non-negative bounded functions on
Z+. The first term, for example, {L0F (·, η, ζ)}(ξ), is defined by the action of L0 on
the first coordinate ξ of F .

As we explained at the beginning of this section, we have in mind a system
of particles which perform independent random walks while changing their states
occasionally from L to A, and vice versa. The number of particles with states L and
A at site i and time t are denoted by ξi(t) and ηi(t), respectively, while the strength
of pheromones at i, which the particles produce, is denoted by ζi(t). The first
three terms in the generator L specify that particles with states L and A perform
independent random walks with diffusive speeds d1 and d2 (d1 = d and d2 = d+ α
in (3.5)), respectively, while the strength of the pheromone, taking discrete values
and considered as particles, performs independent random walks with a different
diffusive speed D. The fourth and fifth terms indicate that a particle changes its
state from A to L, or L to A, with rates K(ζi)ηi/M

2 or H(ζi)ξi/M
2, respectively.

Both rates are proportional to the number of particles with states A or L, but the
proportional constants depend on the strength of pheromone via certain nonlinear
functions K and H. The last two terms indicate that the creation of the pheromone
occurs at i with rate a(ξi + ηi)/M

2, which is proportional to the total number of
particles located at i, and annihilation occurs at i with rate bζi/M

2.

5.2. Hydrodynamic scaling limit. The (continuous-time) Markov process on
YM generated by L is denoted by (ξ(t), η(t), ζ(t)) for t ≥ 0. We define their macro-
scopic density profiles UM1 (t, x), UM2 (t, x), and VM (t, x) under the diffusive space-
time scaling as

UM1 (t, x) =
∑
i∈TN

M

ξi(M
2t)1BM (i/M)(x),

UM2 (t, x) =
∑
i∈TN

M

ηi(M
2t)1BM (i/M)(x),

VM (t, x) =
∑
i∈TN

M

ζi(M
2t)1BM (i/M)(x),

for t ≥ 0 and x ∈ TN , where BM (i/M) := (i/M − 1/2M, i/M + 1/2M ]N denotes a
box with center i/M and side length 1/M . The microscopic space variable i ∈ TNM
corresponds to the macroscopic variable x = i/M by shrinking the space by M ,
while the microscopic time corresponding to the macroscopic t is given by M2t.
This type of space-time scaling is called diffusive scaling.

We say a sequence of random functions {UM ∈ L1(TN )}M=1,2,... on TN converges
to U ∈ L1(TN ) as M →∞ in a weak sense in probability if

lim
M→∞

P (|〈UM − U,ϕ〉| > δ) = 0

holds for every ϕ ∈ C(TN ) and δ > 0, where 〈U,ϕ〉 =
∫
TN U(x)ϕ(x)dx. For

probability measures µM1 and µM2 on YM , the relative entropy of µM1 with respect
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to µM2 is defined by

H(µM1 |µM2 ) :=

∫
YM

log

(
dµM1
dµM2

(ξ, η, ζ)

)
dµM1 (ξ, η, ζ),

if µM1 is absolutely continuous with respect to µM2 , and H(µM1 |µM2 ) =∞ otherwise.
Then, we have the following theorem.

Theorem 5.1. Assume that the initial values UM1 (0), UM2 (0), and VM (0) converge
to U10, U20, and V0 ∈ L1(TN , [0,∞)), respectively, as M → ∞ in a weak sense in
probability. We assume two additional technical conditions on initial values: the
uniform L2-bound

sup
M∈N

E

 1

MN

∑
i∈TN

M

(
ξi(0)2 + ηi(0)2 + ζi(0)2

) <∞, (5.1)

and the boundedness of the relative entropies per volume of the distributions µM (0)
of (ξ(0), η(0), ζ(0)) on YM with respect to the Poisson field µ̄Mρ∗ on YM (see the next

subsection) for some ρ∗ = (ρ1
∗, ρ

2
∗, ρ

3
∗) with ρ1

∗, ρ
2
∗, ρ

3
∗ > 0,

sup
M∈N

M−NH(µM (0)|µ̄Mρ∗) <∞. (5.2)

Then, for every t > 0, we have the convergences

UM1 (t, x)→ U1(t, x),

UM2 (t, x)→ U2(t, x),

VM (t, x)→ V (t, x),

as M →∞ in a weak sense in probability and the limits U1(t, x), U2(t, x), and V (t, x)
are the unique weak solutions, satisfying sup0≤t≤T {‖U1(t)‖L1(TN ) +‖U2(t)‖L1(TN ) +

‖V (t)‖L1(TN )} < ∞ and ∇U1,∇U2,∇V ∈ L2([0, T ] × TN ,RN ) for every T > 0, of
the following equations:

U1t = d1∆U1 + {k(V )U2 − h(V )U1},
U2t = d2∆U2 + {h(V )U1 − k(V )U2},
Vt = D∆V + a(U1 + U2)− bV,

with initial values U10, U20, and V0, where the (macroscopic) functions h and k
defined for v ≥ 0 are determined from the (microscopic) ones H and K defined on
Z+ by

h(v) = Eµv [H], k(v) = Eµv [K].

These are the expectations under the Poisson fields µv on ZN , which will be explained
in the next subsection.

5.3. Reversible measures for L0. Let µρ be the Poisson fields on ZN parame-
terized by the mean density ρ ≥ 0, that is, µρ is a probability measure on X such
that

µρ(ξi = k) = e−ρ
ρk

k!

(
=: νρ(k)

)
, k ∈ Z+,

for every i ∈ ZN , and {ξi}i∈ZN are independent under µρ, i.e., µρ is a product
measure of νρ. Then, it is known that {µρ}ρ≥0 (and their superpositions) are



MICROSCOPIC AND MACROSCOPIC MODELS 727

reversible and therefore invariant for L0 defined on the whole lattice ZN . Indeed, a
simple computation shows that

∞∑
k,`=0

g(k, l)
[
k1{k≥1}{f(k − 1, `+ 1)− f(k, `)}

+`1{`≥1}{f(k + 1, `− 1)− f(k, `)}
]
νρ(k)νρ(`)

= −ρ
∞∑

k,`=0

{g(k, `+ 1)− g(k + 1, `)}{f(k, `+ 1)− f(k + 1, `)}νρ(k)νρ(`)

for all bounded functions f and g on Z+ × Z+, and this implies the reversibility of
L0 under µρ. In other words, {µρ}ρ≥0 are the “ensembles” corresponding to the
system of independent random walks on Zd that are generated by L0.

We denoted the product measure of νρ on TNM by µMρ , and the product measure

of the three Poisson fields µMρ1∗
, µMρ2∗

, and µMρ3∗
on TNM by µ̄Mρ∗ ≡ µ

M
ρ1∗
⊗ µMρ2∗ ⊗ µ

M
ρ3∗

with

ρ∗ = (ρ1
∗, ρ

2
∗, ρ

3
∗) in Theorem 5.1.

5.4. Proof of Theorem 5.1. We are working on the discrete torus TNM of size M .
We take a test function ϕ ∈ C∞(TN ) on the corresponding macroscopic torus TN .
Then, we have that

〈UM1 (t), ϕ〉 =
1

MN

∑
i∈TN

M

ξMi (t)ϕ̄

(
i

M

)
,

〈UM2 (t), ϕ〉 =
1

MN

∑
i∈TN

M

ηMi (t)ϕ̄

(
i

M

)
,

〈VM (t), ϕ〉 =
1

MN

∑
i∈TN

M

ζMi (t)ϕ̄

(
i

M

)
,

where ξM (t) = ξ(M2t), ηM (t) = η(M2t), ζM (t) = ζ(M2t), and

ϕ̄

(
i

M

)
= MN

∫
BM (i/M)

ϕ(x)dx.

Note that ϕ̄(i/M) behaves as ϕ(i/M) as M →∞.
By taking the stochastic differentials, the first sum can be rewritten as

〈UM1 (t), ϕ〉 = 〈UM1 (0), ϕ〉

+
M2

MN

∫ t

0

∑
i∈TN

M

(Lξi)(ξ
M (s), ηM (s), ζM (s))ϕ̄

(
i

M

)
ds+mM

1 (t),

where mM
1 (t) is a martingale. We have similar formulas for 〈UM2 (t), ϕ〉 and 〈VM (t),

ϕ〉. It is not difficult to see that mM
1 (t) converges to 0 in the sense that

lim
M→∞

E[(mM
1 (t))2] = 0.

On the other hand, a simple computation shows that

L0ξi =
∑

j∈TN
M ,e∈ZN :|e|=1

ξj1{ξj≥1}
(
(ξj,j+e)i − ξi

)
=

∑
e∈ZN :|e|=1

(
ξi−e1{ξi−e≥1} − ξi1{ξi≥1}

)
=

∑
e∈ZN :|e|=1

(ξi−e − ξi),
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where j + e and i − e are understood in modulo M . Therefore, by summation by
parts,

M2

MN

∑
i∈TN

M

d1(L0ξi)ϕ̄

(
i

M

)
=
d1M

2

MN

∑
i∈TN

M ,e∈ZN :|e|=1

(ξi−e − ξi)ϕ̄
(
i

M

)

=
d1

MN

∑
i∈TN

M ,e∈ZN :|e|=1

ξiM
2

{
ϕ̄

(
i+ e

M

)
− ϕ̄

(
i

M

)}

=
d1

MN

∑
i∈TN

M

ξi

{
∆ϕ

(
i

M

)
+O

(
1

M

)}
.

The last equality is due to Taylor’s formula. Other terms in Lξi are computed as

1

M2

{
K(ζi)ηi1{ηi≥1}

(
(ξi,+)i − ξi

)
+H(ζi)ξi1{ξi≥1}

(
(ξi,−)i − ξi

)}
=

1

M2
{K(ζi)ηi −H(ζi)ξi} .

We thus obtain that

〈UM1 (t), ϕ〉 = 〈UM1 (0), ϕ〉+

∫ t

0

 d1

MN

∑
i∈TN

M

ξMi (s)

{
∆ϕ

(
i

M

)
+O

(
1

M

)}

+
1

MN

∑
i∈TN

M

{
K(ζMi (s))ηMi (s)−H(ζMi (s))ξMi (s)

}
ϕ̄

(
i

M

) ds+mM
1 (t).

The first term in the integral is approximately equal to d1〈UM1 (s),∆ϕ〉. To study
the asymptotic behavior of the second term, one needs the local ergodicity (the
establishment of the local equilibrium), that is, for each i close to Mx with every
fixed x ∈ TN , the distribution of (ξMj+i(s), η

M
j+i(s), ζ

M
j+i(s))j converges weakly to

the product measure µU1(s,x) ⊗ µU2(s,x) ⊗ µV (s,x) as M → ∞ (under space-time
averaging) with limit functions (U1(s, x), U2(s, x), V (s, x)), which we do not know
a priori. More precisely, we can show the following replacement lemma, see Lemma
1.10 in [16], p.77. We need the assumption (5.2) on the relative entropy to prove
this lemma.

Lemma 5.2. For every δ > 0 and g : Z3
+ → [0,∞), which grows at most linearly:

0 ≤ g(k1, k2, k3) ≤ C(k1 + k2 + k3) with C > 0, we have that

lim sup
ε↓0

lim sup
M→∞

P

∫ T

0

1

MN

∑
i∈TN

M

τiGεM (ξM (s), ηM (s), ζM (s))ds ≥ δ

 = 0,

where τi denote the shifts by i and for ` ∈ N

G`(ξ, η, ζ) =

∣∣∣∣∣ 1

|Λ`|
∑
i∈Λ`

g(ξi, ηi, ζi)− Φ(ξ`0, η
`
0, ζ

`
0)

∣∣∣∣∣ ,
Λ` = [−`, `]N ∩ ZN , |Λ`| = (2`+ 1)N ,

ξ`0 =
1

|Λ`|
∑
i∈Λ`

ξi,

Φ(u1, u2, v) = Eµu1
⊗µu2

⊗µv [g(ξ0, η0, ζ0)].
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This lemma claims that, under the space-time average, the microscopic function
g(ξMi (s), ηMi (s), ζMi (s)) can be replaced by its ensemble average Φ(u1, u2, v) with
parameters

u1 =
(
τiξ

εM
0

)
(ξM (s)) ≡ 〈UM1 (s),

1

(2ε)N
1[−ε,ε]N+ i

M
〉,

u2 =
(
τiη

εM
0

)
(ηM (s)) ≡ 〈UM2 (s),

1

(2ε)N
1[−ε,ε]N+ i

M
〉,

v =
(
τiζ

εM
0

)
(ζM (s)) ≡ 〈VM (s),

1

(2ε)N
1[−ε,ε]N+ i

M
〉,

as M →∞ and then ε ↓ 0.
Establishing the tightness of {UM1 (t), UM2 (t), VM (t)}M ([16], p.71, Lemma 1.5),

one gets the following identity for every limit {U1(t), U2(t), V (t)} along a subse-
quence:

〈U1(t), ϕ〉 = 〈U1(0), ϕ〉+
∫ t

0

{d1〈U1(s),∆ϕ〉+ 〈k(V (s))U2(s)− h(V (s))U1(s), ϕ〉} ds,

by noting that∫
TN

EµU1(s,x)⊗µU2(s,x)⊗µV (s,x) [K(ζ0)η0 −H(ζ0)ξ0]ϕ(x)dx

= 〈k(V (s))U2(s)− h(V (s))U1(s), ϕ〉.

This identity is nothing but the weak and integrated form of the first equation in
Theorem 5.1. We similarly get the weak form of the second equation. For the third
equation, we compute terms appearing in Lζi as follows:

a

M2
(ξi + ηi)

(
(ζi,+)i − ζi

)
+

b

M2
ζi1{ζi≥1}

(
(ζi,−)i − ζi

)
=

a

M2
(ξi + ηi)−

b

M2
ζi,

and we have

1

MN

∫ t

0

∑
i∈TN

M

{
a(ξMi (s) + ηMi (s))− bζMi (s)

}
ϕ̄

(
i

M

)
ds

=

∫ t

0

〈a(UM1 (s) + UM2 (s))− bVM (s), ϕ〉ds,

which converges to ∫ t

0

〈a(U1(s) + U2(s))− bV (s), ϕ〉ds,

along a subsequence.
Once we can show the uniqueness of the weak solutions of the limit equations (for

instance [16], p.108, Theorem 7.5), without taking subsequences, {UM1 (t), UM2 (t),
VM (t)}M themselves will be shown to converge to the unique solution. We need
the assumption (5.1) to show that the limit belongs to the desired class mentioned
in Theorem 5.1 to guarantee the uniqueness.

6. A hybrid model with aggregation pheromone. In the previous section,
for a finite ε > 0, by using the hydrodynamic limit procedure, we showed that the
reaction-diffusion system (3.5) can be derived from the microscopic particle system.
Since the reaction-diffusion system (3.5) coincides with the cross-diffusion system
(1.1) in the singular limit ε→ 0, we could make a link between the macroscopic and
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microscopic descriptions. In this section, by taking into account that the conver-
sion rates from A-type to L-type and vice versa tend to infinity (and therefore the
conversion occurs rapidly), and that the size of an individual is much larger than a
pheromone molecule, we propose a two-dimensional hybrid model related to (1.1)
and the microscopic particle system introduced in Section 5. We then use a numer-
ical experiment to investigate the mechanism of individual aggregation caused by
aggregation pheromone.

6.1. Description of a hybrid model. We consider the aggregation behavior of in-
dividuals that interact with each other through the aggregation pheromone, which
each individual secretes by itself, and propose a hybrid model with aggregation
pheromone to describe the motion of individuals. Our model is based on the fol-
lowing assumptions:

(A.1) Each individual moves by a simple symmetric random walk on a square lattice.
Furthermore, each individual possesses two internal states: an active state with
jump rate λa and a less active state with jump rate λl.

(A.2) Each individual secretes a diffusive chemical substance, the aggregation phero-
mone, with a constant rate a, and this pheromone evaporates at a constant rate b.

(A.3) Each individual occasionally changes its state between active and less active,
and vice versa, at a rate that depends on the local concentration of the aggrega-
tion pheromone, e.g., the individual changes its state from active to less active at a
certain specified rate when the local pheromone concentration is high in its vicin-
ity. The result is that the individual has a tendency to remain at the same site.
Conversely, the individual changes its state from less active to active at a certain
specified rate when the local pheromone concentration is low in its vicinity.

Based on assumptions (A.1), (A.2), and (A.3), we propose a two-dimensional
hybrid model which consists of an individual-based model for individuals and a
continuum model for the pheromone concentration.

We set a square domain Ω := [0, L]× [0, L] for L ∈ R+. Then, we define the two-
dimensional square lattice with the width l = L

M for M ∈ N on the domain Ω. We
denote the two-dimensional square lattice by S := {0, 1, · · · ,M} × {0, 1, · · · ,M}.
We define the position of the ith individual (i = 1, 2, · · · , N) at time t by Xi(t) :=
(Xi

x(t), Xi
y(t)) ∈ S. We also write the concentration of the aggregation pheromone

as v(t,x) at time t and position x ∈ Ω. Let the next position Xi(t+τ) be generated
by the following probabilistic procedure, where τ is the time for the motion of the
individuals and should behave asO(1/M2) asM →∞ to connect to the macroscopic
system. Initially, the internal state of the ith individual is decided as follows:

the ith individual is active if q ≥ K (v),

the ith individual is less active if q < K (v),

where K (v) is a monotonically increasing function with 0 ≤ K (v) ≤ 1, and q is a
pseudo-random number generated in [0, 1], which is renewed at each time step and
for each individual. We assume that

K (v) =
1 + tanh(c1

1
|ωi|

∫
ωi v(t,x)dx− c2)

2
,
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where c1 and c2 are positive constants, and ωi = [lXi
x(t)− l

2 , lX
i
x(t)+ l

2 ]× [lXi
y(t)−

l
2 , lX

i
y(t) + l

2 ]. This means that the internal state of each individual is probabilis-
tically prescribed by the average of the local pheromone concentration. Next, the
motion of individuals in active and less active states is decided as follows:

Xi(t+ τ) = P(Xi(t), v(t,x)), i = 1, 2, · · · , N. (6.1)

The operator P is given by

P(Xi(t), v(t,x)) =

{
Pa(Xi(t)), if the ith individual is active,

P l(Xi(t)), if the ith individual is less active,

where the two operators Pa and P l correspond to active and less active states,
respectively. This means that the motion is different according to the internal state
of the ith individual. When the individual is active, the next position Xi(t+ τ) is
determined by

Pa(Xi(t)) =



(Xi
x(t) + 1, Xi

y(t)), 0 ≤ p < λa,

(Xi
x(t)− 1, Xi

y(t)), λa ≤ p < 2λa,

(Xi
x(t), Xi

y(t) + 1), 2λa ≤ p < 3λa,

(Xi
x(t), Xi

y(t)− 1), 3λa ≤ p < 4λa,

(Xi
x(t), Xi

y(t)), 4λa ≤ p ≤ 1,

where p is a pseudo-random number generated in [0, 1], which is renewed at each
time step and for each individual. P l is similarly defined by using λl instead of
λa. This means that the ith individual on Xi(t) moves randomly to a new position
Xi(t+ τ) at the next time step t+ τ . For the jump rates of active and less active
individuals to the neighbor site, we assume the condition 0 < λl < λa ≤ 1/4.

The time evolution of pheromone concentration v(t,x) is described by a contin-
uum model:

∂v(t,x)

∂t
= D∇2v(t,x) + a

N∑
i=1

∫
Ω

Iωi(x)dx− bv(t,x), t > 0 and x ∈ Ω, (6.2)

where D is a diffusion coefficient, a and b are the secretion and evaporation rates,
respectively, Iωi(x) is a indicator function such that

Iωi(x) =

{
1, if x ∈ ωi,
0, otherwise,

and ωi is the domain mentioned above. All of the constants are positive.
The initial position of each individual Xi(0) (i = 1, · · · , N) is given at random

by
Xi(0) = (Xi

x(0), Xi
y(0)) (i = 1, · · · , N), (6.3)

and the initial concentration of the pheromone v(0,x) is imposed by

v(0,x) = 0 x ∈ Ω. (6.4)

Finally, we prescribe the boundary conditions. We consider a square domain with
system size Ω = [0, L] × [0, L] and a square lattice S = {0, · · ·M} × {0, · · ·M},
with width l. Here, we assume that each individual moves on the lattice Sin :=
{1, · · ·M − 1} × {1, · · ·M − 1}. For the position of the ith individual Xi(t), the
boundary condition is represented as an operator B:

Xi(t+ τ) = B(Xi(t), v), if Xi(t) is on the boundary of Sin, (6.5)
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which is similar to the operator P in (6.1), where

B(Xi(t), v(t,x)) =

{
Ba(Xi(t)), if the ith individual is active,

Bl(Xi(t)), if the ith individual is less active.

The operators Ba and Bl are defined as follows: if Xi(t) = (1, Xi
y(t)), Xi

y(t) ∈
{2,M − 2} for instance, the evolution of the position of the ith individual is

Bk(Xi(t)) =


(2, Xi

y(t)), 0 ≤ p < λk,

(1, Xi
y(t) + 1), λk ≤ p < 2λk,

(1, Xi
y(t)− 1), 2λk ≤ p < 3λk,

(1, Xi
y(t)), 3λk ≤ p ≤ 1,

where k = a or l. In the same manner, we can define the boundary operators Ba

and Bl for Xi(t) = (M − 1, Xi
y(t)), (Xi

x(t), 1) and (Xi
x(t),M − 1), (Xi

x(t), Xi
y(t) ∈

{2, 3, · · · ,M − 2}), respectively. Moreover, when Xi(t) is on the corner, that is,
Xi(t) = (1, 1), (1,M − 1), (M − 1, 1) and (M − 1,M − 1), the operator Bk(Xi(t)),
for example Xi(t) = (1, 1), is also defined by

Bk(Xi(t)) =


(2, 1), 0 ≤ p < λk,

(1, 2), λk ≤ p < 2λk,

(1, 1), 2λk ≤ p ≤ 1,

where k = a, l. For the other corners (1,M − 1), (M − 1, 1), and (M − 1,M − 1),
the operator B is similarly defined. Finally, the boundary condition for v is

∂v

∂ν
(t,x) = 0, t > 0, ∂Ω,

where ν is the outward-pointing unit normal vector.

6.2. Numerical results. We now present the results of the implementation of our
hybrid model. We set the following parameter values for the numerical simulations:
L = 52, M = 52, l = 1, λa = 1/5, λl = 1/500, D = 0.5, a = 800, b = 0.1,
c1 = 6.25× 10−5, c2 = 1, and τ = 1. By changing the number of individuals N , we
investigated the occurrence of self-organized aggregation. At first, in the case where
the number of individuals was sufficiently small, almost all of the individuals moved
by active random walk, which was due to the small amount of pheromone secretion.
As a consequence, they did not aggregate (see Figure 6.1 for N = 100). In the
case where the number of individuals was sufficiently large, since the pheromone
concentration became high everywhere, all of the individuals changed their states
from active to less active and moved by the less-active random walk. Thus, since all
individuals were uniformly distributed due to the simple symmetric random walk,
they again did not aggregate, as shown in Figure 6.2 for N = 3000. However, when
the number of individuals was moderate, the situation was drastically changed,
and the aggregation process of individuals was exhibited. Figure 6.3 shows that
several individuals, which were initially incidentally localized, formed areas of high
pheromone concentration, which triggered the generation of small clusters, which
consisted of less active individuals (see Figures 6.3 (a), (b), and (c)). These clusters
further developed due to repeated merging (see Figures 6.3 (c), (d), and (e)). Even-
tually, a few large clusters were formed (see Figures 6.3 (f)). In this aggregation
process, we infer that, as time evolved, the ratio of the number of active (and less
active) individuals to the number of total individuals approximately approached a
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constant (see Figure 6.4). The coexistence of both active and less active individuals
implies an occurrence of the self-organized aggregation of individuals. Figure 6.5
displays the ratio of the number of less active individuals to that of the total indi-
viduals when the number of the total individuals N was varied. We can see that
when N increased, the ratio increased according to N . For small N , we know from
Figure 6.5 that the number of less active individuals was relatively small, therefore,
as was shown in Figure 6.1, clusters were not generated for small N even though
some individuals stochastically changed their internal state from active to less ac-
tive. On the other hand, when N was approximately 300, some clusters appeared.
We can see from Figure 6.5 that the ratio of less active individuals to N drastically
increased around N = 300. For N > 400, the ratio increased gradually with N . In
particular, for 300 ≤ N ≤ 1000, we observed the generation of clusters as shown
in Figure 6.3. Finally, for large N , clusters were no longer generated as shown in
Figure 6.2. In Figure 6.5, for N = 300, we find that the transition from a low
rate of less active individuals to a high rate of less active individuals occurred as
time evolved. This numerical simulation suggests that there is a tendency to take
a long time to form aggregation in the neighborhood of a critical point, whether or
not clusters are eventually generated. Moreover, it also takes a long time for the
configuration of clusters to stabilize, even though the ratio of the number of less
active individuals to that of total individuals stabilizes relatively quickly.

t=0

31200

0.0 t=4000!

31200

0.0

Figure 6.1. Snapshots of random behavior of individuals (the
number is 100). The gray circles denote individuals. The gray scale
in the background indicates the pheromone concentration, with
black corresponding to high concentration and white corresponding
to low. The system size is [0, 52]× [0, 52].

7. Concluding remarks. In this paper, we proposed a macroscopic cross-diffusion
model that describes the aggregation phenomena of the German cockroach with
aggregation pheromone. Our goal was to derive a microscopic model that is set into
context with the macroscopic cross-diffusion system (1.1). In order to do that, we
first introduced a reaction-diffusion system that approximated the cross-diffusion
system. The reaction-diffusion approximation theory we used here was proposed
by Iida, Mimura and Ninomiya [10], and Murakawa [21]. Through the reaction-
diffusion system approximation, we derived a two-mode simple symmetric random



734 T. FUNAKI, H. IZUHARA, M. MIMURA AND C. URABE

t=0

31200

0.0 t=4000!

31200

0.0

Figure 6.2. Snapshots of random behavior of individuals (the
number is 3000). The gray circles denote individuals. The gray
scale in the background indicates the pheromone concentration,
with black corresponding to high concentration and white corre-
sponding to low. The system size is [0, 52]× [0, 52].

walk particle system as a microscopic model. This microscopic model described
cockroach behavior that each cockroach can be in two states, moving and stopped.
Therefore, we were able to link the macroscopic and microscopic models in a rigorous
way by using the singular limit and the hydrodynamic limit.

On the other hand, as a microscopic model corresponding to (1.1), we proposed a
two-dimensional hybrid model which consisted of an individual-based model for the
individuals and a continuum model for the pheromone concentration. This hybrid
model introduced in Section 6 and can be regarded as a particle system when the
conversion rate from A-type to L-type, and vice versa, tended to infinity. From the
results of the numerical simulation of the hybrid model, we suggest that individuals
that do not possess directed movement can nonetheless aggregate in a self-organized
way by effectively using a diffusive chemical substance, although it is said that
the effect of aggregation pheromones of German cockroach is still obscure([14]).
However, we have not yet determined the relationship between the cross-diffusion
system (1.1) and the hybrid model. The rigorous proof of that relationship is our
intended area of further study. The cross-diffusion system (1.1) and the reaction-
diffusion system (3.5) with growth terms are also investigated([5]). Rich aggregating
pattern dynamics are exhibited in these systems.

As far as we were able to ascertain, there are several studies connecting the
macroscopic population level and the microscopic individual level ([3][20][23][26][27]
for instance). Connecting these two areas should provide many interesting and
challenging problems for future research.
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Figure 6.3. Snapshots of behavior of individuals (the number is
500), where τ is the unit time. The gray circles denote individuals.
The gray scale in the background indicates the pheromone concen-
tration, with black corresponding to high concentration and white
corresponding to low. The system size is [0, 52]× [0, 52].
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ogy (FIRST Program)”, initiated by the Council for Science and Technology Policy
(CSTP).



736 T. FUNAKI, H. IZUHARA, M. MIMURA AND C. URABE

0 1000 2000 3000 40000

0.2

0.4

0.6

0.8

1

active

less active

Figure 6.4. Time series of the ratios of active and less active
individuals against the total individuals (N = 500). The upper
curve represents the ratio for less active individuals, and the lower
one is the ratio for active individuals.
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Figure 6.5. Dependency of the ratio of less active individuals to
the number of the total individuals N . Each data point is the
average of the ratio of less active individuals when the time series
of the ratio is almost stable in the time interval [t0, t0+2000], where
t0 is sufficiently large.

Appendix A. Existence of a solution to the reaction-diffusion system.
In this appendix, we show the existence of a global solution of (A.1) as stated in
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Theorem 4.1. We consider the following problem:

u1t = d∆u1 +
1

ε
(k(v)u2 − h(v)u1),

u2t = (d+ α)∆u2 −
1

ε
(k(v)u2 − h(v)u1),

vt = D∆v + a(u1 + u2)− bv,

t ∈ (0, T ) x ∈ Ω,

∂u1

∂ν = ∂u2

∂ν = ∂v
∂ν = 0, t ∈ (0, T ) x ∈ ∂Ω,

u1(x, 0) = u10(x),

u2(x, 0) = u20(x),

v(x, 0) = v0(x),

x ∈ Ω.

(A.1)

where we assume that the bounded domain Ω ⊂ RN with the smooth boundary ∂Ω,
and ν is an outward-pointing unit normal vector on the boundary. Hereinafter, we
denote Ω × (0, T ) by QT . Moreover, we suppose that functions h(s) and k(s) are
respectively monotonically decreasing and increasing C2 functions such that

0 ≤ h(s), k(s) ≤ ξ for s ≥ 0 and h(s) + k(s) ≥ µ > 0,

where ξ and µ are positive constants. A typical example is

k(s) =
1 + tanh(γ(s− v∗))

2
and h(s) =

1− tanh(γ(s− v∗))
2

,

where γ and v∗ are positive constants. On the initial data, we impose that

u10, u20, v0 ∈ C3(Ω)

and are non-negative functions on Ω, respectively.
In order to prove the existence of a solution to the problem, we must obtain

several a priori estimates.

Lemma A.1. We have that

‖u1‖Lp(QT ) + ‖u2‖Lp(QT ) < C

for 2 ≤ p <∞.

Proof. From an estimate of the equation for u1 ([17] Theorem 9.1 Chapter IV), we
know

‖u1‖W 2,1
2 (QT ) ≤ C

(
‖k(v)u2 − h(v)u1‖L2(QT ) + ‖u10‖L2(Ω)

)
.

Thanks to Lemma 4.4 and the boundedness of h(s) and k(s),

‖u1‖W 2,1
2 (QT ) ≤ C

is obtained. By the Sobolev embedding theorem, since W 2,1
2 (QT ) ⊂ Lq(QT ) with

q = 2(N+2)
N−2 for N > 2 and 2 ≤ q ≤ ∞ for N = 1, 2,

‖u1‖Lq(QT ) ≤ C.

Similarly, for u2, we obtain

‖u2‖Lq(QT ) ≤ C.
Repeating this procedure, we obtain the desired Lp estimate

‖u1‖Lp(QT ) + ‖u2‖Lp(QT ) ≤ C

for any p ∈ [2,∞).
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Proof of Theorem 4.1. This proof is based on Schaefer’s fixed-point theorem([6]).
We fix T > 0 arbitrarily. For given U1, U2, V ∈ C(QT ), consider

u1t − d∆u1 =
1

ε
(k(V )U2 − h(V )U1),

u2t − (d+ α)∆u2 = −1

ε
(k(V )U2 − h(V )U1),

vt −D∆v + bv = a(U1 + U2),

t ∈ (0, T ] x ∈ Ω,

∂u1

∂ν = ∂u2

∂ν = ∂v
∂ν = 0, t ∈ (0, T ] x ∈ ∂Ω,

u1(x, 0) = u10(x),

u2(x, 0) = u20(x),

v(x, 0) = v0(x),

x ∈ Ω.

(A.2)

Then from Theorem 9.1 Chapter IV [17], we obtain a unique strong solution u1, u2, v
∈W 2,1

p (QT ). This mapping is denoted by P , that is (u1, u2, v) = P [U1, U2, V ]. We
define the function space

X = C(QT ).

Then, this mapping P : X3 → X3 is continuos and compact. Because it follows
from the Sobolev embedding theorem that W 2,1

p (QT ) is compactly embedded into

C1+µ,(1+µ)/2(QT ) with µ ∈ (0, 1−(N+2)/p) ([17] Lemma 3.3 Chapter II) therefore,
the map P : X3 → X3 is compact. Continuity of the map P is obvious. In order
to apply Schaefer’s fixed-point theorem, we must check that the set

{(u1, u2, v) ∈ X3|(u1, u2, v) = λP [u1, u2, v] for some 0 ≤ λ ≤ 1}

is bounded. We suppose that u1, u2, v is a solution of (A.1). Then, from an a priori
estimate, we know that

‖u1‖W 2,1
p (QT ) ≤ C

(
λ‖k(v)u2 − h(v)u1‖Lp(QT ) + 1

)
,

‖u2‖W 2,1
p (QT ) ≤ C

(
λ‖k(v)u2 − h(v)u1‖Lp(QT ) + 1

)
,

‖v‖W 2,1
p (QT ) ≤ C(λ(‖u1‖Lp(QT ) + ‖u2‖Lp(QT )) + 1),

where C is a positive constant. In the left-hand side of the first and second inequal-
ities, we can estimate

‖k(v)u2 − h(v)u1‖Lp(QT ) ≤ C(‖u1‖Lp(QT ) + ‖u2‖Lp(QT )),

because 0 ≤ h(s) ≤ ξ and 0 ≤ k(s) ≤ ξ for any s ≥ 0. Thus

‖u1‖W 2,1
p (QT ) + ‖u2‖W 2,1

p (QT ) + ‖v‖W 2,1
p (QT ) ≤ C(λ(‖u1‖Lp(QT ) + ‖u2‖Lp(QT )) + 1).

Lemma A.1 gives us that

‖u1‖W 2,1
p (QT ) + ‖u2‖W 2,1

p (QT ) + ‖v‖W 2,1
p (QT ) ≤ C(λ+ 1).

Therefore, the Sobolev embedding theorem leads to

‖u1‖X + ‖u2‖X + ‖v‖X ≤ C(λ+ 1).

We have performed an a priori estimate for the solution u1, u2, v. Applying Schae-
fer’s fixed-point theorem, one can obtain at least one fixed point (u1, u2, v) ∈ X3.
Further, regularity results([17]) give us a classical solution (u1, u2, v) ∈ (C2,1(QT ))3
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