Citation: Anya Désilles, Hélène Frankowska. Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions[J]. Networks and Heterogeneous Media, 2013, 8(3): 727-744. doi: 10.3934/nhm.2013.8.727
[1] | D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations and Applications, 4 (1997), 1-42. doi: 10.1007/PL00001406 |
[2] | C. Bardos, A. Leroux and J. Nedelec, First order quasilinear equations with boundary conditions, Commun. Partial Diff. Equat., 4 (1979), 1017-1034. doi: 10.1080/03605307908820117 |
[3] | A. Bressan, "Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem," Oxford Lecture Series in Mathematics and its Applications, 20. Oxford University Press, Oxford, 2000. |
[4] | M. G. Crandall, L. C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. AMS., 282 (1984), 487-502. doi: 10.1090/S0002-9947-1984-0732102-X |
[5] | L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[6] | H. Frankowska, On LeFloch solutions to initial-boundary value problem for scalar conservation laws, Journal of Hyperbolic Differential Equations, 7 (2010), 503-543. doi: 10.1142/S0219891610002219 |
[7] | H. Frankowska, Lower semicontinuous solutions to Hamilton-Jacobi-Bellman equations, Proceedings of 30th CDC Conference, IEEE, Brighton, December 11-13, (1991), 265-270. |
[8] | H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equation, SIAM J. Control and Optimization, 31 (1993), 257-272. doi: 10.1137/0331016 |
[9] | P. D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537-566. doi: 10.1002/cpa.3160100406 |
[10] | P. G. LeFloch, Explicit formula for scalar nonlinear conservation laws with boundary condition, Math. Methods Appl. Sci., 10 (1988), 265-287. doi: 10.1002/mma.1670100305 |
[11] | M. Lighthill and G. Whitham, On kinematic waves, II: A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London Ser. A., 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089 |
[12] | P. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42 |
[13] | I. Strub and A. Bayen, Weak formulation of boundary conditions for scalar conservation laws: An application to highway traffic modelling, Int. J. Robust Nonlinear Control, 16 (2006), 733-748. doi: 10.1002/rnc.1099 |