Numerical approximations of a traffic flow model on networks

  • Received: 01 September 2005 Revised: 01 October 2005
  • Primary: 65M06; Secondary: 90B20, 35L65, 34B45, 90B10.

  • We consider a mathematical model for fluid-dynamic flows on networks which is based on conservation laws. Road networks are considered as graphs composed by arcs that meet at some junctions. The crucial point is represented by junctions, where interactions occur and the problem is underdetermined. The approximation of scalar conservation laws along arcs is carried out by using conservative methods, such as the classical Godunov scheme and the more recent discrete velocities kinetic schemes with the use of suitable boundary conditions at junctions. Riemann problems are solved by means of a simulation algorithm which proceeds processing each junction. We present the algorithm and its application to some simple test cases and to portions of urban network.

    Citation: Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks[J]. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57

    Related Papers:

    [1] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57
    [2] Raimund Bürger, Harold Deivi Contreras, Luis Miguel Villada . A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux. Networks and Heterogeneous Media, 2023, 18(2): 664-693. doi: 10.3934/nhm.2023029
    [3] Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012
    [4] Adriano Festa, Simone Göttlich, Marion Pfirsching . A model for a network of conveyor belts with discontinuous speed and capacity. Networks and Heterogeneous Media, 2019, 14(2): 389-410. doi: 10.3934/nhm.2019016
    [5] Jan Friedrich, Oliver Kolb, Simone Göttlich . A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13(4): 531-547. doi: 10.3934/nhm.2018024
    [6] Helge Holden, Nils Henrik Risebro . Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks and Heterogeneous Media, 2018, 13(3): 409-421. doi: 10.3934/nhm.2018018
    [7] Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040
    [8] Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra . Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8(4): 969-984. doi: 10.3934/nhm.2013.8.969
    [9] Maya Briani, Emiliano Cristiani . An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks and Heterogeneous Media, 2014, 9(3): 519-552. doi: 10.3934/nhm.2014.9.519
    [10] Simone Göttlich, Camill Harter . A weakly coupled model of differential equations for thief tracking. Networks and Heterogeneous Media, 2016, 11(3): 447-469. doi: 10.3934/nhm.2016004
  • We consider a mathematical model for fluid-dynamic flows on networks which is based on conservation laws. Road networks are considered as graphs composed by arcs that meet at some junctions. The crucial point is represented by junctions, where interactions occur and the problem is underdetermined. The approximation of scalar conservation laws along arcs is carried out by using conservative methods, such as the classical Godunov scheme and the more recent discrete velocities kinetic schemes with the use of suitable boundary conditions at junctions. Riemann problems are solved by means of a simulation algorithm which proceeds processing each junction. We present the algorithm and its application to some simple test cases and to portions of urban network.


  • This article has been cited by:

    1. Yanning Li, Christian G. Claudel, Benedetto Piccoli, Daniel B. Work, A Convex Formulation of Traffic Dynamics on Transportation Networks, 2017, 77, 0036-1399, 1493, 10.1137/16M1074795
    2. S. Čanić, M.L. Delle Monache, B. Piccoli, J.-M. Qiu, J. Tambača, 2017, 18, 9780444639103, 435, 10.1016/bs.hna.2016.11.007
    3. Theresa Dambach, Simone Göttlich, Stephan Knapp, Car path tracking in traffic flow networks with bounded buffers at junctions, 2020, 43, 0170-4214, 3331, 10.1002/mma.6121
    4. Massimiliano Caramia, Ciro D’Apice, Benedetto Piccoli, Antonino Sgalambro, Fluidsim: A Car Traffic Simulation Prototype Based on FluidDynamic, 2010, 3, 1999-4893, 294, 10.3390/a3030294
    5. Maya Briani, Benedetto Piccoli, Jing-Mei Qiu, Notes on RKDG Methods for Shallow-Water Equations in Canal Networks, 2016, 68, 0885-7474, 1101, 10.1007/s10915-016-0172-2
    6. Antonella Ferrara, Simona Sacone, Silvia Siri, 2018, Chapter 3, 978-3-319-75959-3, 47, 10.1007/978-3-319-75961-6_3
    7. Masayasu Suzuki, Jun-ichi Imura, Kazuyuki Aihara, Analysis and stabilization for networked linear hyperbolic systems of rationally dependent conservation laws, 2013, 49, 00051098, 3210, 10.1016/j.automatica.2013.08.016
    8. Raluca Eftimie, 2018, Chapter 3, 978-3-030-02585-4, 55, 10.1007/978-3-030-02586-1_3
    9. Paola Goatin, Simone Göttlich, Oliver Kolb, Speed limit and ramp meter control for traffic flow networks, 2016, 48, 0305-215X, 1121, 10.1080/0305215X.2015.1097099
    10. Guillaume Costeseque, Jean-Patrick Lebacque, Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations, 2014, 7, 1937-1179, 411, 10.3934/dcdss.2014.7.411
    11. Tie-Qiao Tang, Wei-Fang Shi, Hai-Jun Huang, Wen-Xiang Wu, Ziqi Song, A route-based traffic flow model accounting for interruption factors, 2019, 514, 03784371, 767, 10.1016/j.physa.2018.09.098
    12. Sebastian Pfaff, Stefan Ulbrich, Optimal control of scalar conservation laws by on/off-switching, 2017, 32, 1055-6788, 904, 10.1080/10556788.2016.1236796
    13. Gabriella Bretti, Benedetto Piccoli, A Tracking Algorithm for Car Paths on Road Networks, 2008, 7, 1536-0040, 510, 10.1137/070697768
    14. Stefano Berrone, Francesca De Santi, Sandra Pieraccini, Massimo Marro, Coupling traffic models on networks and urban dispersion models for simulating sustainable mobility strategies, 2012, 64, 08981221, 1975, 10.1016/j.camwa.2012.03.054
    15. Michele D. Simoni, Christian G. Claudel, A Fast Lax–Hopf Algorithm to Solve the Lighthill–Whitham–Richards Traffic Flow Model on Networks, 2020, 54, 0041-1655, 1516, 10.1287/trsc.2019.0951
    16. Simone Göttlich, Ute Ziegler, Michael Herty, Numerical discretization of Hamilton--Jacobi equations on networks, 2013, 8, 1556-181X, 685, 10.3934/nhm.2013.8.685
    17. G. Bretti, R. Natalini, B. Piccoli, Numerical algorithms for simulations of a traffic model on road networks, 2007, 210, 03770427, 71, 10.1016/j.cam.2006.10.057
    18. Ximin Liu, Shiqiang Dai, Shoufeng Lu, 2009, Macroscopic model for interrupted traffic flow of signal controlled intersection, 978-1-4244-4247-8, 78, 10.1109/CCCM.2009.5268043
    19. R. MANZO, B. PICCOLI, L. RARITÀ, Optimal distribution of traffic flows in emergency cases, 2012, 23, 0956-7925, 515, 10.1017/S0956792512000071
    20. Suncica Canic, Benedetto Piccoli, Jing-Mei Qiu, Tan Ren, Runge–Kutta Discontinuous Galerkin Method for Traffic Flow Model on Networks, 2015, 63, 0885-7474, 233, 10.1007/s10915-014-9896-z
    21. Simone Göttlich, Michael Herty, Ute Ziegler, Modeling and optimizing traffic light settings in road networks, 2015, 55, 03050548, 36, 10.1016/j.cor.2014.10.001
    22. Neda Najafzadeh, Saeid Abbasbandy, Elyas Shivanian, Jing Zhao, Adaptive Numerical Method for Approximation of Traffic Flow Equations, 2022, 2022, 2042-3195, 1, 10.1155/2022/8208957
    23. A. Cutolo, C. D'Apice, R. Manzo, Traffic Optimization at Junctions to Improve Vehicular Flows, 2011, 2011, 2090-5564, 1, 10.5402/2011/679056
    24. 文彬 孙, A High Resolution Upwind Scheme for Traffic Flow on Networks, 2019, 08, 2324-7991, 2072, 10.12677/AAM.2019.812238
    25. Simone Göttlich, Ute Ziegler, Traffic light control: A case study, 2014, 7, 1937-1179, 483, 10.3934/dcdss.2014.7.483
    26. Mapundi K. Banda, Axel-Stefan Häck, Michael Herty, Numerical Discretization of Coupling Conditions by High-Order Schemes, 2016, 69, 0885-7474, 122, 10.1007/s10915-016-0185-x
    27. Andres Ladino, Carlos Canudas-de-Wit, Alain Kibangou, Hassen Fourati, Martin Rodriguez, 2018, Density and flow reconstruction in urban traffic networks using heterogeneous data sources, 978-3-9524-2698-2, 1679, 10.23919/ECC.2018.8550267
    28. M. L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin, A. M. Bayen, A PDE-ODE Model for a Junction with Ramp Buffer, 2014, 74, 0036-1399, 22, 10.1137/130908993
    29. John D. Towers, Convergence via OSLC of the Godunov scheme for a scalar conservation law with time and space flux discontinuities, 2018, 139, 0029-599X, 939, 10.1007/s00211-018-0957-3
    30. Giulia Bertaglia, Lorenzo Pareschi, Hyperbolic models for the spread of epidemics on networks: kinetic description and numerical methods, 2021, 55, 0764-583X, 381, 10.1051/m2an/2020082
    31. T. Q. Tang, C. Q. Mei, H. J. Huang, 2007, A Dynamic Model of the Two-Route Traffic Flow, 9780784409329, 1843, 10.1061/40932(246)302
    32. Evan Gravelle, Sonia Martínez, Distributed dynamic lane reversal and rerouting for traffic delay reduction, 2018, 91, 0020-7179, 2355, 10.1080/00207179.2017.1344909
    33. CASCONE ANNUNZIATA, CIRO D'APICE, PICCOLI BENEDETTO, RARITÀ LUIGI, OPTIMIZATION OF TRAFFIC ON ROAD NETWORKS, 2007, 17, 0218-2025, 1587, 10.1142/S021820250700239X
    34. T.Q. Tang, H.J. Huang, C.Q. Mei, S.G. Zhao, A dynamic model for traffic network flow, 2008, 387, 03784371, 2603, 10.1016/j.physa.2008.01.020
    35. YuFeng Shi, Yan Guo, A maximum-principle-satisfying finite volume compact-WENO scheme for traffic flow model on networks, 2016, 108, 01689274, 21, 10.1016/j.apnum.2016.05.001
    36. Ian Marsh, 2012, VANET communication: A traffic flow approach, 978-1-4673-2569-1, 1043, 10.1109/PIMRC.2012.6362499
    37. Ke Han, Benedetto Piccoli, W.Y. Szeto, Continuous-time link-based kinematic wave model: formulation, solution existence, and well-posedness, 2016, 4, 2168-0566, 187, 10.1080/21680566.2015.1064793
    38. John D. Towers, Convergence of the Godunov scheme for a scalar conservation law with time and space discontinuities, 2018, 15, 0219-8916, 175, 10.1142/S0219891618500078
    39. Tie-Qiao Tang, Yun-Peng Wang, Gui-Zhen Yu, Hai-Jun Huang, A Stochastic LWR Model with Consideration of the Driver's Individual Property, 2012, 58, 0253-6102, 583, 10.1088/0253-6102/58/4/24
    40. Alessia Marigo, Benedetto Piccoli, A Fluid Dynamic Model for T-Junctions, 2008, 39, 0036-1410, 2016, 10.1137/060673060
    41. Gabriella Bretti, Roberto Natalini, Benedetto Piccoli, A Fluid-Dynamic Traffic Model on Road Networks, 2007, 14, 1134-3060, 139, 10.1007/s11831-007-9004-8
    42. Dirk Helbing, Jan Siegmeier, Stefan Lämmer, 2013, Chapter 6, 978-3-642-32159-7, 335, 10.1007/978-3-642-32160-3_6
    43. Yossi Farjoun, Benjamin Seibold, 2013, Chapter 13, 978-3-642-32978-4, 199, 10.1007/978-3-642-32979-1_13
    44. Alexandre Bayen, Alexander Keimer, Emily Porter, Michele Spinola, Time-Continuous Instantaneous and Past Memory Routing on Traffic Networks: A Mathematical Analysis on the Basis of the Link-Delay Model, 2019, 18, 1536-0040, 2143, 10.1137/19M1258980
    45. Alfredo Cutolo, Benedetto Piccoli, Luigi Rarità, An Upwind-Euler Scheme for an ODE-PDE Model of Supply Chains, 2011, 33, 1064-8275, 1669, 10.1137/090767479
    46. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    47. Simone Göttlich, Michael Herty, Christian Ringhofer, 2012, Chapter 11, 978-0-85729-643-6, 265, 10.1007/978-0-85729-644-3_11
    48. Sebastian Pfaff, Stefan Ulbrich, Günter Leugering, 2014, Chapter 8, 978-3-319-05082-9, 109, 10.1007/978-3-319-05083-6_8
    49. S. Blandin, G. Bretti, A. Cutolo, B. Piccoli, Numerical simulations of traffic data via fluid dynamic approach, 2009, 210, 00963003, 441, 10.1016/j.amc.2009.01.057
    50. Silvia Siri, Cecilia Pasquale, Simona Sacone, Antonella Ferrara, Freeway traffic control: A survey, 2021, 130, 00051098, 109655, 10.1016/j.automatica.2021.109655
    51. Luigi Rarità, Ciro D'Apice, Benedetto Piccoli, Dirk Helbing, Sensitivity analysis of permeability parameters for flows on Barcelona networks, 2010, 249, 00220396, 3110, 10.1016/j.jde.2010.09.006
    52. Gabriella Bretti, Emiliano Cristiani, Corrado Lattanzio, Amelio Maurizi, Benedetto Piccoli, Two algorithms for a fully coupled and consistently macroscopic PDE-ODEsystem modeling a moving bottleneck on a road, 2018, 1, 2640-3501, 55, 10.3934/Mine.2018.1.55
    53. Giulia Bertaglia, Lorenzo Pareschi, Hyperbolic compartmental models for epidemic spread on networks with uncertain data: Application to the emergence of COVID-19 in Italy, 2021, 31, 0218-2025, 2495, 10.1142/S0218202521500548
    54. Sovanna Mean, Koichi Unami, Masayuki Fujihara, Numerical Examples of Non-Dissipative Discontinuous Kinematic Waves in Open Channels, 2022, 27, 1343-8646, 33, 10.7132/jrcsa.27_2_33
    55. A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutière, P. -A. Raviart, N. Seguin, 2008, Chapter 99, 978-3-540-75711-5, 947, 10.1007/978-3-540-75712-2_99
    56. Terry L. Friesz, Ke Han, 2022, Chapter 8, 978-3-031-25562-5, 295, 10.1007/978-3-031-25564-9_8
    57. Massimo de Falco, Luigi Rarità, Alfredo Vaccaro, A Fluid Dynamic Approach to Model and Optimize Energy Flows in Networked Systems, 2024, 12, 2227-7390, 1543, 10.3390/math12101543
    58. Mickael Bestard, Emmanuel Franck, Laurent Navoret, Yannick Privat, Optimal scenario for road evacuation in an urban environment, 2024, 75, 0044-2275, 10.1007/s00033-024-02278-9
    59. Giulia Bertaglia, Andrea Bondesan, Diletta Burini, Raluca Eftimie, Lorenzo Pareschi, Giuseppe Toscani, New trends on the systems approach to modeling SARS-CoV-2 pandemics in a globally connected planet, 2024, 34, 0218-2025, 1995, 10.1142/S0218202524500301
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5585) PDF downloads(162) Cited by(59)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog