Citation: Maya Briani, Emiliano Cristiani. An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study[J]. Networks and Heterogeneous Media, 2014, 9(3): 519-552. doi: 10.3934/nhm.2014.9.519
[1] | Maya Briani, Emiliano Cristiani . An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks and Heterogeneous Media, 2014, 9(3): 519-552. doi: 10.3934/nhm.2014.9.519 |
[2] | Emiliano Cristiani, Smita Sahu . On the micro-to-macro limit for first-order traffic flow models on networks. Networks and Heterogeneous Media, 2016, 11(3): 395-413. doi: 10.3934/nhm.2016002 |
[3] | Emiliano Cristiani, Fabio S. Priuli . A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks and Heterogeneous Media, 2015, 10(4): 857-876. doi: 10.3934/nhm.2015.10.857 |
[4] | Caterina Balzotti, Simone Göttlich . A two-dimensional multi-class traffic flow model. Networks and Heterogeneous Media, 2021, 16(1): 69-90. doi: 10.3934/nhm.2020034 |
[5] | Felisia Angela Chiarello, Paola Goatin . Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14(2): 371-387. doi: 10.3934/nhm.2019015 |
[6] | Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales . Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks and Heterogeneous Media, 2013, 8(3): 745-772. doi: 10.3934/nhm.2013.8.745 |
[7] | Helge Holden, Nils Henrik Risebro . Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks and Heterogeneous Media, 2018, 13(3): 409-421. doi: 10.3934/nhm.2018018 |
[8] | Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen . A mathematical framework for delay analysis in single source networks. Networks and Heterogeneous Media, 2017, 12(1): 113-145. doi: 10.3934/nhm.2017005 |
[9] | Carlos F. Daganzo . On the variational theory of traffic flow: well-posedness, duality and applications. Networks and Heterogeneous Media, 2006, 1(4): 601-619. doi: 10.3934/nhm.2006.1.601 |
[10] | Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040 |
[1] |
B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Rational Mech. Anal., 201 (2011), 27-86. doi: 10.1007/s00205-010-0389-4
![]() |
[2] |
S. Benzoni-Gavage and R. M. Colombo, An $n$-populations model for traffic flow, European J. Appl. Math., 14 (2003), 587-612. doi: 10.1017/S0956792503005266
![]() |
[3] | A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics, 20, Oxford University Press, New York, 2000. |
[4] | A. Bressan and K. T. Nguyen, Conservation law models for traffic flow on a network of roads, Preprint, 2014. |
[5] |
G. Bretti, M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 379-394. doi: 10.3934/dcdss.2014.7.379
![]() |
[6] |
R. Bürger and K. H. Karlsen, Conservation laws with discontinuous flux: A short introduction, J. Eng. Math., 60 (2008), 241-247. doi: 10.1007/s10665-008-9213-7
![]() |
[7] |
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683
![]() |
[8] |
E. Cristiani, C. de Fabritiis and B. Piccoli, A fluid dynamic approach for traffic forecast from mobile sensor data, Commun. Appl. Ind. Math., 1 (2010), 54-71. doi: 10.1685/2010CAIM487
![]() |
[9] |
C. F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transportation Research Part B, 28 (1994), 269-287. doi: 10.1016/0191-2615(94)90002-7
![]() |
[10] |
C. F. Daganzo, The cell transmission model, part II: Network traffic, Transportation Research Part B, 29 (1995), 79-93. doi: 10.1016/0191-2615(94)00022-R
![]() |
[11] |
M. Garavello and P. Goatin, The Cauchy problem at a node with buffer, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1915-1938. doi: 10.3934/dcds.2012.32.1915
![]() |
[12] |
M. Garavello and B. Piccoli, Source-destination flow on a road network, Comm. Math. Sci., 3 (2005), 261-283. doi: 10.4310/CMS.2005.v3.n3.a1
![]() |
[13] | M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, 1, 2006. |
[14] |
M. Garavello and B. Piccoli, A multibuffer model for LWR road networks, Advances in Dynamic Network Modeling in Complex Transportation Systems, Complex Networks and Dynamic Systems, 2 (2013), 143-161. doi: 10.1007/978-1-4614-6243-9_6
![]() |
[15] | R. Haberman, Mathematical Models: Mechanical Vibrations, Population Dynamics and Traffic Flow, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA, 1977. |
[16] |
J. C. Herrera and A. M. Bayen, Incorporation of Lagrangian measurements in freeway traffic state estimation, Transportation Research Part B, 44 (2010), 460-481. doi: 10.1016/j.trb.2009.10.005
![]() |
[17] |
M. Herty, C. Kirchner, S. Moutari and M. Rascle, Multicommodity flows on road networks, Commun. Math. Sci., 6 (2008), 171-187. doi: 10.4310/CMS.2008.v6.n1.a8
![]() |
[18] |
M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826. doi: 10.3934/nhm.2009.4.813
![]() |
[19] |
M. Herty, M. Seaïd and A. K. Singh, A domain decomposition method for conservation laws with discontinuous flux function, Appl. Numer. Math., 57 (2007), 361-373. doi: 10.1016/j.apnum.2006.04.003
![]() |
[20] |
M. Hilliges and W. Weidlich, A phenomenological model for dynamic traffic flow in networks, Transportation Research Part B, 29 (1995), 407-431. doi: 10.1016/0191-2615(95)00018-9
![]() |
[21] |
H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017. doi: 10.1137/S0036141093243289
![]() |
[22] | J.-P. Lebacque, The Godunov scheme and what it means for first order traffic flow models, in Proc. of the 13th international symposium on transportation and traffic theory, Lyon, France,(Ed. J. B. Lesort), (1996), 647-677. |
[23] |
R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, 1992. doi: 10.1007/978-3-0348-8629-1
![]() |
[24] |
M. J. Lighthill and G. B. Whitham, On kinetic waves. II. Theory of traffic flows on long crowded roads, Proc. Roy. Soc. Lond. A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
![]() |
[25] |
M. Mercier, Traffic flow modelling with junctions, J. Math. Anal. Appl., 350 (2009), 369-383. doi: 10.1016/j.jmaa.2008.09.040
![]() |
[26] |
P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
![]() |
[27] | C. M. J. Tampère, R. Corthout, D. Cattrysse and L. H. Immers, A generic class of first order node models for dynamic macroscopic simulation of traffic flows, Transportation Research Part B, 45 (2011), 289-309. |
[28] |
J. D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux, SIAM J. Numer. Anal., 38 (2000), 681-698. doi: 10.1137/S0036142999363668
![]() |
[29] |
G. C. K. Wong and S. C. Wong, A multi-class traffic flow model - an extension of LWR model with heterogeneous drivers, Transportation Research Part A, 36 (2002), 827-841. doi: 10.1016/S0965-8564(01)00042-8
![]() |
1. | Gabriella Bretti, Emiliano Cristiani, Corrado Lattanzio, Amelio Maurizi, Benedetto Piccoli, Two algorithms for a fully coupled and consistently macroscopic PDE-ODEsystem modeling a moving bottleneck on a road, 2018, 1, 2640-3501, 55, 10.3934/Mine.2018.1.55 | |
2. | Maya Briani, Emiliano Cristiani, Paolo Ranut, Macroscopic and Multi-Scale Models for Multi-Class Vehicular Dynamics with Uneven Space Occupancy: A Case Study, 2021, 10, 2075-1680, 102, 10.3390/axioms10020102 | |
3. | Nicolas Forcadel, Wilfredo Salazar, Homogenization of a discrete model for a bifurcation and application to traffic flow, 2020, 136, 00217824, 356, 10.1016/j.matpur.2019.12.004 | |
4. | Fabio Camilli, Adriano Festa, Silvia Tozza, A discrete Hughes model for pedestrian flow on graphs, 2017, 12, 1556-181X, 93, 10.3934/nhm.2017004 | |
5. | Simone Dovetta, Elio Marconi, Laura V. Spinolo, New Regularity Results for Scalar Conservation Laws, and Applications to a Source-Destination Model for Traffic Flows on Networks, 2022, 54, 0036-1410, 3019, 10.1137/21M1434283 | |
6. | Fabio Camilli, Raul De Maio, Andrea Tosin, Transport of measures on networks, 2017, 12, 1556-181X, 191, 10.3934/nhm.2017008 | |
7. | Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485 | |
8. | Emiliano Cristiani, Fabio S. Priuli, A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks, 2015, 10, 1556-181X, 857, 10.3934/nhm.2015.10.857 | |
9. | Emiliano Cristiani, Maria Cristina Saladino, Comparing comparisons between vehicular traffic states in microscopic and macroscopic first-order models, 2019, 42, 01704214, 918, 10.1002/mma.5395 | |
10. | Emiliano Cristiani, Smita Sahu, On the micro-to-macro limit for first-order traffic flow models on networks, 2016, 11, 1556-1801, 395, 10.3934/nhm.2016002 | |
11. | Sergey Lesko, Anton Aleshkin, Dmitry Zhukov, Reliability Analysis of the Air Transportation Network when Blocking Nodes and/or Connections Based on the Methods of Percolation Theory, 2020, 714, 1757-8981, 012016, 10.1088/1757-899X/714/1/012016 | |
12. | Anton Aleshkin, The Influence of Transport Link Density on Conductivity If Junctions and/or Links Are Blocked, 2021, 9, 2227-7390, 1278, 10.3390/math9111278 | |
13. | Agatha Joumaa, Paola Goatin, Giovanni De Nunzio, 2023, A Macroscopic Model for Multi-Modal Traffic Flow in Urban Networks, 979-8-3503-9946-2, 411, 10.1109/ITSC57777.2023.10422168 | |
14. | Maya Briani, Emiliano Cristiani, Elia Onofri, Inverting the fundamental diagram and forecasting boundary conditions: how machine learning can improve macroscopic models for traffic flow, 2024, 50, 1019-7168, 10.1007/s10444-024-10206-8 |