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Abstract: In this paper, with the help of the generalized Hopf-Cole transformation, we first convert
the nonhomogeneous Burgers’ equation into an equivalent heat equation with the derivative boundary
conditions, in which Neumann boundary conditions and Robin boundary conditions can be viewed as
its special cases. For easy derivation and numerical analysis, the reduction order method is used to
convert the problem into an equivalent first-order coupled system. Next, we establish a box scheme
for this first-order system. By the technical energy analysis method, we obtain the prior estimate
of the numerical solution for the box scheme. Furthermore, the solvability and convergence are
obtained directly from the prior estimate. The extensive numerical examples are carried out, which
verify the developed box scheme can achieve global second-order accuracy for both homogeneous and
nonhomogeneous Burgers’ equations.
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1. Introduction

Burgers’ equation plays an important role in analyzing fluid turbulence since it has much in common
with the Navier-Stokes equation. It was introduced by an English mathematician H. Bateman in 1915
[1] with its corresponding homogeneous boundary conditions as

ut + uux = µuxx, 0 < x < L, 0 < t 6 T, (1.1a)
u(x, 0) = ϕ(x), 0 6 x 6 L, (1.1b)
u(0, t) = 0, u(L, t) = 0, 0 < t 6 T, (1.1c)

where µ > 0 is the kinematic viscosity. A Dutch physicist J.M. Burgers explained the mathematical
simulation of turbulence with the help of Eqs (1.1a)–(1.1c) in 1948 [2], which made this equation
famous. In honor of his work, the equation is named omit the Burgers’ equation. In order to efficiently
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solve Eqs (1.1a)–(1.1c), E. Hopf [3] and J.D. Cole [4] independently introduced a transformation to
convert Eqs (1.1a)–(1.1c) into a heat equation with Neumann boundary condition, which made the
exact solution explicitly for arbitrary initial conditions. The transformation was well-known as the
Hopf-Cole transformation u(x, t) = −2µwx

w , where w(x, t) satisfied the following equation
wt = µwxx, 0 < x < L, 0 < t 6 T,

w(x, 0) = exp(−
1

2µ

∫ x

0
ϕ(s)ds), 0 6 x 6 L,

wx(0, t) = 0, wx(L, t) = 0, 0 6 t 6 T.

During the last few decades, many significant efforts have been carried out oriented towards the
robust numerical schemes for Burgers’ equation, which forms a benchmark problem in parallel and
distributed computation for the partial differential equations solvers [5, 6]. Among the various solvers,
there are analytical methods involving classical Hopf-Cole transformation [3, 4]. There are also many
numerical solvers involving finite difference methods [7–11], finite element methods [12, 13], spectral
methods [14–16] and classification to name a few. A nice and systematic literature for Burgers’
equation is referred to in the recent review in [17].

In the paper, based on the Hopf-Cole transformation, we devote to designing an effective numerical
method for the Burgers’ equation with the nonhomogeneous source function and nonhomogeneous
boundary conditions [18] as

ut + uux = µuxx + f (x, t), 0 < x < L, 0 < t 6 T, (1.3a)
u(x, 0) = ϕ(x), 0 6 x 6 L, (1.3b)
u(0, t) = α(t), u(L, t) = β(t), 0 < t 6 T, (1.3c)

where ϕ(x), α(t) and β(t) are arbitrary given smooth functions. f (x, t) is the trivial source function. In
order to satisfy the compatibility condition, we require ϕ(0) = α(0) and ϕ(L) = β(0).

The fundamental difficulty lies in analyzing the prior estimate for solving problem Eqs (1.3a)–(1.3c)
since the analysis of problems with the derivative boundary conditions are totally different from that
with the Robin boundary conditions. In this paper, the emerging difficulties are overcome via the help
of the reduction order method and the principle of boundary homogeneity for the transformed problem.

The main novelty of this paper aims at we convert Eqs (1.3a)–(1.3c) into an equivalent heat equation
with the derivative boundary conditions for the first time, in which Neumann boundary conditions and
Robin boundary conditions can be viewed as special cases. The concrete contributions are listed as
follows

• The generalized exponential transformation links the classic Hopf-Cole transformation to the
exponential transformation for the constant convection term or variable convection term. In fact,
the classic Hopf-Cole transformation can be viewed as the special case of the generalized
exponential transformation, see the formula Eq (2.1) in Section 2. When the first u in nonlinear
convection term uux is considered as a constant coefficient, the application of the generalized
exponential transformation is referred to [19, 20]. And when it is viewed as a variable
coefficient, its application is referred to [21, 22].
• We strictly show that the Burgers’ equation with nonhomogeneous boundary conditions and

nonhomogeneous right-hand side term is equivalent to a heat equation with the derivative
boundary conditions.
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• An equivalent box scheme is offered for easy implementation. The solvability and convergence
of the established box scheme are analyzed in detail by the technical energy argument.
• Numerical errors and the convergence orders for the homogeneous and nonhomogeneous

problems are displayed and verify the effectiveness of the proposed box scheme.
• Compared with other papers on the Burgers equation [23, 24], the main difference or advantage

of the method presented in this paper is that we deal with the non-homogeneous boundary
problem, while most other methods are only suitable for solving burgers equation with
homogeneous boundary.

The rest of the paper is arranged as follows. Section 2 presents the equivalent form for the
nonhomogeneous Burgers’ equation based on the generalized Hopf-Cole transformation. Section 3 is
the main part of the paper, which focuses on the analysis and derivation of the difference scheme.
More concretely, it involves some useful notations and lemmas, the reduced order method, a priori
estimate of the difference scheme, solvability and convergence. The numerical experiments are
carried out in Section 4, followed by some conclusions in Section 5.

To facilitate numerical analysis in what follows, we suppose there exists a constant c0 such that

|α(t)| 6 c0, |β(t)| 6 c0, | f (x, t)| 6 c0 (1.4)

throughout the whole paper, .

2. An equivalent form

Introducing the generalized exponential transformation

w(x, t) = exp
(
−

1
2µ

∫ x

0
u(s, t)ds

)
, (2.1)

and taking the derivative of both sides with respect to x in Eq (2.1), then noting the boundary conditions
Eq (1.1c), we have the classical Hopf-Cole transformation [3]

u(x, t) = −2µ
wx(x, t)
w(x, t)

. (2.2)

Via the help of Eq (2.2), we have

ut = −2µ
(wx

w

)
t
= −2µ

wxtw − wxwt

w2 = −2µ
(wt

w

)
x
, (2.3a)

ux = −2µ
(wx

w

)
x
, (2.3b)

uxx = −2µ
(wx

w

)
xx
. (2.3c)

Substituting Eq (2.2) and Eq (2.3) into Eq (1.3a), we have(wt

w

)
x
− µ

[(wx

w

)2
]

x
= µ

(wx

w

)
xx
−

1
2µ

f (x, t),
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or [
wt

w
− µ

(wx

w

)2
− µ

(wx

w

)
x

]
x

= −
1

2µ
f (x, t).

Furthermore, we have (wt − µwxx

w

)
x

= −
1

2µ
f (x, t). (2.4)

Integrating for x from 0 to x on both sides of Eq (2.4), we have

wt − q(t)w = µwxx + F(x, t)w, (2.5)

where

q(t) =
wt(0, t) − µwxx(0, t)

w(0, t)
, F(x, t) = −

1
2µ

∫ x

0
f (s, t)ds.

Multiplying Eq (2.5) by exp(−
∫ t

0
q(s)ds) on both sides, we have(

exp
(
−

∫ t

0
q(s)ds

)
w
)

t
= exp

(
−

∫ t

0
q(s)ds

)
· (µwxx + F(x, t)w).

Let

w̃(x, t) = w(x, t) exp
(
−

∫ t

0
q(s)ds

)
.

Then, we have

−2µ
w̃x

w̃
= −2µ

wx

w
= u(x, t). (2.6)

In other words, for the arbitrary q(t), u(x, t) is independent of q(t). Thus, we take q(t) = 0 for brevity.
Meanwhile, Eq (2.5) is simplified as

wt = µwxx + F(x, t)w, 0 < x < L, 0 < t 6 T. (2.7)

By Eq (2.1), we obtain the initial condition

w(x, 0) = exp
(
−

1
2µ

∫ x

0
u(s, 0)ds

)
= exp

(
−

1
2µ

∫ x

0
ϕ(s)ds

)
=: ϕ̃(x), 0 6 x 6 L. (2.8)

Noticing Eq (2.6), we have

−2µ
wx(0, t)
w(0, t)

= u(0, t) = α(t), 0 6 t 6 T.
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Thus, the left boundary condition reads

2µwx(0, t) + α(t)w(0, t) = 0, 0 6 t 6 T. (2.9)

Similarly, we have the right boundary condition

2µwx(L, t) + β(t)w(L, t) = 0, 0 6 t 6 T. (2.10)

Above procedures are invertible, thus Eqs (1.3a)–(1.3c) is equivalent to Eqs (2.7)–(2.10).

Remark 1. We make some explanations about the exponential transformation Eq (2.1) and the
boundary conditions Eqs (2.9)–(2.10).

(a) The classical Hopf-Cole transformation Eq (2.2) can be viewed as a special case of Eq (2.1).
The first u(x, t) of uux in Eq (1.3a) is supposed to be a “ghost constant coefficient”. In this
hypothetical situation, the constant coefficient convection term and variable coefficient convection
term (e.g., [19, 22]) are diminished by the generalized exponential transformation Eq (2.1).

(b) The boundary conditions Eq (2.9) and Eq (2.10) are called derivative boundary conditions. To
assure that solution of Eqs (2.7)–(2.10) is stable and unique, one usually requires α(t) 6 0, β(t) >
0. Under the above constraint, Eq (2.9) and Eq (2.10) are called Neumann boundary conditions
if α(t)+β(t) ≡ 0 and Robin boundary conditions if α(t)+β(t) . 0, see e.g., [25]. The arbitrariness
of α(t) and β(t) makes the numerical analysis of the problem with derivative boundary conditins
difficult compared with that with Robin boundary conditions. In present paper, we will analyze
the general cases .

(c) The right-hand side function F(x, t) in Eq (2.7) can be computed by Simpson formula numerically
when it can not be expressed explicitly by the elementary functions.

3. The derivation and analysis of the difference scheme

3.1. Notations and lemmas

Before introducing the finite difference scheme, we divide the domain [0, L] × [0,T ]. Take positive
integers M and N and let h = L/M, τ = T/N. Denote xi = ih, 0 6 i 6 M; tk = kτ, 0 6 k 6 N;
Ωh = {xi | 0 6 i 6 M}, Ωτ = {tk | 0 6 k 6 N}, Ωhτ = Ωh × Ωτ. For any grid function v = {uk

i | 0 6 i 6
M, 0 6 k 6 N} defined on Ωhτ, we denote

uk− 1
2

i =
1
2

(uk
i + uk−1

i ), uk
i− 1

2
=

1
2

(uk
i + uk

i−1), δtu
k− 1

2
i =

1
τ

(uk
i − uk−1

i ),

δxuk
i− 1

2
=

1
h

(uk
i − uk

i−1), δ2
xu

k− 1
2

i =
1
h

(δxu
k− 1

2

i+ 1
2
− δxu

k− 1
2

i− 1
2

),

‖u‖ =

√√
h

M∑
i=1

(uk
i− 1

2
)2, ‖δxu‖ =

√√
h

M∑
i=1

(δxuk
i− 1

2
)2, ‖u‖∞ = max

06i6M
|un

i |.

The following two lemmas come from [25].

Lemma 1. Let {Fk}∞i=1 and {gk}∞i=1 be two non-negative sequences and satisfy

Fk+1 6 (1 + cτ)Fk + τgk, k = 0, 1, 2, · · · ,
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then

Fk 6 exp(ckτ)

F0 + τ

k−1∑
l=0

gl

 , k = 0, 1, 2, · · · .

Lemma 2. Let u = (u0, u1, · · · , uM) be a discrete function on Ωh, then for any ε > 0, we have

‖u‖2∞ 6 2
(
1 +

1
ε

)
‖u‖2 +

(
2ε +

h
2

)
‖δxu‖2.

3.2. The reduced order method for the difference scheme

In the previous section, we have converted Eqs (1.3a)–(1.3c) into an equivalent heat conduction
equation with the derivative boundary conditions by the generalized Hopf-Cole transformation. Then,
in this section, we will use the reduction order method to derive the numerical scheme of an equivalent
problem.

Let

v = µwx −
1

2L
[(x − L)α(t) − xβ(t)]w,

and denote 
γ(x, t) =

1
2µL

[(x − L)α(t) − xβ(t)], (3.1a)

θ(x, t) =
1

2L
(α(t) − β(t)) + µγ2(x, t) + F(x, t). (3.1b)

Then Eqs (2.7)–(2.10) are equivalent to
wt = vx + γ(x, t)v + θ(x, t)w, 0 < x < L, 0 < t 6 T, (3.2a)
v
µ

= wx − γ(x, t)w, 0 < x < L, 0 < t 6 T, (3.2b)

w(x, 0) = ϕ̃(x), 0 6 x 6 L, (3.2c)
v(0, t) = 0, v(L, t) = 0, 0 6 t 6 T. (3.2d)

Defining the grid functions on Ωhτ as

Wk
i = w(xi, tk), Vk

i = v(xi, tk), 0 6 i 6 M, 0 6 k 6 N.

Considering Eq (3.2a) at the point (xi− 1
2
, tk− 1

2
) and Eq (3.2b) at the point (xi− 1

2
, tk), and with the help of

the Taylor expansion, we have

δtW
k− 1

2

i− 1
2

= δxV
k− 1

2

i− 1
2

+ γ
k− 1

2

i− 1
2

Vk− 1
2

i− 1
2

+ θ
k− 1

2

i− 1
2

Wk− 1
2

i− 1
2

+ (r1)k− 1
2

i− 1
2
,

1 6 i 6 M, 1 6 k 6 N, (3.3a)
1
µ

Vk
i− 1

2
= δxWk

i− 1
2
− γk

i− 1
2
Wk

i− 1
2

+ (r2)k
i− 1

2
, 1 6 i 6 M, 1 6 k 6 N, (3.3b)

W0
i = ϕ̃(xi), 0 6 i 6 M, (3.3c)

Vk
0 = 0, Vk

M = 0, 0 6 k 6 N, (3.3d)

Networks and Heterogeneous Media Volume 18, Issue 1, 359–379.



365

where γk− 1
2

i− 1
2

= γ(xi− 1
2
, tk− 1

2
) and θk− 1

2

i− 1
2

= θ(xi− 1
2
, tk− 1

2
), and there exists a constant c1 such that the local

truncation errors satisfy 
∣∣∣∣∣(r1)k− 1

2

i− 1
2

∣∣∣∣∣ 6 c1(τ2 + h2), 1 6 i 6 M, 1 6 k 6 N, (3.4a)∣∣∣∣(r2)k
i− 1

2

∣∣∣∣ 6 c1h2, 1 6 i 6 M, 0 6 k 6 N. (3.4b)

Omitting the small terms in Eq (3.3a) and Eq (3.3b), a box scheme for Eqs (3.2a)–(3.2d) reads

δtw
k− 1

2

i− 1
2

= δxv
k− 1

2

i− 1
2

+ γ
k− 1

2

i− 1
2

vk− 1
2

i− 1
2

+ θ
k− 1

2

i− 1
2

wk− 1
2

i− 1
2
, 1 6 i 6 M, 1 6 k 6 N, (3.5a)

1
µ

vk
i− 1

2
= δxwk

i− 1
2
− γk

i− 1
2
wk

i− 1
2
, 1 6 i 6 M, 0 6 k 6 N, (3.5b)

w0
i = ϕ̃(xi), 0 6 i 6 M, (3.5c)

vk
0 = 0, vk

M = 0, 1 6 k 6 N. (3.5d)

According to Eq (2.2), we have

u(xi− 1
2
, tk) = −2µ

δxWk
i− 1

2

Wk
i− 1

2

+ (r3)k
i− 1

2
, 1 6 i 6 M, 1 6 k 6 N. (3.6)

There exists a constant c3 such that

|(r3)k
i− 1

2
| 6 c3h2, 1 6 i 6 M, 1 6 k 6 N.

Let

ûk
i− 1

2
= −2µ

δxwk
i− 1

2

wk
i− 1

2

, 1 6 i 6 M, 1 6 k 6 N. (3.7)

We can view ûk
i− 1

2
as the second-order numerical approximation of u(xi− 1

2
, tk) according to Eq (3.6).

Theorem 1. The difference scheme Eqs (3.5a)–(3.5d) is equivalent to

δtw
k− 1

2
1
2

=
2µ
h

[
δxw

k− 1
2

1
2
−

1
2

(
γk

1
2
wk

1
2

+ γk−1
1
2

wk−1
1
2

)]
+ µγ

k− 1
2

1
2
δxw

k− 1
2

1
2
−
µ

2
γ

k− 1
2

1
2

(
γk

1
2
wk

1
2

+ γk−1
1
2

wk−1
1
2

)
+ θ

k− 1
2

1
2

wk− 1
2

1
2
, 1 6 k 6 N, (3.8)

1
2

(
δtw

k− 1
2

i+ 1
2

+ δtw
k− 1

2

i− 1
2

)
= µδ2

xw
k− 1

2
i

−
µ

2h

(
γk

i+ 1
2
wk

i+ 1
2

+ γk−1
i+ 1

2
wk−1

i+ 1
2
− γk

i− 1
2
wk

i− 1
2
− γk−1

i− 1
2
wk−1

i− 1
2

)
+
µ

2

(
γ

k− 1
2

i+ 1
2
δxw

k− 1
2

i+ 1
2

+ γ
k− 1

2

i− 1
2
δxw

k− 1
2

i− 1
2

)
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−
µ

4

[
γ

k− 1
2

i+ 1
2

(
γk

i+ 1
2
wk

i+ 1
2

+ γk−1
i+ 1

2
wk−1

i+ 1
2

)
+ γ

k− 1
2

i− 1
2

(
γk

i− 1
2
wk

i− 1
2

+ γk−1
i− 1

2
wk−1

i− 1
2

)]
+

1
2

(
θ

k− 1
2

i+ 1
2

wk− 1
2

i+ 1
2

+ θ
k− 1

2

i− 1
2

wk− 1
2

i− 1
2

)
, 1 6 i 6 M − 1, 1 6 k 6 N, (3.9)

δtw
k− 1

2

M− 1
2

=
2µ
h

[
−δxw

k− 1
2

M− 1
2

+
1
2

(
γk

M− 1
2
wk

M− 1
2

+ γk−1
M− 1

2
wk−1

1
2

)]
+ µγ

k− 1
2

M− 1
2
δxw

k− 1
2

M− 1
2
−
µ

2
γ

k− 1
2

M− 1
2

(
γk

M− 1
2
wk

M− 1
2

+ γk−1
M− 1

2
wk−1

M− 1
2

)
+ θ

k− 1
2

M− 1
2
wk− 1

2

M− 1
2
, 1 6 k 6 N, (3.10)

w0
i = ϕ̃(xi), 0 6 i 6 M, (3.11)

and

v0
i− 1

2
= µδxw0

i− 1
2
− µγ0

i− 1
2
w0

i− 1
2
, 1 6 i 6 M,

vk− 1
2

i = µδxw
k− 1

2

i+ 1
2
−
µ

2

(
γk

i+ 1
2
wk

i+ 1
2

+ γk−1
i+ 1

2
wk−1

i+ 1
2

)
−

h
2

[
δtw

k− 1
2

i+ 1
2
− µγ

k− 1
2

i+ 1
2
δxw

k− 1
2

i+ 1
2

+
µ

2
γ

k− 1
2

i+ 1
2

(
γk

i+ 1
2
wk

i+ 1
2

+ γk−1
i+ 1

2
wk−1

i+ 1
2

)
− θ

k− 1
2

i+ 1
2

wk− 1
2

i+ 1
2

]
,

0 6 i 6 M − 1, 1 6 k 6 N.

vk− 1
2

M = µδxw
k− 1

2

M− 1
2
−
µ

2

(
γk

M− 1
2
wk

M− 1
2

+ γk−1
M− 1

2
wk−1

M− 1
2

)
+

h
2

[
δtw

k− 1
2

M− 1
2
− µγ

k− 1
2

M− 1
2
δxw

k− 1
2

M− 1
2

+
µ

2
γ

k− 1
2

M− 1
2

(
γk

M− 1
2
wk

M− 1
2

+ γk−1
M− 1

2
wk−1

M− 1
2

)
− θ

k− 1
2

M− 1
2
wk− 1

2

M− 1
2

]
,

1 6 k 6 N.

Proof. First, we know that Eq (3.5b) is equivalent to

v0
i− 1

2
= µδxw0

i− 1
2
− µγ0

i− 1
2
w0

i− 1
2
, 1 6 i 6 M, (3.12)

vk− 1
2

i− 1
2

= µδxw
k− 1

2

i− 1
2
−
µ

2

(
γk

i− 1
2
wk

i− 1
2

+ γk−1
i− 1

2
wk−1

i− 1
2

)
, 1 6 i 6 M, 1 6 k 6 N. (3.13)

Substituting Eq (3.13) into Eq (3.5a), we obtain

δxv
k− 1

2

i− 1
2

= δtw
k− 1

2

i− 1
2
− γ

k− 1
2

i− 1
2

vk− 1
2

i− 1
2
− θ

k− 1
2

i− 1
2

wk− 1
2

i− 1
2

= δtw
k− 1

2

i− 1
2
− µγ

k− 1
2

i− 1
2
δxw

k− 1
2

i− 1
2

+
µ

2
γ

k− 1
2

i− 1
2

(
γk

i− 1
2
wk

i− 1
2

+ γk−1
i− 1

2
wk−1

i− 1
2

)
− θ

k− 1
2

i− 1
2

wk− 1
2

i− 1
2
,

Networks and Heterogeneous Media Volume 18, Issue 1, 359–379.



367

1 6 i 6 M, 1 6 k 6 N. (3.14)

Multiplying Eq (3.14) by h
2 and adding the result with Eq (3.13), we obtain

vk− 1
2

i = µδxw
k− 1

2

i− 1
2
−
µ

2

(
γk

i− 1
2
wk

i− 1
2

+ γk−1
i− 1

2
wk−1

i− 1
2

)
+

h
2

[
δtw

k− 1
2

i− 1
2
− µγ

k− 1
2

i− 1
2
δxw

k− 1
2

i− 1
2

+
µ

2
γ

k− 1
2

i− 1
2

(
γk

i− 1
2
wk

i− 1
2

+ γk−1
i− 1

2
wk−1

i− 1
2

)
− θ

k− 1
2

i− 1
2

wk− 1
2

i− 1
2

]
,

1 6 i 6 M, 1 6 k 6 N. (3.15)

Then, multiplying Eq (3.14) by h
2 and subtracting the result with Eq (3.13), we obtain

vk− 1
2

i−1 = µδxw
k− 1

2

i− 1
2
−
µ

2

(
γk

i− 1
2
wk

i− 1
2

+ γk−1
i− 1

2
wk−1

i− 1
2

)
−

h
2

[
δtw

k− 1
2

i− 1
2
− µγ

k− 1
2

i− 1
2
δxw

k− 1
2

i− 1
2

+
µ

2
γ

k− 1
2

i− 1
2

(
γk

i− 1
2
wk

i− 1
2

+ γk−1
i− 1

2
wk−1

i− 1
2

)
− θ

k− 1
2

i− 1
2

wk− 1
2

i− 1
2

]
,

1 6 i 6 M, 1 6 k 6 N. (3.16)

Or equivalently,

vk− 1
2

i = µδxw
k− 1

2

i+ 1
2
−
µ

2

(
γk

i+ 1
2
wk

i+ 1
2

+ γk−1
i+ 1

2
wk−1

i+ 1
2

)
−

h
2

[
δtw

k− 1
2

i+ 1
2
− µγ

k− 1
2

i+ 1
2
δxw

k− 1
2

i+ 1
2

+
µ

2
γ

k− 1
2

i+ 1
2

(
γk

i+ 1
2
wk

i+ 1
2

+ γk−1
i+ 1

2
wk−1

i+ 1
2

)
− θ

k− 1
2

i+ 1
2

wk− 1
2

i+ 1
2

]
,

0 6 i 6 M − 1, 1 6 k 6 N. (3.17)

It follows from Eq (3.15) and Eq (3.17) with 1 6 i 6 M − 1, we get

µδxw
k− 1

2

i− 1
2
−
µ

2

(
γk

i− 1
2
wk

i− 1
2

+ γk−1
i− 1

2
wk−1

i− 1
2

)
+

h
2

[
δtw

k− 1
2

i− 1
2
− µγ

k− 1
2

i− 1
2
δxw

k− 1
2

i− 1
2

+
µ

2
γ

k− 1
2

i− 1
2

(
γk

i− 1
2
wk

i− 1
2

+ γk−1
i− 1

2
wk−1

i− 1
2

)
− θ

k− 1
2

i− 1
2

wk− 1
2

i− 1
2

]
= µδxw

k− 1
2

i+ 1
2
−
µ

2

(
γk

i+ 1
2
wk

i+ 1
2

+ γk−1
i+ 1

2
wk−1

i+ 1
2

)
−

h
2

[
δtw

k− 1
2

i+ 1
2
− µγ

k− 1
2

i+ 1
2
δxw

k− 1
2

i+ 1
2

+
µ

2
γ

k− 1
2

i+ 1
2

(
γk

i+ 1
2
wk

i+ 1
2

+ γk−1
i+ 1

2
wk−1

i+ 1
2

)
− θ

k− 1
2

i+ 1
2

wk− 1
2

i+ 1
2

]
1 6 i 6 M − 1, 1 6 k 6 N.

That is

1
2

(
δtw

k− 1
2

i+ 1
2

+ δtw
k− 1

2

i− 1
2

)
= µδ2

xw
k− 1

2
i
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−
µ

2h

(
γk

i+ 1
2
wk

i+ 1
2

+ γk−1
i+ 1

2
wk−1

i+ 1
2
− γk

i− 1
2
wk

i− 1
2
− γk−1

i− 1
2
wk−1

i− 1
2

)
+
µ

2

(
γ

k− 1
2

i+ 1
2
δxw

k− 1
2

i+ 1
2

+ γ
k− 1

2

i− 1
2
δxw

k− 1
2

i− 1
2

)
−
µ

4

[
γ

k− 1
2

i+ 1
2

(
γk

i+ 1
2
wk

i+ 1
2

+ γk−1
i+ 1

2
wk−1

i+ 1
2

)
+ γ

k− 1
2

i− 1
2

(
γk

i− 1
2
wk

i− 1
2

+ γk−1
i− 1

2
wk−1

i− 1
2

)]
+

1
2

(
θ

k− 1
2

i+ 1
2

wk− 1
2

i+ 1
2

+ θ
k− 1

2

i− 1
2

wk− 1
2

i− 1
2

)
, 1 6 i 6 M − 1, 1 6 k 6 N.

In Eq (3.17), for i = 0, Eq (3.5d) is equivalent to

δtw
k− 1

2
1
2

=
2
h

[
µδxw

k− 1
2

1
2
−
µ

2

(
γk

1
2
wk

1
2

+ γk−1
1
2

wk−1
1
2

)]
+ µγ

k− 1
2

1
2
δxw

k− 1
2

1
2
−
µ

2
γ

k− 1
2

1
2

(
γk

1
2
wk

1
2

+ γk−1
1
2

wk−1
1
2

)
+ θ

k− 1
2

1
2

wk− 1
2

1
2
, 1 6 k 6 N.

In Eq (3.15), for i = M, Eq (3.5d) is equivalent to

δtw
k− 1

2

M− 1
2

=
2
h

[
−µδxw

k− 1
2

M− 1
2

+
µ

2

(
γk

M− 1
2
wk

M− 1
2

+ γk−1
M− 1

2
wk−1

M− 1
2

)]
+ µγ

k− 1
2

M− 1
2
δxw

k− 1
2

M− 1
2
−
µ

2
γ

k− 1
2

M− 1
2

(
γk

M− 1
2
wk

M− 1
2

+ γk−1
M− 1

2
wk−1

M− 1
2

)
+ θ

k− 1
2

M− 1
2
wk− 1

2

M− 1
2
, 1 6 k 6 N.

This completes the proof. �

3.3. A prior estimate for the difference scheme

In the following theorem, we use the energy method to give a prior estimate for the difference
scheme Eqs (3.5a)–(3.5d).

Theorem 2. Let {w̃k
i , ṽ

k
i | 0 6 i 6 M, 1 6 k 6 N} be the solution of

δtw̃
k− 1

2

i− 1
2

= δxṽ
k− 1

2

i− 1
2

+ γ
k− 1

2

i− 1
2

ṽk− 1
2

i− 1
2

+ θ
k− 1

2

i− 1
2

w̃k− 1
2

i− 1
2

+ S k− 1
2

i− 1
2
, 1 6 i 6 M, 1 6 k 6 N, (3.18a)

1
µ

ṽk
i− 1

2
= δxw̃k

i− 1
2
− γk

i− 1
2
w̃k

i− 1
2

+ T k
i− 1

2
, 1 6 i 6 M, 0 6 k 6 N, (3.18b)

ṽk
0 = 0, ṽk

M = 0, 0 6 k 6 N, (3.18c)
w̃0

i = ϕ̂(xi), 0 6 i 6 M. (3.18d)

Then we have

Gk 6 e3c2T

‖ϕ̂‖2 +
1
µ
‖ṽ0‖2 +

3
2
τ

k−1∑
l=0

Ql

 , 1 6 k 6 N,
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where 

Gk = ‖w̃k‖2 +
1
µ
‖ṽk‖2, (3.19a)

S k− 1
2

i− 1
2

=
1
2

(
S k

i− 1
2

+ S k−1
i− 1

2

)
, (3.19b)

δtT
k− 1

2

i− 1
2

=
1
τ

(
T k

i− 1
2
− T k−1

i− 1
2

)
, (3.19c)

Qk = 3‖S k− 1
2 ‖2 + 4µ‖T k− 1

2 ‖2 + ‖δtT k− 1
2 ‖2. (3.19d)

Proof. Step 1: Averaging Eq (3.18b) and Eq (3.18c) with superscripts k and k − 1, we obtain

1
µ

ṽk− 1
2

i− 1
2

= δxw̃
k− 1

2

i− 1
2
−

(
γk

i− 1
2
w̃k

i− 1
2

+ γk−1
i− 1

2
w̃k−1

i− 1
2

)
+ T k− 1

2

i− 1
2
, 1 6 i 6 M, 1 6 k 6 N, (3.20)

ṽk− 1
2

0 = 0, ṽk− 1
2

M = 0, 1 6 k 6 N. (3.21)

Multiplying Eq (3.18a) by 2w̃k− 1
2

i− 1
2

, Eq (3.20) by 2ṽk− 1
2

i− 1
2

and adding the results, we have

1
τ

[ (
w̃k

i− 1
2

)2
−

(
w̃k−1

i− 1
2

)2 ]
+

2
µ

(
ṽk− 1

2

i− 1
2

)2

=2
(
w̃k− 1

2

i− 1
2
δxṽ

k− 1
2

i− 1
2

+ ṽk− 1
2

i− 1
2
δxw̃

k− 1
2

i− 1
2

)
+ 2w̃k− 1

2

i− 1
2

(
γ

k− 1
2

i− 1
2

ṽk− 1
2

i− 1
2

+ θ
k− 1

2

i− 1
2

w̃k− 1
2

i− 1
2

)
− 2ṽk− 1

2

i− 1
2

(
γk

i− 1
2
w̃k

i− 1
2

+ γk−1
i− 1

2
w̃k−1

i− 1
2

)
+ 2w̃k− 1

2

i− 1
2

S k− 1
2

i− 1
2

+ 2ṽk− 1
2

i− 1
2

T k− 1
2

i− 1
2

6
2
h

(
ṽk− 1

2
i w̃k− 1

2
i − ṽk− 1

2
i−1 w̃k− 1

2
i−1

)
+ 2c2

∣∣∣∣∣w̃k− 1
2

i− 1
2

ṽk− 1
2

i− 1
2

∣∣∣∣∣ + 2c2

∣∣∣∣∣w̃k− 1
2

i− 1
2

∣∣∣∣∣2
+ 2c2

∣∣∣∣∣ṽk− 1
2

i− 1
2

∣∣∣∣∣ (∣∣∣∣w̃k
i− 1

2

∣∣∣∣ +
∣∣∣∣w̃k−1

i− 1
2

∣∣∣∣) + 2w̃k− 1
2

i− 1
2

S k− 1
2

i− 1
2

+ 2ṽk− 1
2

i− 1
2

T k− 1
2

i− 1
2

6
2
h

(
ṽk− 1

2
i w̃k− 1

2
i − ṽk− 1

2
i−1 w̃k− 1

2
i−1

)
+

1
4µ

∣∣∣∣∣ṽk− 1
2

i− 1
2

∣∣∣∣∣2 + 4µc2
2

∣∣∣∣∣w̃k− 1
2

i− 1
2

∣∣∣∣∣2 + 2c2

∣∣∣∣∣w̃k− 1
2

i− 1
2

∣∣∣∣∣2
+

1
2µ

∣∣∣∣∣ṽk− 1
2

i− 1
2

∣∣∣∣∣2 + 4µc2
2

(∣∣∣∣w̃k
i− 1

2

∣∣∣∣2 +
∣∣∣∣w̃k−1

i− 1
2

∣∣∣∣2) +

∣∣∣∣∣w̃k− 1
2

i− 1
2

∣∣∣∣∣2 +

∣∣∣∣∣S k− 1
2

i− 1
2

∣∣∣∣∣2
+

1
4µ

∣∣∣∣∣ṽk− 1
2

i− 1
2

∣∣∣∣∣2 + 4µ
∣∣∣∣∣T k− 1

2

i− 1
2

∣∣∣∣∣2 , 1 6 i 6 M, 1 6 k 6 N, (3.22)

where c2 is a positive constant.
Multiplying Eq (3.22) by h, summing up for i from 1 to M and noticing Eq (3.21), we obtain

1
τ

(
‖w̃k‖2 − ‖w̃k−1‖2

)
6

(
6µc2

2 + c2 +
1
2

) (
‖w̃k‖2 + ‖w̃k−1‖2

)
+ ‖S k− 1

2 ‖2 + 4µ‖T k− 1
2 ‖2,

1 6 i 6 M, 1 6 k 6 N. (3.23)
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Step 2: Subtracting Eq (3.18b) and Eq (3.18c) with superscripts k and k − 1, dividing the results by
τ on both sides, we have

1
µ
δtṽ

k− 1
2

i− 1
2

= δtδxw̃
k− 1

2

i− 1
2
−

1
τ

(
γk

i− 1
2
w̃k

i− 1
2
− γk−1

i− 1
2
w̃k−1

i− 1
2

)
+ δtT

k− 1
2

i− 1
2
,

1 6 i 6 M, 1 6 k 6 N, (3.24)

δtṽ
k− 1

2
0 = 0, δtṽ

k− 1
2

M = 0, 1 6 k 6 N. (3.25)

Multiplying Eq (3.18a) by 2δtw̃
k− 1

2

i− 1
2

, Eq (3.24) by 2ṽk− 1
2

i− 1
2

and adding the results, we obtain

2
(
δtw̃

k− 1
2

i− 1
2

)2
+

1
µ
·

1
τ

[(
ṽk

i− 1
2

)2
−

(
ṽk−1

i− 1
2

)2
]

= 2
[(
δtw̃

k− 1
2

i− 1
2

) (
δxṽ

k− 1
2

i− 1
2

)
+ ṽk− 1

2

i− 1
2

(
δxδtw̃

k− 1
2

i− 1
2

)]
+ 2δtw̃

k− 1
2

i− 1
2

(
γk

i− 1
2
ṽk− 1

2

i− 1
2

+ θ
k− 1

2

i− 1
2

w̃k− 1
2

i− 1
2

)
−

2
τ

ṽk− 1
2

i− 1
2

(
γk

i− 1
2
w̃k

i− 1
2
− γk−1

i− 1
2
w̃k−1

i− 1
2

)
+ 2

(
δtw̃

k− 1
2

i− 1
2

)
S k− 1

2

i− 1
2

+ 2ṽk− 1
2

i− 1
2

(
δtT

k− 1
2

i− 1
2

)
=

2
h

[(
ṽk− 1

2
i

) (
δtw̃

k− 1
2

i

)
−

(
ṽk− 1

2
i−1

) (
δtw̃

k− 1
2

i−1

)]
+ 2δtw̃

k− 1
2

i− 1
2

(
γk

i− 1
2
ṽk− 1

2

i− 1
2

+ θ
k− 1

2

i− 1
2

w̃k− 1
2

i− 1
2

)
− 2ṽk− 1

2

i− 1
2

(
γ

k− 1
2

i− 1
2
δtw̃

k− 1
2

i− 1
2

+ δtγ
k− 1

2

i− 1
2

w̃k− 1
2

i− 1
2

)
+ 2

(
δtw̃

k− 1
2

i− 1
2

)
S k− 1

2

i− 1
2

+ 2ṽk− 1
2

i− 1
2

(
δtT

k− 1
2

i− 1
2

)
6

2
h

[(
ṽk− 1

2
i

) (
δtw̃

k− 1
2

i

)
−

(
ṽk− 1

2
i−1

) (
δtw̃

k− 1
2

i−1

)]
+ 2c2

∣∣∣∣∣(δtw̃
k− 1

2

i− 1
2

)
ṽk− 1

2

i− 1
2

∣∣∣∣∣ + 2c2

∣∣∣∣∣(δtw̃
k− 1

2

i− 1
2

)
w̃k− 1

2

i− 1
2

∣∣∣∣∣ + 2c2

∣∣∣∣∣ṽk− 1
2

i− 1
2

∣∣∣∣∣ (∣∣∣∣∣δtw̃
k− 1

2

i− 1
2

∣∣∣∣∣ +

∣∣∣∣∣w̃k− 1
2

i− 1
2

∣∣∣∣∣)
+

1
2

(
δtw̃

k− 1
2

i− 1
2

)2
+ 2

(
S k− 1

2

i− 1
2

)2
+

(
ṽk− 1

2

i− 1
2

)2
+

(
δtT

k− 1
2

i− 1
2

)2

6
2
h

[(
ṽk− 1

2
i

) (
δtw̃

k− 1
2

i

)
−

(
ṽk− 1

2
i−1

) (
δtw̃

k− 1
2

i−1

)]
+

1
2

(
δtw̃

k− 1
2

i− 1
2

)2
+ 2c2

2

(
ṽk− 1

2

i− 1
2

)2
+

1
2

(
δtw̃

k− 1
2

i− 1
2

)
+ 2c2

2

(
w̃k− 1

2

i− 1
2

)2

+
1
2

(
δtw̃

k− 1
2

i− 1
2

)2
+ 2c2

2

(
ṽk− 1

2

i− 1
2

)2
+ c2

2

(
ṽk− 1

2

i− 1
2

)2
+

(
w̃k− 1

2

i− 1
2

)2

+
1
2

(
δtw̃

k− 1
2

i− 1
2

)2
+ 2

(
S k− 1

2

i− 1
2

)2
+

(
ṽk− 1

2

i− 1
2

)2
+

(
δtT

k− 1
2

i− 1
2

)2
. (3.26)

After simplifying Eq (3.26), it becomes

1
µ
·

1
τ

[(
ṽk

i− 1
2

)2
−

(
ṽk−1

i− 1
2

)2
]

6
2
h

[(
ṽk− 1

2
i

) (
δtw̃

k− 1
2

i

)
−

(
ṽk− 1

2
i−1

) (
δtw̃

k− 1
2

i−1

)]
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+
(
5c2

2 + 1
) (

ṽk− 1
2

i− 1
2

)2
+

(
2c2

2 + 1
) (

w̃k− 1
2

i− 1
2

)2
+ 2

(
S k− 1

2

i− 1
2

)2
+

(
δtT

k− 1
2

i− 1
2

)2
. (3.27)

Multiplying Eq (3.27) by h, summing up for i from 1 to M and noticing Eq (3.21), we obtain

1
µ
·

1
τ

(
‖ṽk‖2 − ‖ṽk−1‖2

)
6 2

(
ṽk− 1

2
M δtw̃

k− 1
2

M − ṽk− 1
2

0 δtw̃
k− 1

2
0

)
+

1
2

(5c2
2 + 1)

(
‖ṽk‖2 + ‖ṽk−1‖2

)
+

1
2

(2c2
2 + 1)

(
‖w̃k‖2 + ‖w̃k−1‖2

)
+ 2‖S k− 1

2 ‖2 + ‖δtT k− 1
2 ‖2, 1 6 k 6 N. (3.28)

Step 3: Adding Eq (3.23) and Eq (3.28), we have

1
τ

(
‖w̃k‖2 − ‖w̃k−1‖2

)
+

1
µ
·

1
τ

(
‖ṽk‖2 − ‖ṽk−1‖2

)
6

1
2

(5c2
2 + 1)(‖ṽk‖2 + ‖ṽk−1‖2) + (6µc2

2 + c2
2 + c2 + 1)(‖w̃k‖2 + ‖w̃k−1‖2)

+ 3‖S k− 1
2 ‖2 + ‖δtT k− 1

2 ‖2 + 4µ‖T k− 1
2 ‖2, 1 6 k 6 N. (3.29)

Furthermore, we have

1
τ

[
(‖w̃k‖2 +

1
µ
‖ṽk‖2) − (‖w̃k−1‖2 +

1
µ
‖ṽk−1‖2)

]
6

(
5
2

c2
2 +

1
2

) (
‖ṽk‖2 + ‖ṽk−1‖2

)
+

(
6µc2

2 + c2
2 + c2 + 1

) (
‖w̃k‖2 + ‖w̃k−1‖2

)
+ 3‖S k− 1

2 ‖2 + 4µ‖T k− 1
2 ‖2 + ‖δtT k− 1

2 ‖2, 1 6 m 6 N. (3.30)

Noticing that Eq (3.19), Eq (3.30) becomes

1
τ

(Gk −Gk−1) 6 c3(Gk + Gk−1) + Qk, 1 6 m 6 N.

When τ 6 1
3c3

, using Gronwall inequality in Lemma 1 yields

Gk 6 e3c3T

G0 +
3
2
τ

k−1∑
l=0

Ql

 , 1 6 k 6 N.

Equivalently,

‖w̃k‖2 +
1
µ
‖ṽk‖2 6 e3c3T

‖w̃0‖2 +
1
µ
‖ṽ0‖2 +

3
2
τ

k−1∑
l=0

Ql


= e3c2T

‖ϕ̂‖2 +
1
µ
‖ṽ0‖2 +

3
2
τ

k−1∑
l=0

Ql

 , 1 6 k 6 N.

This completes the proof. �
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3.4. Solvability and convergence

Theorem 3 (Solvability). The difference scheme Eqs (3.5a)–(3.5d) is uniquely solvable.

Define
ek

i = Wk
i − wk

i , 1 6 i 6 M, 0 6 k 6 N,

f k
i = Vk

i − vk
i , 1 6 i 6 M, 0 6 k 6 N.

Subtracting Eqs (3.3a)–(3.3d) from Eqs (3.5a)–(3.5d), we have the error system

δte
k− 1

2

i− 1
2

= δx f k− 1
2

i− 1
2

+ γ
k− 1

2

i− 1
2

f k− 1
2

i− 1
2

+ θ
k− 1

2

i− 1
2

ek− 1
2

i− 1
2

+ (r1)k− 1
2

i− 1
2
, 1 6 i 6 M, 1 6 k 6 N,

1
µ

f k
i− 1

2
= δxek

i− 1
2
− γk

i− 1
2
ek

i− 1
2

+ (r2)k
i− 1

2
, 1 6 i 6 M, 0 6 k 6 N,

e0
i = 0, 0 6 i 6 M,

f k
0 = 0, f k

M = 0, 1 6 k 6 N.

Noticing that Eqs (3.4a)–(3.4b) and Lemma 2, similar to the proof of the prior estimate in Theorem 2,
we have the following convergence results for the above error system.

Theorem 4 (Convergence). Let α(t), β(t) ∈ C2[0,T ], w(x, t) ∈ C4([0, L] × [0,T ]) and suppose the
condition Eq (1.4) is satisfied. Then the solution of the difference scheme Eqs (3.5a)–(3.5d) is
convergent to the solution of Eqs (3.2a)–(3.2d) with the order of convergence O(τ2 + h2).

4. Numerical tests

In this section, we will testify to the accuracy and the convergence order for the box scheme Eqs
(3.5a)–(3.5d). Based on the discussion in Section 2 and using the equivalence relation in Theorem 1,
we give the algorithm flow chart of the box scheme Eqs (3.5a)–(3.5d) for the Burgers’ equation Eqs
(1.3a)–(1.3c):

Algorithm 1: The box scheme Eqs (3.5a)–(3.5d) for solving Eqs (1.3a)–(1.3c)
Input: parameters µ, ϕ̃(x), γ(x, t), θ(x, t), L, T, M, N.
Output: {̂uk

i− 1
2
| 1 6 i 6 M, 0 6 k 6 N}.

Compute u0
i = ϕ̃(xi), 0 6 i 6 M.

Compute h = L/M, τ = T/N.
for k = 1, . . . ,N do

Solving the linear system of Eqs (3.8)–(3.11).
end
Using the discretized transformation Eq (3.7) to recover ûk

i− 1
2
.

Denote

E(h, τ) =

√√
h

M∑
i=1

(u(xi− 1
2
, tk) − ûk

i− 1
2
)2.
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Define the spatial convergence order and temporal convergence order respectively by

Ordh = log2
E(h, τ)

E(h/2, τ)
, Ordτ = log2

E(h, τ)
E(h, τ/2)

.

Example 1. We first consider the problem with the homogeneous boundary conditions as
ut + uux = µuxx + 0.5 exp (−2t) sin 2x − (1 − µ) exp (−t) sin x, 0 < x < π, 0 < t 6 1,
u(x, 0) = sin x, 0 6 x 6 π,

u(0, t) = 0, u(π, t) = 0, 0 < t 6 1.

The exact solution for the above problem is u(x, t) = exp(−t) sin x. After simple calculation by Eq
(2.8) and Eq (3.1a)and Eq (3.1b), we have w(x, 0) = 1/(2µ) exp(cos x − 1), γ(x, t) = 0, θ(x, t) =

0.125/µ · exp(−2t)(cos 2x − 1) − (1 − µ)/µ · exp(−t)(cos x − 1).
The numerical results are listed in Tables 1,2 and exact and numerical surfaces are respectively

displayed in Figure 1. Table 1 gives the numerical solutions, exact solutions and their absolute errors,
which show that the box scheme is efficient even if the coefficient of viscosity is very small. The
convergence orders in time and space are displayed in Table 2. We first fix the spatial step size and
test the temporal convergence order in the third column and fourth column, which confirm that the
temporal convergence order approaches order two. The numerical results in the last two columns
verify that the convergence order in spatial convergence order is order two, which is also consistent
with our theoretical results. We further compare the numerical solutions and exact solutions in Figure
2, which again demonstrates that the effectiveness of the box scheme whether the coefficient of
viscosity is large or small. Moreover, we also notice that the numerical errors increase in a steep
fashion, which means that the stiffness of the system intensifies. In these cases, we should use small
step sizes to capture the solution profiles accurately.

(a) Exact solution

1

0.2

0.4

3

u
h
τ
(x
,t
)

0.6

t

0.8

0.5 2

x

1

0 0

h = π/40, τ = 1/40

(b) Numerical solution

Figure 1. The comparison of the exact solution and the numerical solution with µ = 1.
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Table 1. The comparison between numerical solutions and exact solutions for Example 1
with the grid sizes h = π/1000 and τ = 1/1000.
µ (x, t) ûk

i u(xi, tk) |u(xi, tk) − ûk
i |

(π/2, 1/5) 0.818728888520359 0.818729743009609 0.000000854489250
(π/2, 2/5) 0.670318521533638 0.670319219061600 0.000000697527962

1000 (π/2, 3/5) 0.548810391409158 0.548810959024948 0.000000567615790
(π/2, 4/5) 0.449327947995460 0.449328409779945 0.000000461784485
(π/2, 1) 0.367878606492961 0.367878987318467 0.000000380825505

(π/2, 1/5) 0.818728829761817 0.818729743009609 0.000000913247790
(π/2, 2/5) 0.670318405694616 0.670319219061600 0.000000813366983

10 (π/2, 3/5) 0.548810292205593 0.548810959024948 0.000000666819355
(π/2, 4/5) 0.449327868975789 0.449328409779945 0.000000540804156
(π/2, 1) 0.367878548750915 0.367878987318467 0.000000438567552

(π/2, 1/5) 0.818719664696976 0.818729743009609 0.000010078312633
(π/2, 2/5) 0.670314965926731 0.670319219061600 0.000004253134869

0.1 (π/2, 3/5) 0.548809375483928 0.548810959024948 0.000001583541020
(π/2, 4/5) 0.449327846412115 0.449328409779945 0.000000563367830
(π/2, 1) 0.367878673622388 0.367878987318467 0.000000313696078

Table 2. The numerical errors and convergence orders in time and space respectively for
Example 1 with different coefficients µ of viscosity.
µ (h, τ) E(h, τ) Ordτ (h, τ) E(h, τ) Ordh

(π/1000, 1/10) 4.6583E − 3 ∗ (π/10, 1/1000) 4.9044E − 3 ∗

(π/1000, 1/20) 1.1723E − 3 1.9905 (π/20, 1/1000) 1.2299E − 4 1.9967
1000 (π/1000, 1/40) 2.8666E − 4 2.0319 (π/40, 1/1000) 3.0795E − 4 1.9972

(π/1000, 1/80) 6.7986E − 5 2.0760 (π/80, 1/1000) 7.7048E − 5 1.9915
(π/1000, 1/160) 1.5769E − 5 2.1081 (π/160, 1/1000) 1.9270E − 6 1.9668

(π/1000, 1/10) 1.7715E − 3 ∗ (π/10, 1/1000) 4.7569E − 3 ∗

(π/1000, 1/20) 4.3060E − 4 2.0406 (π/20, 1/1000) 1.2110E − 4 2.0013
10 (π/1000, 1/40) 1.0790E − 4 1.9966 (π/40, 1/1000) 3.0556E − 4 1.9978

(π/1000, 1/80) 2.7493E − 5 1.9726 (π/80, 1/1000) 7.6747E − 5 1.9936
(π/1000, 1/160) 7.4277E − 6 1.8881 (π/160, 1/1000) 1.9231E − 6 1.9751

(π/1000, 1/10) 3.9668E − 2 ∗ (π/10, 1/1000) 7.6766E − 2 ∗

(π/1000, 1/20) 9.4193E − 3 2.0743 (π/20, 1/1000) 1.9248E − 2 1.9250
0.1 (π/1000, 1/40) 2.3266E − 3 2.0174 (π/40, 1/1000) 4.8072E − 3 1.9807

(π/1000, 1/80) 5.8019E − 4 2.0036 (π/80, 1/1000) 1.1916E − 4 1.9952
(π/1000, 1/160) 1.4528E − 4 1.9977 (π/160, 1/1000) 2.8748E − 4 1.9988
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Figure 2. Numerical errors between exact solutions and numerical solutions with different
temporal and spatial step sizes and coefficients of viscosity.

Example 2. Then we consider the problem with the nonhomogeneous boundary conditions as


ut + uux = µuxx + 2t cos x + µt2 cos x − 0.5t4 sin 2x, 0 < x < 2π, 0 < t 6 1,
u(x, 0) = 0, 0 6 x 6 2π,
u(0, t) = t2, u(2π, t) = t2, 0 < t 6 1.

The exact solution is u(x, t) = t2 cos x. Here we easily have w(x, 0) = 1, γ(x, t) = −0.5/(2µ) · t2, and
θ(x, t) = 0.25/µ · t4 − t/µ sin x − 0.5t2 sin x − 0.125/µ · t4 cos 2x + 0.125/µ · t4 calculated by using Eq
(2.8) and Eq (3.1a) and Eq (3.1b), respectively.

In this example, the boundary conditions and right-hand side terms are both nonhomogeneous. The
exact solution surface (left) and numerical solution surface (right) are respectively displayed in Figure
3. The numerical results and error surfaces for different coefficients of viscosity are respectively shown
in Tables 3,4 and Figure 4. Similar results to Example 1 can be observed, which further verify the
correctness of our theoretical results.

(a) Exact solution
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(b) Numerical solution

Figure 3. The comparison of the exact solution and the numerical solution with µ = 1.
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Table 3. The comparison between numerical solutions and exact solutions for Example 1
with the grid sizes h = π/500 and τ = 1/1000.
µ (x, t) ûk

i u(xi, tk) |u(xi, tk) − ûk
i |

(π, 1/5) −0.039999587661271 −0.039999802608074 0.000000214946803
(π, 2/5) −0.159998843947508 −0.159999210432297 0.000000366484790

10 (π, 3/5) −0.359997635176921 −0.359998223472669 0.000000588295748
(π, 4/5) −0.639995934067770 −0.639996841729189 0.000000907661419
(π, 1) −0.999993720851624 −0.999995065201858 0.000001344350234

(π, 1/5) −0.039999872175453 −0.039999802608074 0.000000069567378
(π, 2/5) −0.159999525361536 −0.159999210432297 0.000000314929239

1 (π, 3/5) −0.359998865423127 −0.359998223472669 0.000000641950458
(π, 4/5) −0.639997774181156 −0.639996841729189 0.000000932451966
(π, 1) −0.999996062051233 −0.999995065201858 0.000000996849375

(π, 1/5) −0.039999922657609 −0.039999802608074 0.000000120049535
(π, 2/5) −0.159999408166085 −0.159999210432297 0.000000197733788

0.1 (π, 3/5) −0.359995956611092 −0.359998223472669 0.000022668615773
(π, 4/5) −0.639980403043749 −0.639996841729189 0.000016438685440
(π, 1) −0.999931362684693 −0.999995065201858 0.000063702517165

Table 4. The numerical errors and convergence orders in time and space respectively for
Example 2 with different coefficients µ of viscosity.
µ (h, τ) E(h, τ) Ordτ (h, τ) E(h, τ) Ordh

(π/1000, 1/10) 4.8916E − 3 ∗ (π/50, 1/1000) 4.9044E − 4 ∗

(π/1000, 1/20) 1.2233E − 3 1.9995 (π/100, 1/1000) 1.2299E − 4 1.9956
10 (π/1000, 1/40) 3.0648E − 4 1.9970 (π/200, 1/1000) 3.0795E − 5 1.9978

(π/1000, 1/80) 7.7282E − 5 1.9876 (π/400, 1/1000) 7.7048E − 6 1.9989
(π/1000, 1/160) 1.9985E − 5 1.9512 (π/800, 1/1000) 1.9270E − 6 1.9994

(π/1000, 1/10) 4.2425E − 3 ∗ (π/50, 1/1000) 4.7569E − 4 ∗

(π/1000, 1/20) 1.0639E − 3 1.9955 (π/100, 1/1000) 1.2110E − 4 1.9738
1 (π/1000, 1/40) 2.6562E − 4 2.0019 (π/200, 1/1000) 3.0556E − 5 1.9867

(π/1000, 1/80) 6.5816E − 5 2.0128 (π/400, 1/1000) 7.6747E − 6 1.9933
(π/1000, 1/160) 1.5857E − 5 2.0533 (π/800, 1/1000) 1.9231E − 6 1.9966

(π/1000, 1/10) 5.3579E − 2 ∗ (π/50, 1/1000) 7.6766E − 3 ∗

(π/1000, 1/20) 1.2219E − 2 2.1325 (π/100, 1/1000) 1.9248E − 3 1.9957
0.1 (π/1000, 1/40) 2.9922E − 3 2.0299 (π/200, 1/1000) 4.8072E − 4 2.0015

(π/1000, 1/80) 7.4401E − 4 2.0078 (π/400, 1/1000) 1.1916E − 4 2.0123
(π/1000, 1/160) 1.8631E − 4 1.9976 (π/800, 1/1000) 2.8748E − 5 2.0514
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(a) µ = 10 (b) µ = 1 (c) µ = 0.1

Figure 4. The numerical errors between exact solutions and numerical solutions with
different temporal and spatial step sizes and coefficients of viscosity.

5. Conclusion

In summary, it was demonstrated that the Burgers’ equation subject to nonhomogeneous Dirichlet
boundary conditions is equivalent to a heat equation with derivative boundary conditions based on
the Hopf-Cole transformation. We further convert the heat equation into a first-order system with
homogeneous boundary conditions via the help of the linear transformation and the reduced-order
method. An efficient box scheme is established for the converted first-order system. We further prove
that the box scheme is solvable and convergent.

The relationship between the nonlinear convection term uux and variable (or constant) coefficient
convection term c(x)u(x, t) (c(x) is the variable coefficient) in other references is linked by a
generalized exponential transformation. Moreover, the exponential transformation can be applied to
solve other partial differential equations with nonlinear convection terms involving fractional
differential equations, delay Sobolev equations and delay functional differential equations with
Burger-type nonlinear terms [26, 27]. These will leave to our future research work.
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