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Abstract. A solution of the initial-boundary value problem on the strip
(0,∞) × [0, 1] for scalar conservation laws with strictly convex flux can be
obtained by considering gradients of the unique solution V to an associated
Hamilton-Jacobi equation (with appropriately defined initial and boundary
conditions). It was shown in Frankowska (2010) that V can be expressed as
the minimum of three value functions arising in calculus of variations problems
that, in turn, can be obtained from the Lax formulae. Moreover the traces
of the gradients Vx satisfy generalized boundary conditions (as in LeFloch
(1988)). In this work we illustrate this approach in the case of the Burgers
equation and provide numerical approximation of its solutions.

1. Introduction. Some models of traffic flow involve the following scalar conser-
vation laws

ut + f(u)x = 0 on ∈ (0,∞)× [0, 1]

u(·, 0) = u`(·), u(·, 1) = ur(·) on (0,∞) (boundary values)

u(0, ·) = u0(·) on [0, 1] (initial value)

(1.1)

with concave flux function f , see for instance [11, 12, 13] and the references con-
tained therein. Following the classical literature on this topic, in [9, 6, 10] the above
conservation laws was studied for convex f . When f is concave, then −f is convex
and therefore it is enough to find a solution ū to ūt + [(−f)(−ū)]x = 0 satisfying
ū(·, 0) = −u`(·), ū(·, 1) = −ur(·), ū(0, ·) = −u0(·) and to define u = −ū. For this
reason it is enough to study the case of a convex flux f.

For initial value problems existence and uniqueness of entropy solutions was
investigated by many authors in a much more general framework (see for instance [9,
5, 3]). In the presence of boundary conditions, weak solutions satisfying boundary
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conditions pointwise, in general, do not exist. In [2] the authors proposed a way
to interpret smooth boundary conditions and obtained existence and uniqueness
results for solutions having bounded total variation (BV solutions). It was observed
in [10] that for scalar conservation laws on (0,∞) × [0,∞) with strictly convex
smooth f the “left” boundary conditions from [2] are equivalent to : for a.e. t > 0

u(t, 0) = u`(t) & f ′(u`(t)) ≥ 0

or f ′(u(t, 0)) ≤ 0 & f ′(u`(t)) ≤ 0

or f ′(u(t, 0)) ≤ 0, f ′(u`(t)) ≥ 0 & f(u(t, 0)) ≥ f(u`(t)).

(1.2)

Furthermore, in [10] some existence and regularity results were derived for L∞
initial-boundary values with (1.2) satisfied in a weak sense (not in the poitnwise
manner).

Subsequently, in [1] the existence of weak solutions for nonlinear systems of
conservation laws was investigated for the initial and the boundary data having
small total variations. Up to now there are no uniqueness results for solutions of
(1.1) with general discontinuous initial-boundary data, because they are not BV
and so do not fit into the framework of [2], though in [10] uniqueness was proved
for a very restrictive class of piecewise C1 solutions.

In [6] it was observed that the inequality f ′(u(t, 0)) ≤ 0 in (1.2) can be replaced
by an exact expression for u(t, 0). More precisely, when u(t, 0) 6= u`(t), then it
is equal to the trace of the solution of the Cauchy problem (i.e. the initial value
problem on [0, 1] with no left boundary condition). An exact expression for the
trace of the solution of the Cauchy problem was also provided.

Moreover, (1.2) has been linked to properties of weak traces of continuous vis-
cosity solutions to the Hamilton-Jacobi equation

Vt + f(Vx) = 0 on ∈ (0,∞)× [0, 1]

V (·, 0) = g`(·), V (·, 1) = gr(·) (boundary values)

V (0, x) = h(0) +
∫ x

0 u0(r)dr for all x ∈ [0, 1] (initial value),

(1.3)

where g` and gr are appropriately defined continuous functions and h(0) ∈ R. Let
us underline that, under very general assumptions, for the initial value problems
viscosity solutions to Hamilton-Jacobi equations are unique and for this reason the
additional boundary conditions have to be interpreted in light of such uniqueness.

Observe that if V ∈ C2 satisfies (1.3), then differentiating (1.3) with respect to
x it follows that u = Vx solves (1.1). When V is not differentiable, such a relation
is less immediate and was demonstrated in [6].

The unique solution to (1.3) turns out to be the minimum of three value functions
that can be obtained using the Lax formulae. In this paper we exploit this fact to
get numerical approximations of solutions to (1.1).

In the difference with [10], where only the left boundary condition was present,
because of the right boundary condition, additional shock waves may perturb, both,
the left and the right boundary conditions. For this reason, results of [6] were proved
only on [0, T ]× [0, 1] for some time T > 0, in order to avoid such additional shocks.
In their absence, results hold true on R+ × [0, 1].

Here we shall restrict our attention to the Burgers equation. More general study
is postponed to a future work.
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The outline of the paper is as follows. In Section 2 we provide some preliminary
results. In Section 3 we recall main results from [6] that are used in Section 4 to
get numerical approximation of solutions to (1.1).

2. Preliminaries and notations. For a locally Lipschitz mapping ψ : Rn → R
its generalized gradient at x ∈ Rn is defined by

∂ψ(x) = co {p ∈ Rn | ∃ yi → x such that lim
i→∞

ψ′(yi) = p},

where co denotes the closed convex hull. Denote by ∂−ψ(x) the subdifferential of
ψ at x ∈ Rn consisting of all p ∈ Rn such that lim infy→x ψ(y)−ψ(x)−〈p,y−x〉

|y−x| ≥ 0.
For ϕ, ψ : Rn → R, let (ϕ ∧ ψ)(x) := min{ϕ(x), ψ(x)}.
Consider a measurable mapping γ : R+ → R and the scalar differential inclusion

under state constraints m′(t) ∈ γ(t) + χ(m(t))R+ a.e. in R+
m(t) ≥ 0 for all t ∈ R+
m(0) = 0,

(2.1)

where
χ(m) =

{
0 m 6= 0
1 m = 0.

Recall that m(·) : R+ → R is called a solution to differential inclusion (2.1) if it is
locally absolutely continuous and satisfies (2.1). Set

‖γ‖∞ := ess sup s≥0 |γ(s)| ∈ R ∪ {+∞}.

Proposition 1 ([6]). Assume that γ is essentially bounded on bounded sets. Then
for all T > 0 the solution m(·) to the differential inclusion m′(t) ∈ γ(t) + χ(m(t))R+ a.e. in [0, T ]

m(t) ≥ 0 for all t ∈ [0, T ]
m(0) = 0

exists and is unique. Furthermore for MT := ess sup t∈[0,T ] |γ(t)|, m(·) satisfies the
inclusion  m′(t) ∈ γ(t) + χ(m(t))[0,MT ] a.e. in [0, T ]

m(t) ≥ 0 for all t ∈ [0, T ]
m(0) = 0.

Consequently differential inclusion (2.1) has a unique solution m(·) defined on R+
and for a.e. t ≥ 0, |m′(t)| ≤ 2ess sup s∈[0,t] |γ(s)| ≤ 2‖γ‖∞.

We recall next some results from [6] on value functions of Calculus of Variations
problems, where more general Lagrangians were considered.

Let c > 0 and h : [0, 1] → R be a c−Lipschitz function (i.e. Lipschitz with the
Lipschitz constant c). For all t ≥ 0, x ∈ [0, 1] consider the problem of Calculus of
Variations under state constraint for the initial data h(·)

V1(t, x) = min
{
h(y(0)) + 1

2

∫ t

0
y′(s)2ds | y(t) = x, y([0, t]) ⊂ [0, 1]

}
and let Y (t, x) be the set of all yt,x ∈ [0, 1] such that

h(yt,x) + (x− yt,x)2

2t = min
y∈[0,1]

(
h(y) + (x− y)2

2t

)
.
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By [6], the set-valued map R 3 t ; Y (t, 0) is measurable, has closed nonempty
images and is single-valued a.e. Consequently any selection y(t) ∈ Y (t, 0) is mea-
surable. The same observation concerns the set-valued map Y (t, 1).

Propositions 3.2, 3.4 and the very proof of Proposition 3.1 from [6] imply the
following result.

Proposition 2. V1 is Lipschitz continuous, V1(0, ·) = h(·) and for any t > 0,
x ∈ [0, 1] and for all yt,x ∈ Y (t, x) we have |x− yt,x| ≤ 4ct, and

V1(t, x) = h(yt,x) + (x− yt,x)2

2t .

Notice that (x−y)2

2t may become large, when t is small. Hence the obtained
estimates on x−yt,x

2t are very useful, since they allow to avoid large terms when
getting V1(t, x) numerically as a minimum of an optimization problem.

The above function V1 is the unique Lipschitz viscosity solution of the associ-
ated Hamilton-Jacobi equation with the initial condition h(·) (for the definition of
viscosity solutions see for instance [4]). The following result concerns boundary
conditions satisfied by V1.

Theorem 2.1. a) Consider any selections y`(s) ∈ Y (s, 0) and yr(s) ∈ Y (s, 1),
s > 0. Then for all t > 0

V1(t, 0) = h(0)− 1
2

∫ t

0

(
y`(s)
s

)2
ds,

V1(t, 1) = h(1)− 1
2

∫ t

0

(
1− yr(s)

s

)2
ds.

b) For every t > 0 consider a selection [0, 1] 3 z 7→ yt,z ∈ Y (t, z). Then for all
x ∈ [0, 1],

lim
t→0+

∫ x

0

z − yt,z
t

dz = h(x)− h(0).

If in addition h ∈ C1, then limt→0+,z→x
z−yt,z

t = h′(x) for all x ∈ (0, 1).

Let c > 0 and g` : R+ → R be a c−Lipschitz function. For every x ∈ [0, 1], t > 0
consider the following problem of Calculus of Variations under state constraint for
the left boundary condition g`(·)

V2(t, x) = min
{
g`(τ) + 1

2

∫ t

τ

y′(s)2ds | τ ≤ t, y(t) = x, y(τ) = 0, y([τ, t]) ⊂ [0, 1]
}
.

For t > 0, x ∈ (0, 1], let Υ`(t, x) be the set of all 0 ≤ τt,x < t such that

g`(τt,x) + x2

2(t− τt,x) = min
τ∈[0,t)

(
g`(τ) + x2

2(t− τ)

)
and Υ`(t, 0) be the set of all 0 ≤ τt,0 ≤ t such that g`(τt,0) = minτ∈[0,t] g`(τ).

The next Proposition can be deduced from Proposition 4.1 and the proof of
Proposition 4.2 from [6].

Proposition 3. For all t > 0, x ∈ (0, 1] and 0 < τt,x ∈ Υ`(t, x), we have x ≤√
2c (t− τt,x),

V2(t, x) = g`(τt,x) + x2

2(t− τt,x) .
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As before, the estimates on x
t−τt,x

are very useful, since they allow to avoid large
terms when getting V2(t, x) numerically as a minimum of an optimization problem.

For every t > 0 define

z`(t) =
{

0 if 0 ∈ Υ`(t, x) ∀ x ∈ [0, 1]
sup{x ∈ (0, 1] | Υ`(t, x) ∩ (0,∞) 6= ∅} otherwise.

The following result simplifies numerical approximations of V2.

Proposition 4. Let t > 0.
i) If 0 ∈ Υ`(t, z`(t)), then Υ`(s, x) = {0} for all x ∈ (z`(t), 1] and s ∈ (0, t].
ii) If for some t > 0 and x ∈ (0, 1] the set Υ`(t, x) contains an element different

from zero, then for all s > t, 0 /∈ Υ`(s, x) and for all y ∈ [0, x), 0 /∈ Υ`(t, y).
iii) Let t0 := inf{t > 0 | z`(t) = 1}. If 0 < t0 < ∞, then z`(t) = 1 on [t0,∞). If

0 ∈ Υ`(t0, 1), then z`(·) is strictly increasing on (0, t0).

Proposition 5. Let x ∈ (0, 1] and t`(x) := inf{t > 0 | Υ`(t, x) ∩ (0,∞) 6= ∅}.
Then V2 is Lipschitz on {(t, x) | 0 < x ≤ z`(t), t > t`(x)}. Furthermore if for some
x ∈ (0, 1], t`(x) <∞, then V2(·, x) is c−Lipschitz on [t`(x),∞).

Let u0 : [0, 1]→ R and u` : R+ → R be measurable essentially bounded functions
and h(0) ∈ R. For all x ∈ [0, 1] define h(x) = h(0) +

∫ x
0 u0(r)dr and let V1 be the

corresponding value function. Consider a selection R+ 3 s 7→ y`(s) ∈ Y (s, 0) and
set γ(s) := 1

2u`(s)
2 −

(
y`(s)
s

)2
for all s > 0. Then, by Proposition 1, there exists a

solution m`(·) ≥ 0 to (2.1). For all t ≥ 0 and s > 0 define

Γ`(s) := m′`(s) + y`(s)2

2s2 , g`(t) = h(0)−
∫ t

0
Γ`(s)ds

and consider the value function V2 corresponding to this g`(·). The next Proposition
shows that g`(·) is the left boundary value of V2 which is not larger than the left
boundary value of V1.

Proposition 6. For all t > 0, g`(t) = V2(t, 0) ≤ V1(t, 0)−m`(t).

Consider any selections yt,x ∈ Y (t, x), τt,x ∈ Υ`(t, x). For all (t, x) ∈ (0,∞) ×
(0, 1] set

u1(t, x) :=


x

t−τt,x
if V2(t, x) < V1(t, x)

x−yt,x

t otherwise.
(2.2)

Our next result underlines the fact that for every t > 0 the state interval [0, 1]
admits a subdivision in at most three subintervals : the one where V2(t, ·) is strictly
smaller than V1(t, ·), the one where it is equal to it and the one where it is strictly
larger.

Theorem 2.2. For every t > 0 define

π`(t) =
{

0 if {x ∈ [0, z`(t)) |V2(t, x) < V1(t, x)} = ∅
sup {x ∈ [0, z`(t)) |V2(t, x) < V1(t, x)} otherwise

and

Π`(t) =
{

1 if {x ∈ [0, 1] |V1(t, x) < V2(t, x)} = ∅
inf {x ∈ [0, 1] |V1(t, x) < V2(t, x)} otherwise.
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Then π`(·) is continuous, limt→0+ π`(t) = 0 and

i) ∀ x < π`(t), V2(t, x) < V1(t, x)
ii) ∀ x > Π`(t), V2(t, x) > V1(t, x)
iii) ∀ x ∈ [π`(t),Π`(t)], V2(t, x) = V1(t, x)
iv) ∀ x ∈ (π`(t),Π`(t)), yt,x = 0, τt,x = 0.

Moreover if π`(t) < z`(t), then π`(t) = Π`(t).

The following theorem concerns the weak trace of u2
1 when x→ 0 + .

Theorem 2.3 (Boundary Value). If u`(·) ≥ 0 a.e. in (0,∞), then ∀ t > 0,

lim
x→0+

1
2

∫ t

0
u1(s, x)2ds =

∫ t

0
Γ`(s)ds.

In an analogous way we investigate the right boundary conditions. Let gr : R+ →
R be a c−Lipschitz function. For every x ∈ [0, 1], t > 0 consider the following
problem of Calculus of Variations under state constraint for the right boundary
condition gr(·).

V3(t, x) = min{gr(τ)+1
2

∫ t

τ

y′(s)2ds | τ ∈ [0, t], y(t) = x, y(τ) = 1, y([τ, t]) ⊂ [0, 1]}.

For all t > 0 and x ∈ [0, 1), let Υr(t, x) be the set of all 0 ≤ τt,x < t such that

gr(τt,x) + (1− x)2

2(t− τt,x) = min
τ∈[0,t)

(
gr(τ) + (1− x)2

2(t− τ)

)
.

and let Υr(t, 1) be the set of all 0 ≤ τt,1 < t such that gr(τt,1) = minτ∈[0,t] gr(τ).

Proposition 7. For any t > 0 and x ∈ [0, 1) and for all 0 < τt,x ∈ Υr(t, x), we
have 1− x ≤

√
2c (t− τt,x) and

V3(t, x) = gr(τt,x) + (1− x)2

2(t− τt,x) .

Let ur : R+ → R be an essentially bounded measurable function. Consider a
selection yr(s) ∈ Y (s, 1) and define γ(s) := 1

2ur(s)
2 − 1

2

(
1−yr(s)

s

)2
for all s > 0.

By Proposition 1 there exists a solution mr(·) ≥ 0 to (2.1) defined on R+. For all
s > 0, t ≥ 0 set

Γr(s) := m′r(s) + 1
2

(
1− yr(s)

s

)2
, gr(t) = h(1)−

∫ t

0
Γr(s)ds

and consider the value function V3 corresponding to this gr(·). Then, by Theorem
2.1, for all t > 0,

V3(t, 1) ≤ h(1)−mr(t)−
1
2

∫ t

0

(
1− yr(s)

s

)2
ds = V1(t, 1)−mr(t).

That is on the right boundary of [0, 1], V3 is not larger than V1.
For every t > 0 define

zr(t) =
{

1 if 0 ∈ Υr(t, x) ∀ x ∈ [0, 1)
inf{x ∈ [0, 1) | Υr(t, x) ∩ (0,∞) 6= ∅} otherwise
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and consider any selections yt,x ∈ Y (t, x), τt,x ∈ Υr(t, x). For (t, x) ∈ (0,∞)×(0, 1]
set

u2(t, x) :=


x−1
t−τt,x

if V3(t, x) < V1(t, x)

x−yt,x

t otherwise.
(2.3)

Theorem 2.4. For every t > 0 define

πr(t) =
{

1 if {x ∈ (zr(t), 1] |V3(t, x) < V1(t, x)} = ∅
inf {x ∈ (zr(t), 1] |V3(t, x) < V1(t, x)} otherwise

and
Πr(t) =

{
0 if {x ∈ [0, 1] |V1(t, x) < V3(t, x)} = ∅
sup {x ∈ [0, 1] |V1(t, x) < V3(t, x)} otherwise.

Then πr(·) is continuous, limt→0+ πr(t) = 1 and
i) ∀ x > πr(t), V3(t, x) < V1(t, x)
ii) ∀ x < Πr(t), V3(t, x) > V1(t, x)
iii) ∀ x ∈ [Πr(t), πr(t)], V3(t, x) = V1(t, x)
iv) ∀ x ∈ (Πr(t), πr(t)), yt,x = 1, τt,x = 0.

Moreover, if πr(t) > zr(t), then πr(t) = Πr(t).

The last result of this section concerns the weak trace of u2
2 when x→ 1− .

Theorem 2.5 (Boundary Value). Assume that ur(·) ≤ 0 a.e. in (0,∞). Then for
all t > 0,

lim
x→1−

1
2

∫ t

0
u2(s, x)2ds =

∫ t

0
Γr(s)ds.

3. Solutions to Burgers equation. We summarize here main results from [6]
adapted to the case of Burgers equation. They involve the value functions discussed
in the previous section. Let u0 : [0, 1]→ R, u` : R+ → R and ur : R+ → R be mea-
surable essentially bounded functions and h(0) ∈ R. Consider h, g`, gr, Vi, Γ`, Γr
associated to these data as it was done in the previous section and define W :
R+ × [0, 1]→ R by

W (t, x) = min{V1(t, x), V2(t, x), V3(t, x)}, W (0, x) = h(x).
Let T > 0 and π`(·), πr(·) be as in Theorems 2.2 and 2.4. Define αT = T if

π`(t) < 1 and πr(t) > 0 for all t ∈ [0, T ] and
αT = min{t ∈ [0, T ] |πr(t) = 0 or π`(t) = 1}

otherwise.
Consider the Hamilton-Jacobi equation associated to the Burgers equation

Vt + 1
2V

2
x = 0 (3.1)

Theorem 3.1. W (·, ·) : [0, αT ]× [0, 1]→ R is the unique Lipschitz function satis-
fying the above Hamilton-Jacobi equation and the initial-boundary conditions in the
following generalized sense :

i) for all (t, x) ∈ (0, αT )× (0, 1)

pt + 1
2 p

2
x = 0, ∀ (pt, px) ∈ ∂−W (t, x)

ii) W (0, ·) = h(·), W (·, 0) = g`(·), W (·, 1) = gr(·).
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Remark 1. (a) Note that our uniqueness result is stated on [0, αT ]× [0, 1], where
αT ≤ T is explicitly defined. If αT = T for all T > 0, then the uniqueness holds
true on R+× [0, 1]. If αT < T , then it may happen that either left or right boundary
conditions are violated for some times in the interval (αT , T ).

(b) It can be shown that W (·, ·) : [0, αT ]× [0, 1]→ R is also the unique Lipschitz
continuous viscosity solution of (3.1), satisfying the initial-boundary conditions ii).

Proposition 8 (Regularity of W ). The gradient ∇W of W is continuous a.e.
in (0,∞) × (0, 1) in the following sense : if W is differentiable at some (s, y) ∈
(0,∞) × (0, 1), then for any sequence (si, yi) ∈ (0,∞) × (0, 1) converging to (s, y)
such that W is differentiable at (si, yi) we have limi→∞∇W (si, yi) = ∇W (s, y).

Let u1(·, ·), u2(·, ·) be as in (2.2) and (2.3). For all (t, x) ∈ (0,∞)× (0, 1] define

u(t, x) :=
{
u1(t, x) if (V1 ∧ V2)(t, x) < V3(t, x)
u2(t, x) otherwise.

Our next result implies that solutions studied in [10] are equal to Wx.

Theorem 3.2. For every T > 0, let αT be defined as above. Then for almost all
(t, x) ∈ (0, αT )× (0, 1), u(t, x) = Wx(t, x). Furthermore,
i) u(·, ·) is continuous at a.e. (t, x) ∈ (0,∞)× (0, 1)
ii) For all t > 0, u(t, ·) is continuous at a.e. x ∈ (0, 1).
iii) For every t ∈ (0, αT ], u(t, ·) has left and right limits at each point x ∈ (0, 1)

and the Lax shock inequality u(t, x−) ≥ u(t, x+) holds true.
iv) u(·, ·) is essentially bounded on [0, αT ] × [0, 1] by a constant depending only

on ess supr∈[0,1]|u0(r)|, ess sups∈[0,αT ]|u`(s)| and ess sups∈[0,αT ]|ur(s)|.

The next two theorems imply that u satisfies initial-boundary conditions point-
wise or weakly, as in [10].

Below we denote by sign(a) the sign function equal to 1 when a > 0, to −1 when
a < 0 and to 0 when a = 0.

Theorem 3.3. Assume that u0(·), u`(·) ≥ 0, ur(·) ≤ 0 are continuous and let
T > 0. Then for a.e. t ∈ [0, αT ] and all x̄ ∈ (0, 1), the following limits do exist

u(t, 0) := lim
x→0+

u(t, x), u(t, 1) := lim
x→1−

u(t, x), u(0, x̄) := lim
t→0+, x→x̄

u(t, x)

and 1
2u(t, 0)2 = Γ`(t), 1

2u(t, 1)2 = Γr(t), u(0, x̄) = u0(x̄).
Furthermore at x = 0 one of the following two relations holds true :

i) u(t, 0) = u`(t)
ii) u(t, 0) = − y`(t)

t ≤ −u`(t)
and at x = 1 one of the following two relations holds true :

i)′ u(t, 1) = ur(t)
ii)′′ u(t, 1) = 1−yr(t)

t ≥ |ur(t)|.
Moreover, if m`(t) > 0, then limx→0+ sign(u(t, x)) = 1; if m`(t) = 0 and u`(t) <
y`(t)
t , then limx→0+ sign(u(t, x)) = −1.
Furthermore if mr(t) > 0, then limx→1− sign(u(t, x)) = −1; if mr(t) = 0 and

|ur(t)| < 1−yr(t)
t , then limx→1− sign(u(t, x)) = 1.

When the initial/boundary conditions are discontinuous, then the following weak-
er result holds true.
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Theorem 3.4. Assume that u`(·) ≥ 0 and ur(·) ≤ 0 a.e. in (0,∞) and let T > 0.
Then for all t ∈ [0, αT ],

lim
x→0+

1
2

∫ t

0
u(s, x)2ds =

∫ t

0
Γ`(s)ds, lim

x→1−

1
2

∫ t

0
u(s, x)2ds =

∫ t

0
Γr(s)ds

and for all x ∈ (0, 1)

lim
t→0+

∫ x

0
u(t, r)dr =

∫ x

0
u0(r)dr.

Theorem 3.5 (Trace of Sign). Assume that u`(·) ≥ 0 and ur(·) ≤ 0 a.e. in (0,∞).
Let π`(t), πr(t), Π`(t), Πr(t) be defined as in Theorems 2.2, 2.4 and y`(t) ∈ Y (t, 0),
yr(t) ∈ Y (t, 1) be such that

y`(t) = max{y | y ∈ Y (t, 0)}, yr(t) = min{y | y ∈ Y (t, 1)}.

Then for all T > 0 and every t ∈ (0, αT )

Π`(t) > 0 =⇒ limx→0+ sign(u(t, x)) = 1,
Π`(t) = 0 & y`(t) > 0 =⇒ limx→0+ sign(u(t, x)) = −1,

Π`(t) = y`(t) = 0 =⇒ limx→0+ u(t, x) = 0
and

Πr(t) < 1 =⇒ limx→0+ sign(u(t, x)) = −1,
Πr(t) = 1 & yr(t) < 1 =⇒ limx→1− sign(u(t, x)) = 1,

Πr(t) = yr(t) = 1 =⇒ limx→1− u(t, x) = 0.

Moreover if limx→0+ sign(u(t, x)) = −1, then limx→0+ u(t, x) = −y`(t)
t and

if limx→1− sign(u(t, x)) = 1, then limx→1− u(t, x) = 1−yr(t)
t .

We next provide an existence result analogous to Theorem 3.3 when no sign
conditions are imposed on u`(·) and ur(·).

Theorem 3.6. Let ū`(·) : R+ → R, ūr(·) : R+ → R, u0(·) : [0, 1] → R be
continuous. Define the continuous functions

u`(t) =
{
ū`(t) if ū`(t) ≥ 0
0 otherwise,

ur(t) =
{
ūr(t) if ūr(t) ≤ 0
0 otherwise.

and let T > 0, αT and u(·, ·) be as in Theorem 3.3. Then for a.e. t ∈ [0, αT ] one of
the following four conditions is verified for x = 0

i) u(t, 0) = ū`(t) ū`(t) ≥ 0
ii) u(t, 0) = 0 ū`(t) < 0
iii) u(t, 0) = − y`(t)

t ≤ −ū`(t) ū`(t) ≥ 0
iv) u(t, 0) = − y`(t)

t ū`(t) < 0.

Similarly, for a.e. t ∈ [0, αT ] one of the following four conditions is verified for
x = 1

i)′ u(t, 1) = ūr(t) ūr(t) ≤ 0
ii)′ u(t, 1) = 0 ūr(t) > 0
iii)′ u(t, 1) = 1−yr(t)

t ≥ |ur(t)| ūr(t) ≤ 0
iv)′ u(t, 1) = 1−yr(t)

t ūr(t) > 0.
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4. Examples. In this section we illustrate the above approach on three examples.
The first one concerns continuous data for which, according to the previous section,
generalized boundary conditions are satisfied pointwise, while the second and third
examples involve piecewise continuous boundary conditions with only one discon-
tinuity. Then the boundary conditions are satisfied in a weak sense described in
Theorem 3.3.

4.1. Example 1. Our first example shows that even when the initial and boundary
data are continuous, it may happen that after some time a solution u to the Burgers
equation depends only on the right boundary condition.

Let u0(x) = −3x2 + 1, u`(t) = 0.3 + 1.5t, ur(t) = −1.5− 2t.

The initial value h and boundary values g`, gr of the associated Hamilton-Jacobi
equation are continuous.

Functions m` and mr are strictly increasing, Γ`(t) = 1
2u`(t)

2 and Γr(t) = 1
2ur(t)

2.
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The initial condition u0 (that defines the value function V1) has an influence on W
up to time 0.5. For t ∈ [1.2, 1.5], W (t, x) = V3(t, x) for all x ∈ [0, 1]. That is the
explicit expression for a solution to the Burgers equation depends only on the right
boundary condition on the time interval [1.2, 1.5].

The solution W to the Hamilton-Jacobi equation is continuous, but its graph ex-
hibits zones of strong decrease corresponding to switches between the value functions
involved into the definition of W .
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A solution u(·, ·) of the Burgers equation, expressed using derivatives of W with
respect to x, is discontinuous. Its discontinuity is however diminish for time t > 1.2,
when W = V3, that is when only the right boundary condition plays a role.

4.2. Example 2. Our second example illustrates that for some initial-boundary
conditions it may happen that for sufficiently large time both left and right boundary
conditions determine a solution u to the Burgers equation, while the influence of
the initial condition does disappear.

Let u0(x) = −1.8x2 + 0.6 and

u`(t) =
{

0.1 + 1.5t if t < 0.2
1.7− 1.2t otherwise , ur(t) =

{
−1.5− 0.8t if t > 0.4
−0.8 + 0.49t otherwise.
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The initial value h and boundary values gl, gr of the associated Hamilton-Jacobi
equation are continuous.

Notice that the functions ml(·) = 0 and mr(·) are strictly increasing.

The value function V1 is involved in definition of W up to time 0.72. For t ∈
[0.72, 1], W (t, x) = (V2 ∧ V3)(t, x) for all x ∈ [0, 1]. In the above, the bold black line
corresponds to states (t, x) where V2(t, x) = V3(t, x). That is the initial condition is
not involved into the explicit definition of solution of the Burgers equation on the
time interval [0.72, 1].
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The function W solving the Hamilton-Jacobi equation is continuous, but its graph
exhibits zones of strong decrease.

The solution u(·, ·) of the Burgers equation, expressed using derivatives of W with
respect to x, is discontinuous. The largest discontinuity regions correspond switches
between value functions determining W .

4.3. Example 3. Our third example illustrates that it may happen that for a pe-
riod of time only the initial and the right boundary conditions determine a solution
u to the Burgers equation, but then again both boundary conditions and the initial
condition play a role.

Let u0(x) = −2.8x+ 0.5,

ul(t) = 0.1 + t, ur(t) =
{
−0.4− 0.4t if t < 0.5
−0.8 + 0.4t otherwise
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The initial value h and boundary values gl, gr of the associated Hamilton-Jacobi
equation are continuous.

The function γ` is discontinuous.
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Notice that the function ml(·) = 0 on the time interval [0.55, 1]. Hence it is not
monotone in this example, while mr(·) is strictly increasing.

The value function V2 is involved in definition of W up to time 0.55 and then
again for time larger than 1.1. For 0.55 < t < 1.1, W (t, x) = (V1 ∧ V3)(t, x) for
all x ∈ [0, 1]. That is the left boundary condition is not involved into the explicit
definition of solution of the Burgers equation on the time interval [0.55, 1.1].

The function W solving the Hamilton-Jacobi equation is continuous, but its graph
exhibits zones of strong decrease.
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The solution u(·, ·) of the Burgers equation, expressed using derivatives of W with
respect to x, is discontinuous. The largest discontinuity regions concerns switches
between value functions.
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