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Abstract. This article reviews biological processes that can be modeled by
PDEs, it describes mathematical results, and suggests open problems. The first

topic deals with tumor growth. This is modeled as a free boundary problem

for a coupled system of elliptic, hyperbolic and parabolic equations. Existence
theorems, stability of radially symmetric stationary solutions, and symmetry-

breaking bifurcation results are stated. Next, a free boundary problem for
wound healing is described, again involving a coupled system of PDEs. Other

topics include movement of molecules in a neuron, modeled as a system of

reaction-hyperbolic equations, and competition for resources, modeled as a
system of reaction-diffusion equations.

1. Introduction. Recent years have seen a dramatic increase in the number and
variety of new mathematical models describing biological processes. Many of these
models are formulated in terms of dynamical systems, i.e., ODEs and PDEs, or
mixture thereof. Relevant biological questions give rise to interesting questions
regarding properties of the solutions of the dynamical systems. In this review we
introduce some of these models, report on recent mathematical results, and raise
open and challenging questions. We shall consider models that describe tumor
growth and wound healing, both being free boundary problems for systems of PDEs.
We shall then consider reaction-hyperbolic equations that model, for instance, the
movement of motor proteins in axon. Finally we review recent mathematical results
for systems of diffusion equations pertaining to models in ecology and evolution.

2. Tumor growth. We denote a tumor domain in R3 by Ω(t), and its boundary
by Γ(t); Γ(t) is a “free boundary,” i.e, it is not prescribed in advance, and needs
to be solved together with a system of PDEs that are to be satisfied in Ω(t). We
assume that there are three types of cells in the tumor: proliferating cells with
(mass) density p(x, t), quiescent cells with density q(x, t), and dead cells with density
n(x, t).

Following [30], we assume that quiescent cells become proliferating cells at a rate
KP (c) which depends on the concentration c of nutrients and they become necrotic
at death rate KD(c). We also assume that proliferating cells become quiescent at
a rate KQ(c) and their death rate is KA(c). The density of proliferating cells is
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increasing at a rate KB(c). Finally, we assume that dead cells are removed from
the tumor at a constant rate KR.

We next assume that all the cells are physically identical in volume and mass
and that their density is constant throughout the tumor, so that

p+ q + n = const. = θ. (1)

Due to proliferation and removal of cells, there is a continuous motion of cells
within the tumor. We shall represent this movement by a velocity field v. We can
then write the conservation of mass law for the densities of the proliferating cells
p, the quiescent cells q, and the dead cells n within the tumor region Ω(t) in the
following form:

∂p

∂t
+ div(pv) = [KB(c)−KQ(c)−KA(c)]p+KP (c)q, (2)

∂q

∂t
+ div(qv) = KQ(c)p− [KP (c) +KD(c)]q, (3)

∂n

∂t
+ div(nv) = KA(c)p+KD(c)q −KRn. (4)

We assume that movement of cells within Ω(t) is similar to that of a flow in a porous
medium. Hence the velocity v is related to the pressure σ of the flow by means of
Darcy’s law

v = −∇σ. (5)

If we add equations (2)-(4) and use (1), we get

θ div v = KB(c)p−KRn, (6)

and we may replace (4) by (6).
We assume that the nutrient concentration satisfies the diffusion equation

β
∂c

∂t
= ∆c− λ(p+ q)c in Ω(t). (7)

Eliminating n from (6), by (1), and taking, for simplicity, θ = 1, and recalling (5),
we obtain, in addition to (7), the following equations:

∂p

∂t
−∇σ · ∇p = f(c, p, q) in Ω(t), t > 0, (8)

∂q

∂t
−∇σ · ∇q = g(c, p, q) in Ω(t), t > 0, (9)

∆σ = −h(c, p, q) in Ω(t), t > 0, (10)

where

f(c, p, q) = [KB(c)−KQ(c)−KA(c)]p+KP (c)q − h(c, p, q)p,

g(c, p, q) = KQ(c)p− [KP (c) +KD(c)]q − h(c, p, q)q,

h(c, p, q) = −KR + [KB(c) +KR]p+KRq.

We impose the following boundary conditions:

c = c on Γ(t), t > 0, (11)

σ = γκ on Γ(t), t > 0, (12)

where c is a constant, γ is a surface tension coefficient representing the cell-to-cell
adhesion, and κ is the mean curvature (κ = 1

R if Ω(t) is a ball of radius R). We
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assume that the normal velocity Vn of the free boundary is the same as the normal
velocity v · n of the cells in the outward normal direction n, i.e.,

∂σ

∂n
= −Vn on Γ(t), t > 0. (13)

We finally prescribe initial conditions:

Ω(t)|t=0 =Ω0, the boundary Γ0 of Ω0 is in C2+α,

c|t=0 =c0(x), p|t=0 = p0(x), q|t=0 = q0 in Ω0,

p0 ≥ 0, q0 ≥ 0, p0 + q0 ≤ 1, c0 ≥ 0;

c0, p0, q0 are in C2+α(Ω0), c0 = c on Γ0.

(14)

The functions Ki(c) in (2)-(4) satisfy natural monotonicity conditions; for example,
KB(c) and KP (c) should be monotone increasing in c. However, such assumptions
will not be needed below; we only assume that

the functions Ki(c) are in Cα. (15)

Theorem 2.1. [4]. The system (1)-(15) has a unique solution with Γ(t) in

C
2+α,1+α/2
x,t for all 0 < t < T , where T is some small positive number.

The solution can be extended step-by-step provided one can establish a priori

C
2+α,1+α/2
x,t bound on Γ(t). This is the case when Γ(t) is a sphere r = R(t):

Theorem 2.2. If the initial data are radially symmetric then there exists a unique
globally radially symmetric solution with free boundary r = R(t).

The questions that arise are:
(i) Are there radially symmetric stationary solutions, with R(t) ≡ R?
(ii) Are such solutions asymptotically stable? By this we mean that for any

initial data “close” to a radially symmetric stationary solution there exists a unique
global solution which converges to the radially symmetric stationary solution.

These questions are, in general, open except in the special case where q ≡ n ≡ 0,
p ≡ 1, i.e., when all the cells are proliferating. In this case

∆σ = −µ(c− c̃), µ > 0, 0 < c̃ < c (16)

where µ(c− c̃) is the proliferating rate, and the following result holds:

Theorem 2.3. [25]. There exists a unique radially symmetric stationary solution
(c, σ) with free boundary r = R, given by

c(r) = c
R

sinhR

sinhr

r
, σ(r) = C − µc(r) +

µ

6
r2 (17)

where

C =
γ

R
+ µ− µc

6
R2

and R is the solution of the transcendental equation

tanhR = R/

(
1 +

c̃

3c
R2

)
. (18)

It is known that the radially symmetric solution, with fixed R but variable
M = µ/γ, develops “fingers”, i.e., that there exist symmetry-breaking bifurcation
branches of solutions:
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Theorem 2.4. [10][26]. Let

M`(R) =
(`− 1)`(`+ 2)

2

1

R5P0(R){P1(R)− P`(R)}
,

where

Pn(r) =
In+ 3

2
(r)

rIn+ 1
2
(r)

,

Im(R) is the modified Bessel function given by

Im(r) =

∞∑
k=0

(r/2)m+2k

k!Γ(m+ k + 1)
.

For any ` ≥ 2, there exists a stationary solution with free boundary

r = R+ εY`,0(θ) +O(ε2)

M = M` + εM`,1 +O(ε2), M = µ/γ

for any small |ε| where Y`,0(θ) is the spherical harmonic of mode (`, 0).

Clearly, the radially symmetric stationary solution is unstable when M = M2.
But it may already lose stability for smaller values of M :

Theorem 2.5. [14][15][19]. There exists a positive number R such that the station-
ary spherical solution (17)-(18) is asymptotically stable for all M < M2 if R > R,
but only for all M < M∗2 , with some M∗2 < M2, if R < R.

Thus smaller stationary solutions are less stable as the tumor becomes “more
aggressive,” i.e., as M increases. Both R and M∗2 are determined as solutions of
certain transcendental equations.

The existence of a radially symmetric stationary solution for the general problem
(1)-(15) is unknown, except in the case where q ≡ 0 or n ≡ 0 [7][8]; but no explicit
formula is known, although linear asymptotical stability was established in [3].

Most of the above results have been extended to the case where instead of Darcy’s
law assumption we assume that the tumor tissue is fluid-like and use the Stokes
equation instead of Darcy’s law. In this case the relation between the velocity v
and the pressure σ is given by

− ν∇2v +∇σ = f , (19)

div v = g (20)

where f = −ν3∇g, and the boundary condition (12) is replaced by

T (v, σ)n = −γκn (21)

where

T (v, σ) = ν(∇v +∇vT )− (σ +
2ν

3
div v)I, (22)

ν is the viscosity coefficient, I is the unit matrix, and g is the proliferation rate, given
by the right-hand side of (6). Existence and uniqueness of a solution with prescribed
initial data was proved in [11]. In the case of one population of cells (p ≡ 1,
q ≡ n ≡ 0) the existence of a unique stationary solution with radially symmetric
free boundary was proved in [11] and its asymptotic stability was determined in [17].
As in the case of porous medium, here too there exists a sequence of symmetry-
breaking bifurcation branches of solutions [18]. For other models of tumor growth,
see review article [29].
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3. Multiscale model in tumor growth. Cancer develops when cells proliferate
at higher rate than normal cells, or die at lower rate than normal cells. It is
therefore important to look closely at the cell cycle and include it in the study of
tumor growth.

The cell cycle is divided into four phases: S (for synthesis), M (for mitosis), and
gap phases G1 and G2. During the S phase the DNA is replicated, that is, each
chromosome is duplicated. During the mitosis phase, M , the nuclear membrane
breaks down, sister chromatids are separated, new nuclear membranes are formed,
and the cell divides into two daughter cells. S and M are separated by the two gap
phases, G1 and G2. The cell cycle is controlled at two check points, R1, located
near the end of G1, and R2 located in G2.

At the check point R1 the cell decides on one of three options: (i) to commit
suicide (apoptosis) if it senses that it has been damaged beyond repair during the
growth phaseG1; (ii) to go into a quiescent phaseG0 and stay there for a while, if the
microenvironment is hypoxic or overpopulated with other cells; or (iii) to proceed
to the S phase. At R2 the cell decides either to go into apoptosis if irreparable
damage has occurred during the DNA replication, or to continue toward the M
phase. A cell remains in G0 for a period of time, at the end of which it proceeds to
the S phase.

We describe a multiscale model in a simple case where the only cells are prolif-
erating cancer cells with possible mutations in a set of genes γ = (γ1, γ2, . . . , γ`).

Following [12] we introduce the following notation:

p1(x, t, s1) = density of cells in phase G1, 0 ≤ s1 ≤ A1;

p2(x, t, s2) = density of cells in phase S, 0 ≤ s2 ≤ A2;

p3(x, t, s3) = density of cells in phases G2 and M, 0 ≤ s3 ≤ A3;

p0(x, t, s0) = density of cells in phase G0, 0 ≤ s0 ≤ A0;

p4(x, t) = density of dead cells,

where x varies in the tumor region Ω(t), with boundary Γ(t).
We denote by w(x, t) the oxygen concentration and by Q(x, t) the combined

density of live cells in phases G1, S, G2, M and G0. Then, by conservation of mass,

∂pi
∂t

+
∂pi
∂si

+ div(piv) = λi(w)pi for 0 < si < Ai(i = 1, 2, 3), (23)

∂p0

∂t
+
∂p0

∂s0
+ div(p0v) = −λ0p0 for 0 < s0 < A0, (24)

∂p4

∂t
+ div(p4v) = µ1p1(x, t, A1) + µ2p2(x, t, A2)− λrp4 (25)

where λi(w) are growth rates, and µi = µi(γ).
Since the density of cells does not change during the time of replication,

p1(x, t, 0) = p3(x, t, A3). (26)

In the following equation (27) the first term on the right-hand side represents
the cell’s decision at check point R1 whether to go to apoptosis (µ1), to quiescent
phase, or to proceed to S; the decision depends on the environment (w,Q) and on
the state of the genes in γ. The last term in (27) represents cells that moved from
G0 to S,

p2(x, t, 0) = (1− µ1 −K(w(x, t), Q(x, t); γ))p1(x, t, A1) + p0(x, t, A0). (27)
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The decision at R2, whether to go to apoptosis, is expressed by the equation

p3(x, t, 0) = (1− µ2)p2(x, t, A2), (28)

and the quiescence phase begins with

p0(x, t, 0) = K(w(x, t), Q(x, t); γ)p1(x, t, A1). (29)

In order to determine the velocity v we introduce the quantities

Qi(x, t) =

∫ Ai

0

pi(x, t, si)dsi (0 ≤ i ≤ 3), Q4(x, t) = p4(x, t),

~Q(x, t) = {Qi}4i=0,

and note that

Q(x, t) = Σ3
i=0Qi(x, t).

We integrate equations (23)-(24) over their respective si-intervals and combine
the result with (25). Using (26)-(29) we find that all the boundary terms cancel
out, so that

4∑
i=0

[
∂Qi
∂t

+ div(Qiv)

]
=

3∑
i=1

λi(w)Qi − λ0Q0 − λ4Q4. (30)

If we now assume, as in (1), that

4∑
i=0

Qi(x, t) ≡ const. = θ, (31)

and take θ = 1, then (30) yields

div v = H( ~Q,w) (32)

where

H( ~Q,w) =

3∑
i=1

λi(w)Qi − λ0Q0 − λ4Q4. (33)

Finally, the oxygen concentration satisfies a diffusion equation

wt −Dw · ∇2w + λQw = 0 (34)

where λ is a positive constant.
We can proceed to complete the model by assuming that the tissue either obeys

Darcy’s law or Stokes law. These models were studies in [12][13] where local ex-
istence and uniqueness was proved for any initial data, and global existence was
proved in the radially symmetric case. Some asymptotic estimates were derived in
[20].

We pick up two genes, γ1 which transcribes SMAD and γ2 which transcribes
APC. SMAD blocks cell cycle at R1 when the oxygen level is low, and APC blocks
cell cycle at R1 when the microenvironment is overpopulated with cells. It is known
that in colorectal cancer these two genes are mutated. In our model mutation of
both genes means that K(w,Q, γ) = const; however, if only γ1 is mutated, the cell
cycle can still be blocked at R1 under overpopulation conditions.

It was proved in [21] that cancer occurs if both genes γ1 and γ2 are mutated,
in the sense that in the radially symmetric case the tumor radius R(t) increases to
∞ as t → ∞. However, if only γ1 is mutated, the cells can control overpopulation
conditions so that R(t) will remain bounded for all t > 0.
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The multiscale approach to cancer described above includes two time scales, t
and si, and spatial scales from genes to tissue. This direction of research is just at
its initial stage of development. It would be very interesting to include a broader set
of genes and the constraints on the control they have within these genes network,
as the cell reaches the check points R1 and R2.

4. Wound healing. Consider a cutaneous, or dermal, wound which occupies a
region

W (t) = {(x1, x2, x3); (x1, x2) ∈W0(t),−h(x1, x2, t) ≤ x3 ≤ 0)}

where W0(t) is the surface of the wound, lying in {x3 = 0}. Healing occurs as W0(t)
and h(x1, x2, t) decrease in t. Taking a fixed cylindrical domain

R = {(x1, x2, x3);
√
x2

1 + x2
2 < L,−H < x3 < 0}

such that W (0) ⊂ R, we view the tissue undergoing healing, as occupying the region

Ω(t) = R\W (t).

Let ρ denote the density of the extracellular matrix (ECM). During the healing
process ρ is expected to increase until, with complete recovery, it reaches the density
ρ0 of healthy normal tissue.

Following [27] [33], we assume that the partially healed region Ω(t) is viscoelastic,
in fact upper connected Maxwell fluid, and we neglect inertia; we further assume
that the healing process is quasi-stationary. As healing proceeds so will the isotropic
pressure P , which we take to be

P = P (ρ) = const. F

(
ρ

ρ0
− 1

)
where F is a smooth approximation to the Heaviside function. We then obtain the
following elliptic system for the velocity (v = (v1, v2, v3)) of the ECM:

η

3∑
i=1

∂

∂xi

(
∂vj
∂xi

+
∂vi
∂xj

)
− ∂P

∂xj
= 0 in Ω(t), (j = 1, 2, 3), (35)

where η is a positive constant.
We denote by Γ(t) the part of the boundary of Ω(t) which lies in {x3 < 0}. It is

natural to assume that there is no stress at the free boundary Γ(t). Hence

η

3∑
i=1

(
∂vj
∂xi

+
∂vi
∂xj

)
νi − Pνj = 0 on Γ(t), (j = 1, 2, 3) (36)

where n = (ν1, ν2, ν3) is the outward normal. The boundary conditions for v at the
fixed boundaries are

v1 = v2 = v3 = 0 on {x3 = −H} and on {x2
1 + x2

2 + L2},
∂v1

∂x3
=
∂v2

∂x3
= 0, v3 = 0 on {x3 = 0, (x1, x2) /∈W0(t), x2

1 + x2
2 < L2}.

(37)

We assume that the free boundary moves in the normal direction with velocity
Vn = v · n. We can represent this relation in the form

ψt + v · ∇ψ = 0 on Γ(t) (38)

where Γ(t) is given by the zero set of ψ, i.e., by ψ(t,x) = 0 where x = (x1, x2, x3).
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We assume that

Γ(0) ∈ C3+α,Γ(0) intersects x3 = 0 orthogonally,

sup
0≤t≤T0

|P (t, ·)|C1+α <∞ (39)

for some T0 > 0.
In the following theorem Γ(t) is parametrized by (θ, ϕ, t) and we set λ = (θ, ϕ).

Theorem 4.1. [24] The system (35)-(39) has a unique solution for 0 ≤ t < T for
some T < T0, with Γ(t) which is in C2+α in λ, and its t-derivative is in C1+α in λ.

In order to prove the theorem we first reflect v1 and v2 across x3 = 0 and
anti-reflect v3 across x3. In this way we obtain a free boundary which does not
intersect the fixed boundary. If Γ(0) does not intersect x3 = 0 orthogonally, then

we expect that singularities will occur at Γ(t) ∩ {x3 = 0}, and this case has not
been investigated.

We would like to find conditions which will ensure that healing takes place and
that the wound shrinks. Consider for example the case of axial symmetry, so that
ϕ = ψ(t, r, x3) where r = (x2

1 + x2
2)1/2. We can then represent Γ(t) in the form

x3 = Z(t, r)

and the free boundary condition by

Zt + v1Zr − v2 = 0.

It follows that the wound will begin to shrink if Zt > 0 at t = 0, i.e., if

v1Z
0
r − v2 < 0 (40)

where Z0 = Z(0, r).

Problem: Find conditions on Γ(0) and P (0, r, x3) which ensure that (40) is satis-
fied.

Note that this open problem is a purely elliptic one, with no free boundary.
So far we assumed that P is a given function. But, of course, P is a function of

ρ, and ρ evolves according to the law of mass conservation.

∂ρ

∂t
+ div(ρv) = G

where

G =
kw

w +K
f

(
1− ρ

ρmax

)
− λρ.

Here w is the concentration of oxygen, and f is the concentration of fibroblasts.
Furthermore, the variables ρ, w, f and v are involved in a larger system of drift-
diffusion equations which includes several cell types and several growth factors. The
existence and uniqueness of a solution for the complete system was also proved in
[24], for a small time interval.

Consider next a simpler model introduced in [33] where the dermal wound is flat,
so that all the variables, including the velocity v, are functions of (x1, x2, t); let us
further specialize to the radially symmetric case, where v = v(r, t) and all other
variables are functions of (r, t). The wound region is then a circle r < R(t), and the
healing region is defined by R(t) < r < L. We assume that the wound is ischemic,
i.e, the capillary system is damaged so that not enough oxygen w enters through
r = L:

(1− γ)(w − w0) + γ
∂w

∂r
= 0 (41)
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where 0 < γ < 1; if γ = 1 the capillary system is completely cut off and we do not
expect that the wound will heal, whereas if γ = 0 then the oxygen level at r = L
is the same as the normal oxygen level w0 in healthy tissue, and we may expect
complete healing.

We impose similar ischemic boundary conditions on f and all the other cells and
signaling molecules.

Theorem 4.2. [23] Under the above conditions the wound healing model has a
unique global solution with free boundary r = R(t) in C1+α/2, and dR/dt ≤ 0 for
all t > 0. Furthermore, if γ is near 1 then there exists a finite time T∗ such that
R(T∗) > 0 and

R(t) > R(T∗) if t < T∗

R(t) = R(T∗) if t > T∗.

The last result means that very ischemic wounds stop healing after time T∗.
Numerical results with biological parameters for the complete system show that
healing takes place if γ is near 0, but there is no mathematical proof for such a
result, even when γ = 0. Indeed all is known for the case γ = 0 is that dR/dt < 0
for all t > 0; see [23] for more details.

5. Reaction-hyperbolic systems. The movement of molecular motors along a
microtubule, or the generation of an action potential for a membrane patch are
biological processes that can be described by the stochastic differential equation

dx

dt
= V (x, t, Si)

where Si are N discrete states and the transition between the states is by a Markov
process. This non-autonomous jump-velocity process is modeled by a non-autonom-
ous reaction-hyperbolic system

∂pi
∂t

+
∂

∂x
(vi(x, t)pi) =

1

ε

n∑
j=1

kijpj (42)

where (kij) is the transition matrix and pi(x, t) is the probability density for being
in state Si at time t and position x. The parameter ε is small, reflecting the fact that
the transition between the states is fast compared to the time scale of transport.

We assume that kij are constants,

kij ≥ 0 if i 6= j,

n∑
i=1

kij = 0 for j = 1, 2, · · · , n, (43)

and
for any i0 6= i1, there is a sequence of indices j1, j2, · · · , j` such that

i0 = j1, i1 = j` and kjmjm+1
> 0 for 1 ≤ m ≤ `− 1.

(44)

Under these conditions the null space of the matrix (kij)
n
i,j=1 is one dimensional,

and there exists a unique vector λ = (λ1, · · · , λn) such that
n∑
j=1

kijλj = 0, 0 < λi < 1 for i = 1, 2, · · · , n, and

n∑
j=1

λj = 1. (45)

We shall consider the system (5.1) in

D∞ ≡ {(x, t);−∞ < x <∞, t > 0}
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and prescribe initial nearly “equilibrium data”,

pi(x, 0) = λi

[
q0

(
x√
ε

)
+
√
ε q1i

(
x√
ε

)]
for−∞ < x <∞, 1 ≤ i ≤ n. (46)

We assume that vj are in Cn(D∞) with uniform bounded derivatives of all order
up to n, and

n∑
i=1

(vi(x, t)− v(x, t))2 ≥ c0 > 0, where v(x, t) ≡
n∑
j=1

λjvj(x, t). (47)

This condition is locally satisfied if and only if not all the vj coincide.
We are interested in determining the behavior of pj(x, t) as t → ∞. Following

[22] we introduce the solution g(x, t) of

gt + v(x, t)gx = 0 in DT = D∞ ∩ {t < T}
g(x, 0) = x, −∞ < x <∞

for any T <∞, and the change of variables

τ = t, s =
1√
ε
g(x, t),

Qεj(s, τ) = pj(x, t).

Theorem 5.1. [22] For any 0 < α < 1 there is a constant Cα such that

sup
|s|≤ε−α/2,0≤τ≤T

|Qεj − λjQ0| ≤ Cαε(1−α)/2, j = 1, 2, · · · , n,

where Q0 is the bounded solution of a diffusion equation

∂τQ0 = β0(τ)∂2
sQ0 + β1(τ)Q0 (β0(τ) > 0),

with initial condition

Q0(s, 0) = q0(s),

where β0(τ), β1(τ) can be computed explicitly in terms of the kij and g.

A similar result was proved earlier in [16] in the case where the vi are constants,
but the space D∞ is replaced by the half space

D+
∞ = {(x, t); 0 < x <∞, t > 0}

and boundary conditions are imposed at {x = 0, t > 0} on the pi for which vi < 0.
This case models the transport of collagens in neurons; see [6]; see also [31].

Extension of the above results to the case where the kij are variable functions
remains an open problem. We mention here one special case of a system that arise
in gas kinetics:

∂p1

∂t
+

1

ε

∂p1

∂x
=

1

ε2
(p1 + p2)α(p2 − p1),

∂p2

∂t
− 1

ε

∂p2

∂x
=

1

ε2
(p1 + p2)α(p1 − p2)

(48)

where 0 ≤ α ≤ 1; by scaling, this system can be rewritten in the form (42) with
v1 = 1, v2 = −1 and with kij multiplied by (p1 + p2)α. In this model the pi(i =
1, 2) represent the concentration of two gases. It was established (see [32] and the
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references therein) that, under appropriate initial data, pi → u as ε → 0 where u
satisfies the diffusion equation

∂u

∂t
=

∂

∂x

(
1

uα
∂u

∂x

)
.

Question: What is the asymptotic behavior of the above system when v1, v2 are
arbitrary functions?

6. Competition for resources. In this section we briefly describe mathematical
problems based on the classical models of Lotke-Volterra which represent competi-
tion between two species. If we denote by u and v the densities of the two species,
and by m(x) the common source they compete for, then one natural model is the
following one:

∂u

∂t
= ∇ · (µ∇u− αu∇m) + (m− (u+ v))u (49)

∂v

∂t
= ∇ · (ν∇v − βv∇m) + (m− (u+ v))v (50)

in a bounded domain Ω, with no-flux boundary conditions

µ
∂u

∂n
− αu ∂m

∂n
= ν

∂v

∂n
− βv ∂m

∂n
on ∂Ω (51)

Here µ and ν are the diffusion (dispersion) rates of the two species, and α and β are
their respective chemotactic coefficients: each species is attracted in the direction of
the gradient of the resource m(x) with its own chemotactic parameter. We assume
for simplicity that all the parameters are constants and µ > 0, ν > 0, α ≥ 0, β ≥ 0.

The basic question is: Will both species survive, or will one of them become
extinct as t→∞.

Consider first the case α = β = 0, and assume that∫
Ω

m(x)dx > 0.

Then, as proved in [9], for any γ > 0 there exists a unique positive solution θ(·, γ)
of the elliptic problem

γ∆θ + (m− θ)θ = 0 in Ω,

∂θ

∂n
= 0 on ∂Ω.

The stationary solutions (u, v) of (49)-(51), (θ(·, µ), 0) and (0, θ(·, ν)) represent the
cases where only one species survives, and the interesting question is which one.

Theorem 6.1. [9] If µ < ν then (θ(·, µ), 0) is globally asymptotically stable among
all nonnegative nontrivial initial data.

Thus, the slower diffuser survives!
This result was extended in [1][2] to the case of general α ≥ 0, β ≥ 0, and to

more general systems [5], including nonlocal dispersions [28]. For some range of
parameters only one species survives, while for another range of parameters co-
existence was established.

It would be interesting to consider the more general case of k species ui (1 ≤
i ≤ k) competing for ` resources mj(x) (1 ≤ j ≤ `), each adopting a strategy (e.g.
dispersion and chemotactic parameters) with the goal of securing its own survival.
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Such a model may include game theoretic considerations, such as Nash equilib-
rium strategies meant to represent some degree of mutual cooperation within the
framework of competition. Historic biodiversity data would be useful in suggesting
realistic models.
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