Citation: Yilun Shang. Group pinning consensus under fixed and randomlyswitching topologies with acyclic partition[J]. Networks and Heterogeneous Media, 2014, 9(3): 553-573. doi: 10.3934/nhm.2014.9.553
[1] |
A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex networks, Phys. Rep., 469 (2008), 93-153. doi: 10.1016/j.physrep.2008.09.002
![]() |
[2] |
J. Bang-Jensen and G. Z. Gutin, Digraphs: Theory, Algorithm and Applications, 2nd Ed., Springer-Verlag, London, 2009. doi: 10.1007/978-1-84800-998-1
![]() |
[3] |
V. N. Belykh, I. V. Belykh and M. Hasler, Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems, Phys. Rev. E, 62 (2000), 6332-6345. doi: 10.1103/PhysRevE.62.6332
![]() |
[4] |
V. Borkar and P. P. Varaiya, Asymptotic agreement in distributed estimation, IEEE Trans. Automat. Control, 27 (1982), 650-655. doi: 10.1109/TAC.1982.1102982
![]() |
[5] |
T. Chen, X. Liu and W. Lu, Pinning complex networks by a single controller, IEEE Trans. Circuit Syst. I, 54 (2007), 1317-1326. doi: 10.1109/TCSI.2007.895383
![]() |
[6] |
O. Costa and M. Fragoso, A unified approach for stochastic and mean square stability of continuous-time linear systems with Markovian jumping parameters and additive disturbances, SIAM J. Contr. Optim., 44 (2005), 1165-1191. doi: 10.1137/S0363012903434753
![]() |
[7] |
T. Dahms, J. Lehnert and E. Schöll, Cluster and group synchronization in delay-coupled networks, Phys. Rev. E, 86 (2012), 016202. doi: 10.1103/PhysRevE.86.016202
![]() |
[8] |
X. Feng and K. A. Loparo, Stability of linear Markovian jump systems, Proc. of the 29th IEEE Conf. Decision and Control, Honolulu, HI, (1990), 1408-1413. doi: 10.1109/CDC.1990.203842
![]() |
[9] |
Y. Z. Feng, J. Lu, S. Xu and Y. Zou, Couple-group consensus for multi-agent networks of agents with discrete-time second-order dynamcis, J. Franklin Institute, 350 (2013), 3277-3292. doi: 10.1016/j.jfranklin.2013.07.004
![]() |
[10] | Y. Han, W. Lu and T. Chen, Cluster consensus in discrete-time networks of multiagents with inter-cluster nonidentical inputs, IEEE Trans. Neural Networks and Learning Syst., 24 (2013), 566-578. |
[11] |
A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control, 48 (2003), 988-1001. doi: 10.1109/TAC.2003.812781
![]() |
[12] |
Z. Li, Z. Duan and G. Chen, Dynamic consensus of linear multi-agent systems, IET Control Theory Appl., 5 (2011), 19-28. doi: 10.1049/iet-cta.2009.0466
![]() |
[13] |
W. Lu, F. M. Atay and J. Jost, Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays, Netw. Heterog. Media, 6 (2011), 329-349. doi: 10.3934/nhm.2011.6.329
![]() |
[14] |
I. Matei and J. S. Baras, Convergence results for the linear consensus problem under Markovian random graphs, SIAM J. Control Optim., 51 (2013), 1574-1591. doi: 10.1137/100816870
![]() |
[15] |
G. Miao, S. Xu and Y. Zou, Necessary and sufficient conditions for mean square consensus under Markov switching topologies, Int. J. Syst. Sci., 44 (2013), 178-186. doi: 10.1080/00207721.2011.598961
![]() |
[16] |
R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE, 95 (2007), 215-233. doi: 10.1109/JPROC.2006.887293
![]() |
[17] |
R. Olfati-Saber and R. M. Murray, Consensus problem in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49 (2004), 1520-1533. doi: 10.1109/TAC.2004.834113
![]() |
[18] |
L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80 (1998), 2109-2112. doi: 10.1103/PhysRevLett.80.2109
![]() |
[19] |
J. Qin and C. Yu, Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition, Automatica, 49 (2013), 2898-2905. doi: 10.1016/j.automatica.2013.06.017
![]() |
[20] |
W. Ren and R. W. Beard, Consensus seeking in multiagent systems under dynamically changing interation topologies, IEEE Trans. Autom. Control, 50 (2005), 655-661. doi: 10.1109/TAC.2005.846556
![]() |
[21] |
A. H. Roger and R. J. Charles, Matrix Analysis, Cambridge University Press, Cambridge, 1985. doi: 10.1017/CBO9780511810817
![]() |
[22] | E. Seneta, Non-negative Matrices and Markov Chains, Springer, New York, 2006. |
[23] | Y. Shang, Multi-agent coordination in directed moving neighborhood random networks, Chin. Phys. B, 19 (2010), 070201. |
[24] |
Y. Shang, Finite-time consensus for multi-agent systems with fixed topologies, Int. J. Syst. Sci., 43 (2012), 499-506. doi: 10.1080/00207721.2010.517857
![]() |
[25] |
Y. Shang, $L^1$ group consensus of multi-agent systems with stochastic inputs under directed interaction topology, Int. J. Control, 86 (2013), 1-8. doi: 10.1080/00207179.2012.715753
![]() |
[26] |
Y. Shang, Continuous-time average consensus under dynamically changing topologies and multiple time-varying delays, Appl. Math. Comput., 244 (2014), 457-466. doi: 10.1016/j.amc.2014.07.019
![]() |
[27] |
Int. J. Syst. Sci. doi: 10.1080/00207721.2013.862582
![]() |
[28] |
Y. Shang, Group consensus in generic linear multi-agent sytesms with inter-group non-identical inputs, Cogent Engineering, 1 (2014), 947761. doi: 10.1080/23311916.2014.947761
![]() |
[29] |
F. Sorrentino and E. Ott, Network synchronization of groups, Phys. Rev. E, 76 (2007), 056114. doi: 10.1103/PhysRevE.76.056114
![]() |
[30] |
R. Stanley, Acyclic orientations of graphs, Discrete Math., 5 (1973), 171-178. doi: 10.1016/0012-365X(73)90108-8
![]() |
[31] | W. Sun, Y. Q. Bai, R. Jia, R. Xiong and J. Chen, Multi-group consensus via pinning control with non-linear heterogeneous agents, Proc. 8th Asian Control Conference, Taiwan, (2011), 323-328. |
[32] | C. Tan, G.-P. Liu and G.-R. Duan, Couple-group consensus of multi-agent systems with directed and fixed topology, Proc. 30th Chinese Contr. Conf., Yantai, (2011), 6515-6520. |
[33] |
B. Touri and A. Nedić, On ergodicity, infinite flow, and consensus in random models, IEEE Trans. Autom. Control, 56 (2011), 1593-1605. doi: 10.1109/TAC.2010.2091174
![]() |
[34] | J. N. Tsitsiklis, Problems in Decentralized Decision Making and Computation, Ph.D. Dissertation, Massachusetts Inst. Technol., Cambridge, MA, 1984. |
[35] |
F. Xiao and L. Wang, Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays, IEEE Trans. Autom. Control, 53 (2008), 1804-1816. doi: 10.1109/TAC.2008.929381
![]() |
[36] |
K. You, Z. Li and L. Xie, Consensus condition for linear multi-agent systems over randomly switching topologies, Automatica, 49 (2013), 3125-3132. doi: 10.1016/j.automatica.2013.07.024
![]() |
[37] |
W. Yu, G. Chen and J. Lü, On pinning control synchronization of complex dynamical networks, Automatica, 45 (2009), 429-435. doi: 10.1016/j.automatica.2008.07.016
![]() |
[38] | J. Yu and L. Wang, Group consensus of multi-agent sytems with undirected communication graphs, Proc. 7th Asian Control Conf., (2009), 105-110. |
[39] |
J. Yu and L. Wang, Group consensus in multi-agent systems with switching topologies and communication delays, Syst. Control Lett., 59 (2010), 340-348. doi: 10.1016/j.sysconle.2010.03.009
![]() |