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Abstract. This paper addresses group consensus problems in generic linear
multi-agent systems with directed information flow over (i) fixed topology and

(ii) randomly switching topology governed by a continuous-time homogeneous

Markov process. We propose two types of pinning control protocols to en-
sure group consensus regardless of the magnitude of the coupling strengths

among the agents. In the case of randomly switching topology, we show that

the group consensus behavior is unrelated to the magnitude of the couplings
among agents if the union of the topologies corresponding to the positive recur-

rent states of the Markov process possesses an acyclic partition. Sufficient con-

ditions for achieving group consensus are presented in terms of simple graphic
conditions, which are easy to be checked compared to conventional algebraic

criteria. Simulation examples are also presented to validate the effectiveness

of the theoretical results.

1. Introduction. In recent years, the study of distributed coordination in multi-
agent systems has attracted increasing attention from researchers in diverse fields
of engineering, physics, biology, and mathematics. An important problem in co-
operative control of multiple agents is to design appropriate protocols such that
the states of a group of agents converge to a consistent value with information ex-
changes between each other. Such a problem is usually called the consensus problem,
in which design of consensus algorithms, convergence analysis and consensus speed
are well-researched topics [16]. The consistent state in consensus problems could
represent the position and velocity in multivehicle formation control, anticipated
processing rate in distributed task management, or common phase pattern in dis-
tributed oscillator networks, etc. Consensus problems have a long history in control
theory starting with the pioneering works [4, 34]. Seminal theoretical frameworks
for solving consensus problems were introduced by Olfati-Saber and Murray [17]
and Jadbabaie, Lin, and Morse [11]. Since then various consensus problems, such
as average consensus [26], asynchronous consensus [35], finite-time consensus [24],
and stochastic consensus [33], have been extensively studied. For details, we refer
readers to survey paper [16] and the references therein.
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Note that the above works concern the complete consensus, where all the agents
in a network share a common value. However, in the course of accomplishing some
complicated tasks or reaching some goals, a group of dynamic agents may evolve
into several subgroups in response to unanticipated situations or changes. This
might give rise to agreements that are different with the changes of environments,
situations, cooperative tasks or even time [27, 28, 38]. Group consensus was first
introduced by Yu and Wang [38] to represent such consensus where the states of of
all agents in the same subgroup achieve the same consistent state while the states of
agents in different subgroups may not coincide. Group average consensus problems
for continuous-time single-integrator agents under fixed and undirected topology
were explored in [38]. By using the Lyapunov direct method and double-tree-form
transformations, the same authors later extended the results to the case containing
switching topologies and communication delays in [39]. A common assumption in
these above works that the sum of adjacent weights to every agent in one group
coming from all agents in another group is equal to zero (called the in-degree balance
condition) was further relaxed in [32] by transforming the system into a reduced-
order system. This technique turns out to be viable even in the presence of random
noises and time delays [27]. Algebraic criterions for group consensus in agents
with discrete-time single-integrator dynamics were established in [10] and were later
adapted to the situation accommodating stochastic inputs [25]. Group consensus
for second-order multi-agent systems and linear time-invariant systems under fixed
communication topology was addressed in [9] and [28], respectively. Non-linear
agent dynamics was considered in [31] via pinning control.

We mention that another line of research in parallel with (but precedes tempo-
rally) group consensus is the group and cluster synchronization, which have been
mainly studied in the physics literature. The difference between cluster synchro-
nization and group synchronization is that the former analyzes the case that the
uncoupled systems are all identical, while the latter considers a situation where the
systems in each group are characterized by different local dynamics [7]. Group and
cluster synchronization can be viewed as a generalization of the group consensus
problem to encompass nonlinear dynamics. We refer to [1, 3, 7, 29] for more details
and history in this exciting field.

In all the previously mentioned publications on group consensus, certain algebraic
criteria were proposed to ensure the consensus. These conditions, as pointed out
in [19], are often very difficult to be checked. For example, linear matrix inequality
conditions (without discussing the feasibility) were introduced in [38, 39], and other
conditions involving eigenvalues of interaction topologies were proposed in [9, 27,
31, 32]. Recently, Qin and Yu [19] investigated the group consensus problems for
generic linear time-invariant systems from a novel perspective; under the in-degree
balance condition, they showed that group consensus can be achieved regardless
of the magnitude of the coupling strengths among the agents when the underlying
communication graph has an acyclic partition. This result is both theoretically
interesting because it only requires simple graphic conditions to guarantee the group
consensus, and practically appealing because it accommodates the realistic situation
where coupling strengths among agents are not allowed to be large. The consensus
speed was also estimated in [19].

In this paper, continuing with previous works, we tackle the group consen-
sus problems in continuous-time linear time-invariant systems via pinning control.
Firstly, we investigate the group consensus over fixed directed topology by looking
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into two different types of pinning control protocols. The first protocol was used
in [19], under which we will show that the group consensus can be achieved with
any speed when the agent dynamics is controllable. Likewise, we propose a second
protocol which guarantees group consensus regardless of the magnitude of the cou-
pling strengths among the agents if the communication topology admits an acyclic
partition. Under this protocol, the in-degree balance condition can be largely re-
laxed to only demand that the sum of adjacent weights to every node in one group
coming from all nodes in another group is a constant. Thanks to this relaxation,
we are able to discuss how to choose appropriate pinning controllers for reaching
group consensus, which offers further insights on the influence of network topology
on group consensus behaviors. In general, selecting pinning nodes is a key prob-
lem in pinning control of complex networks [5, 37], since it is costly and literally
impossible to control every node in a network.

Next, we extend our theoretical framework to address group consensus for a net-
work of dynamic agents whose communication topology is modeled by a randomly
switching graph. Specifically, the switching is driven by a continuous-time homoge-
nous Markov process. Each communication (possibly directed) graph corresponds
to a state of the Markov process. Such stochastic consensus is desirable since sys-
tems in real world are often operating under random uncertain environments. For
both protocols considered here, we show that group consensus can be achieved in
mean square and almost sure senses regardless of the magnitude of the coupling
strengths among the agents if the union of topologies corresponding to the positive
recurrent states of the Markov process has an acyclic partition. When the agent
dynamics is controllable, the speed to group consensus can be achieved arbitrarily
fast. We mention that there have been some works concerning consensus problems
over Markovian switching networks, see e.g. [13, 14, 15, 23, 36], where nevertheless
only complete consensus is addressed. In all these works, without using pinning
nodes (or virtual leaders), the ultimate consensus value is either not specified or the
average of initial states of all agents.

The rest of the paper is organized as follows. In Section 2, some preliminaries,
lemmas and the problem formulation are introduced. Section 3 deals with group
consensus under fixed topology, and Section 4 addresses the case for Markovian
switching topologies. Simulation examples are presented in Sections 3 and 4 respec-
tively to facilitate discussions and illustrate our theoretical results. Conclusions are
finally drawn in Section 5.

Notation. The following notations will be used throughout the paper. R (C)
denotes the set of real (complex) numbers. Let 1E be the indicator function of an
event E. Let 1n be the n-dimensional column vector with all entries equal to one.
In is the n-dimensional identity matrix. We often drop the subscript n when the
dimension is compatible with the context. We say A > B (A ≥ B) if A − B is
positive definite (semi-definite), where A and B are symmetric matrices of same
dimensions. λmin(A) denotes the smallest eigenvalue of symmetric matrix A. AT

(AH) is the transpose (conjugate transpose) of matrix A. diag(A1, · · · , Ar) is the
block diagonal matrix with the i-th main diagonal block being square matrix Ai. Let
‖x‖ signify the Euclidean norm of a vector x. A⊗B refers to the Kronecker product
of two matrices A and B [21]. The notation ∗ represents the matrix elements to be
determined.
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2. Preliminaries and problem formulation.

2.1. Communication graphs. Let G = (V, E ,A) be a weighted directed graph of
order N , in which V = {v1, v2, · · · , vN} is the set of nodes (or agents), E ⊆ V × V
is the set of directed edges, and A = (aij) ∈ RN×N is the associated weighted
adjacency matrix. A directed edge from node vi to node vj is represented as an
ordered pair (vi, vj), indicating that agent vj can obtain information from agent
vi. Here, vi and vj are called parent node and child node, respectively. The entry
aij 6= 0 if (vj , vi) ∈ E , and aij = 0 otherwise. Moreover, we assume aii = 0 for all i.
The set of neighbors of the agent vi in G is denoted by Ni = {vj ∈ V : (vj , vi) ∈ E}.
The Laplacian matrix L = (lij) of the weighted directed graph G is defined as

lij = −aij , i 6= j, and lii =
∑N
j=1,j 6=i aij . Clearly, L1N = 0.

∑N
j=1 aij is called the

in-degree of agent vi.
A directed path from agent vi1 to agent vik consists of a sequence of nodes

vi1 , vi2 , · · · , vik , such that (vij−1
, vij ) ∈ E for j = 2, · · · , k. If, in addition, vi1 = vik ,

then it is called a directed cycle. G is said to be a directed acyclic graph (DAG)
if it contains no directed cycles. The following result is a useful property of DAG,
which simplifies its matrix representation [2, 19].

Lemma 2.1. Each DAG can be relabeled in such a way that the index of the parent
node is smaller than the index of the child node for each edge. Therefore, each DAG
can be relabeled such that its adjacency (and Laplacian) matrix is lower triangular.

We say G contains a spanning tree if there exists an agent (referred to as root)
such that every other agent can be connected via a directed path originating from
the root. It follows from [20, Lemma 3.3] that G has a spanning tree if and
only if L has a zero eigenvalue with algebraic multiplicity one and all the other
nonzero eigenvalues are with positive real parts. For an integer s, the union of
s graphs G(1) = (V, E(1),A(1)), · · · ,G(s) = (V, E(s),A(s)) is defined as ∪sk=1G(k) =

(V,∪sk=1E(k),
∑s
k=1A(k)). Clearly, if the union is a DAG, so is each G(k).

2.2. Group pinning control over fixed topology. Consider a multi-agent sys-
tem containing N agents with interaction graph represented by a fixed directed
graph G. For an integer r, {V1, · · · ,Vr} is said to be a partition of the node
set V if V` 6= ∅, ∪r`=1V` = V, and V` ∩ V`′ = ∅ for ` 6= `′. Without loss
of generality, we assume V1 = {v1, · · · , vN1}, V2 = {vN1+1, · · · , vN1+N2}, · · · ,
Vr = {v∑r−1

i=1 Ni+1, · · · , vN} and
∑r
`=1N` = N . The dynamics of agent vi takes

the following form

ẋi(t) = Axi(t) +Bui(t), i = 1, 2, · · · , N, t ≥ 0, (1)

where xi(t) ∈ Rn and ui(t) ∈ Rm represent the state and control input of agent vi;
A ∈ Rn×n and B ∈ Rn×m are constant matrices. It is apparent that (1) reduces
to the single-integrator dynamics by setting n = m, A = 0, and B = In. To
exclude any trivial case, we assume that A is not Hurwitz (If A is Hurwitz, the
group consensus can be achieved by taking zero gain in view of Definitions 2.2 and
2.3 below).

Let y1(t), · · · , yr(t) be the solutions of the homogeneous system ẏ(t) = Ay(t) such
that limt→∞ ‖y`(t) − y`′(t)‖ > 0 for ` 6= `′. Note that it is feasible since A is not
Hurwitz. We remark that a solution of an isolated node, i.e., ẏ(t) = Ay(t), is called
a synchronized state. A possible approach to study stability of the synchronized
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solution is through a master stability function (see [1, 18]), which provides necessary
and sufficient conditions for local stability of this solution.

The following group pinning consensus protocol

ui(t) = K
( ∑
vj∈Ni

aij(xj(t)− xi(t)) + di(yī(t)− xi(t))
)

(2)

is adopted in [19]. Here, K ∈ Rm×n is the common consensus gain matrix to be
designed, and ī is the subscript of the subset to which the agent vi belongs, i.e., if
vi ∈ V` then ī = `. Moreover, di > 0 if agent vi is pinned, and di = 0 otherwise;
aij ≥ 0 if ī = j̄, and aij ∈ R otherwise.

Motivated by the protocols used in [9, 27, 32, 39], we also address in this work
another group pinning consensus protocol as follows.

ui(t) = K
( ∑
vj∈Nīi

aij(xj(t)− xi(t)) +
∑

vj∈Ni\Nīi

aijxj(t) + di(yī(t)− xi(t))
)
, (3)

where K, aij , and di are defined as above; Nīi = {vj ∈ Vī : (vj , vi) ∈ E} means the
set of neighbors of vi in Vī. By definition, ∪r`=1N`i = Ni.

Definition 2.2. The multi-agent system (1) under the control law (2) or (3) is said
to achieve group pinning consensus if there exists a consensus gain K such that for
any xi(0) ∈ Rn,

lim
t→∞

‖xi(t)− yī(t)‖ = 0, for i = 1, · · · , N.

In addition, if there exist positive numbers κ,C, and t0 such that ‖xi(t)− yī(t)‖ ≤
Ce−κt for all i and t > t0, we say the consensus is achieved exponentially fast with
a speed κ.

G is said to possess an acyclic partition {V1, · · · ,Vr} [19] if the contracted graph—
obtained by replacing each subset V` with a single node and adding an edge (V`,V`′)
if there exist u ∈ V` and v ∈ V`′ such that (u, v) ∈ E—is a DAG. Acyclic partition
turns out to be a critical topological condition for reaching group consensus irre-
spective of how weak or strong the couplings among the agents are. We make the
following assumption.

Assumption 1. The communication topology G has an acyclic partition {V1, · · · ,
Vr}.

Under Assumption 1, thanks to Lemma 2.1 we can relabel the indices of all the
nodes in G such that its adjacency matrix is in a block lower triangular form

A =

 A11 · · · 0
...

. . .
...

Ar1 · · · Arr

 , (4)

where A`` specifies the information exchange within subgroup V`, and A``′ specifies
the information exchange from subgroup V`′ to V`. Similar notation can be made
for the Laplacian matrix L. For ` = 1, · · · , r, the induced subnetwork of G on V`
is denoted by G`. In what follows, we assume the above relabeling and hence the
adjacency and Laplacian matrices of G take the form in (4). We mention that the
special block matrix form (4), resulting from Assumption 1, remarkably enables
us to apply the Algebraic Riccati Equation tool and simplifies the proof in the
convergence analysis later.
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Assumption 2. For ` > `′, each row sum of A``′ is equal to α``′ , where α``′ are
constant.

Note that it is not necessary that all α``′ are equal to zero, which implies that the
commonly used in-degree balance condition (see e.g. [9, 19, 31, 39]) is considerably
relaxed. When all α``′ are equal to zero, it is easy to check (c.f. (4)) that L``
becomes the Laplacian matrix of G` for ` = 1, · · · , r.

2.3. Group pinning control over random topologies. When the interaction
topology among agents is described by a randomly switching graph G(t) = (V, E(t),
A(t)), the group pinning consensus protocols (2) and (3) can be modified, respec-
tively, as follows:

ui(t) = K
( ∑
vj∈Ni(t)

aij(t)(xj(t)− xi(t)) + di(t)(yī(t)− xi(t))
)

(5)

and

ui(t) =K
( ∑
vj∈Nīi(t)

aij(t)(xj(t)− xi(t))

+
∑

vj∈Ni(t)\Nīi(t)

aij(t)xj(t) + di(t)(yī(t)− xi(t))
)
. (6)

The randomly switching graph G(t) is governed by a time-homogeneous Markov
process θ(t), taking value in a finite set S = {1, 2, · · · , s}. More specifically, G(t) ∈
{G(1), · · · ,G(s)}, where G(k) = (V, E(k),A(k)); G(t) = G(k) if and only if θ(t) = k for

k ∈ S. In addition, assume that di(t) = d
(k)
i (i = 1, · · · , N) if and only if θ(t) = k

for k ∈ S. For ` = 1, · · · , r, the induced subnetwork of G(t) on V` is denoted by

G`(t). Similar notations will be made for G(k)
` for k ∈ S. The protocols (5) and

(6) indicate that the communication topology (together with its pinned nodes) is
switching among a set of s systems—each of which can be viewed as a static one
introduced in the previous section—as time goes on.

Let (Ω,F ,P) represent the underlying probability space for the Markov process
θ(t). Its generator Γ = (γij) ∈ Rs×s is formally delineated by

P(θ(t+ h) = j|θ(t) = i) =

{
γijh+ o(h), if i 6= j,

1 + γiih+ o(h), if i = j,

where o(h) denotes an infinitesimal of higher order than h, i.e., limh→0+ o(h)/h = 0.
Here γij is the transition rate from i to j if i 6= j, while γii = −

∑
j 6=i γij . For ease

of presentation, we assume that θ(t) is ergodic (see Remark 7 below for the case
of non-ergodic processes). Hence, each state of the process is reachable from any
other state, and there exists a unique invariant distribution π = (π1, · · · , πs)T such
that πk > 0 for each k ∈ S [22].

Definition 2.3. The multi-agent system (1) under the control protocol (5) or (6)
is said to achieve group pinning consensus if there exists a consensus gain K such
that for any xi(0) ∈ Rn and initial distribution of θ(0),

lim
t→∞

E(‖xi(t)− yī(t)‖2) = 0, for i = 1, · · · , N,

where the expectation E is taken under the measure P. In addition, if there exist
positive numbers κ,C, and t0 such that E(‖xi(t) − yī(t)‖2) ≤ Ce−κt for all i and
t > t0, we say the consensus is achieved exponentially fast with a speed κ.
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The group pinning consensus in Definition 2.3 is defined in the sense of mean
square convergence. This further implies that the consensus can also be achieved
in the almost sure sense (see [8, 14]). Denote by GS the union of the topologies in
the set S, i.e., GS = ∪sk=1G(k). For ` = 1, · · · , r, the induced subnetwork of GS on
V` is denoted by GS` . We make the following assumption.

Assumption 3. The union communication topology GS has an acyclic partition
{V1, · · · , Vr}.

Under Assumption 3, we can similarly relabel the indices of all the nodes in GS
such that its adjacency matrix is in a block lower triangular form

AS =

 A
S
11 · · · 0
...

. . .
...

ASr1 · · · ASrr

 , (7)

where AS`` specifies the information exchange within subgroup V`, and AS``′ specifies
the information exchange from subgroup V`′ to V`. Since Assumption 3 implies
that each G(k) (k ∈ S) has the same acyclic partition as GS , similar notations
can be made for A(k), A(t), and their Laplacian counterparts LS , L(k), and L(t),
for k ∈ S, t ≥ 0. In what follows, we assume the above relabeling and thus the
related matrices mentioned above all take the same form as in (7). The following
assumption is similar to Assumption 2.

Assumption 4. For ` > `′ and k ∈ S, each row sum of A(k)
``′ is equal to α

(k)
``′ , where

α
(k)
``′ are constant.

To conclude this section, we collect a couple of lemmas which will be used in the
convergence analysis.

Lemma 2.4. (Schur complement [21]) Let X,Y, Z be given matrices such that
Z > 0. Then [

X Y
Y T Z

]
> 0

if and only if X − Y Z−1Y T > 0.

Lemma 2.5. ([6]) Suppose that f(t) is F-measurable and that E
(
f(t)1{θ(t)=k}

)
exists. Then for k ∈ S,

E
(
f(t)d(1{θ(t)=k})

)
=

s∑
j=1

γjkE
(
f(t)1{θ(t)=j}

)
dt+ o(dt).

3. Group pinning consensus analysis: Fixed topology. In this section, under
Assumptions 1 and 2, we focus on group pinning consensus of system (1) with
control laws (2) and (3) over fixed network topology G. In Section 3.1, we first
address a special case of protocol (3) with r = 2, i.e., the network G consists of
two subnetworks, and then generalize the result to general r. In Section 3.2, we
complement the consensus result obtained in [19] with protocol (2) by applying an
analogous argument in Section 3.1. We discuss the choice of pinning nodes, group
partition, and compare the two protocols in Section 3.3.
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3.1. Convergence results for system (1) under protocol (3). Without loss
of generality, we first assume that the network G consists of N1 + N2 = N agents
such that V = V1 ∪ V2, i.e., the case of r = 2.

Let D1 = diag(d1, · · · , dN1
) and D2 = diag(dN1+1, · · · , dN ). Define an (N + 2)-

dimensional matrix

H̄ =

[
H̄1 0
H̄21 H̄2

]
,

where

H̄21 =

[
−A21 0

0 0

]
∈ R(N2+1)×(N1+1),

H̄` =

[
L` +D` −D`1N`

0 0

]
∈ R(N`+1)×(N`+1),

and L` is the Laplacian matrix of G` for ` = 1, 2.
Set x̄(t) = (xT1 (t), · · · , xTN1

(t), yT1 (t), xTN1+1(t), · · · , xTN (t), yT2 (t))T ∈ Rn(N+2). As
a consequence of Assumption 1, the system (1) under protocol (3) can be recast in
the following compact form

˙̄x(t) = (IN+2 ⊗A− H̄ ⊗BK)x̄(t), (8)

where we have used the fact that y1(t) and y2(t) are solutions of the system ẏ(t) =
Ay(t). Let δ(t) =

(
xT1 (t) − xT2 (t), · · · , xT1 (t) − xTN1

(t), xT1 (t) − yT1 (t), xTN1+1(t) −
xTN1+2(t), · · · , xTN1+1(t)− xTN (t), xTN1+1(t)− yT2 (t)

)T ∈ RnN . We have the following
result regarding the evolution of error dynamics.

Proposition 1. Under Assumptions 1 and 2, we have for t ≥ 0,

δ̇(t) =
(
IN ⊗A−Z ⊗BK

)
δ(t), (9)

where Z =

[
Z1 0
Z21 Z2

]
= F

 UH1 H̄1U1 0

UH2 H̄21U1 UH2 H̄2U2

F−1, F = diag(R1U1, R2U2),

R1 = [1N1
− IN1

], R2 = [1N2
− IN2

], and U1 ∈ C(N1+1)×N1 and U2 ∈ C(N2+1)×N2

are arbitrary matrices such that Φ1 :=
[
1N1+1/

√
N1 + 1 U1

]
and Φ2 :=

[
1N2+1/√

N2 + 1 U2

]
are two unitary matrices.

Proof. Set R =

[
R1 0
0 R2

]
. It follows from (8) that

δ̇(t) = (R⊗ In) ˙̄x(t) = (R⊗A−RH̄ ⊗BK)x̄(t). (10)

Let R̄1 = [RT1 1N1+1]T and R̄2 = [RT2 1N2+1]T . Then R̄1 and R̄2 are invertible.
For ` = 1, 2, R`1N`+1 = 0 and H̄`1N`+1 = 0. Assumption 2 implies that A211N1

=
α211N2

. Hence, a straightforward computation yields

RH̄ = RH̄
(
R̄T (R̄R̄T )−1R̄

)
= RH̄RT (RRT )−1R. (11)

Combining (11) with (10), we derive

δ̇(t) =(IN ⊗A)(R⊗ In)x̄(t)−
(
RH̄RT (RRT )−1 ⊗BK

)
(R⊗ In)x̄(t)

=
(
IN ⊗A−RH̄RT (RRT )−1 ⊗BK

)
δ(t). (12)
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Since Φ := diag(Φ1,Φ2) is unitary, it is direct to check that

RH̄RT (RRT )−1 ⊗BK =(RΦ)(ΦHH̄Φ)(RΦ)H
(
(RΦ)(RΦ)H

)−1

=F

[
UH1 0
0 UH2

]
H̄
[
U1 0
0 U2

]
F−1,

where F = diag(R1U1, R2U2). This concludes the proof in view of (12).

For ` = 1, 2, since H̄`1 = 0, by the Schur decomposition theorem [21] we can
choose U` in Proposition 1 such that H̄` admits an upper triangulation, i.e.,

ΦT` H̄`Φ` =

[
0 ∗
0 UT` H̄`U`

]
(13)

with

UT` H̄`U` =

 λ2(H̄`) · · · ∗
...

. . .
...

0 · · · λN`+1(H̄`)

 ,
where {λ1(H̄`) = 0, λ2(H̄`), · · · , λN`+1(H̄`)} form the spectrum of H̄`.

For every `, let Ḡ` denote the “extended” version of subnetwork G` such that a
virtual agent y` and a directed edge from y` to the node in G` that is pinned are
added.

Theorem 3.1. Suppose that (A,B) is stabilizable. Under Assumptions 1 and 2, if
the agents in subgroups are pinned such that each Ḡ`, ` = 1, · · · , r, has a spanning
tree, then the multi-agent system (1) under protocol (3) can achieve group pinning
consensus exponentially fast.

Moreover, if (A,B) is controllable, the group pinning consensus can be achieved
with any speed.

Proof. Set r = 2. If we label the virtual leader y` as the last node in each subgroup,
the Laplacian matrix of Ḡ` is exactly H̄` for ` = 1, 2. In the light of the comments
in Section 2.1, the condition that Ḡ` contains a spanning tree indicates that all
eigenvalues of L` + D` are with positive real parts. By (13) and Proposition 1,
this means all the eigenvalues of Z`, ` = 1, 2, are also with positive real parts.
The Lyapunov algebraic equation then implies that there exists a Ξ` > 0 such that
Ξ`Z` + ZT` Ξ` > 0, ` = 1, 2. Thanks to Lemma 2.4, we can choose some ε1, ε2 > 0
such that ∆ΞZ +ZT∆Ξ > 0, where ∆ = diag(ε1IN1 , ε2IN2) and Ξ = diag(Ξ1,Ξ2).

Define Q = (
√

∆Ξ)−1(∆ΞZ + ZT∆Ξ)(
√

∆Ξ)−1. We have λmin(Q) > 0. Since
(A,B) is stabilizable, by the algebraic Riccati inequality, there exists a P > 0 such
that

PA+ATP − λmin(Q)PBBTP < 0.

Moreover, we can find a β > 0 such that

PA+ATP − λmin(Q)PBBTP + βP < 0. (14)

Define the following Lyapunov function

V (t) = δT (t)(∆Ξ⊗ P )δ(t),
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and take the gain matrix K = BTP . We obtain

V̇ (t) =δT (t)(
√

∆Ξ⊗ In)
(
IN ⊗ (ATP + PA)−Q⊗ PBBTP

)
(
√

∆Ξ⊗ In)δ(t)

≤δT (t)(
√

∆Ξ⊗ In)
(
IN ⊗ (ATP + PA− λmin(Q)PBBTP )

)
(
√

∆Ξ⊗ In)δ(t)

≤− βV (t),

where we have used (9) and (14). By the comparison principle, we obtain V (t) ≤
V (0)e−βt, which implies that the multi-agent system (1) under protocol (3) can
achieve group pinning consensus exponentially fast with a speed β.

Moreover, if (A,B) is controllable, there always exists a P > 0 solving (14) for
any positive β [12]. Therefore, the group pinning consensus can be achieved with
any speed.

Remark 1. For the case of general r, Theorem 3.1 can be proved in the similar
way as above. We leave the details to the reader.

Remark 2. A similar (but non-linear) pinning protocol is also used in [31] to ensure
group consensus. Their paper differs from the current work mainly in the following
two points: (a) Assumption 2 is also proposed in [31], but all α``′ are required to
be zero. (b) Some complicated algebraic conditions are introduced on interaction
topology as well as pinning control gain di in [31] to guarantee group consensus,
while our paper focuses on seeking group consensus on graphs with acyclic partition
regardless of the magnitude of the coupling strength and di. The methodology used
are totally different.

Remark 3. In the practical application, it is desirable to make the number of con-
trollers as small as possible. Theorem 3.1 reveals that only r controllers may drive
the multi-agent system (1) under protocol (3) to group consensus with r subgroups.
Favorably, this number does not rely on the coupling strength. In complete con-
sensus problems, the question of determining controller number is discussed in e.g.
[5, 37], where small number of controllers typically requires large coupling strength.

3.2. Convergence results for system (1) under protocol (2). The same tech-
nique developed in the proof of Theorem 3.1 can be used to show that multi-agent
system (1) with protocol (2) will achieve pinning group consensus exponentially
fast with any speed when (A,B) is controllable, which complements/modifies the
convergence result in [19]. We reformulate the result as follows and omit the proof.

Theorem 3.2. Suppose that (A,B) is stabilizable. Under Assumptions 1 and 2 with
all α``′ ≡ 0, if the agents in subgroups are pinned such that each Ḡ`, ` = 1, · · · , r,
has a spanning tree, then the multi-agent system (1) under protocol (2) can achieve
group pinning consensus exponentially fast [19, Theorem 1].

Moreover, if (A,B) is controllable, the group pinning consensus can be achieved
with any speed.

Comparing Theorem 3.1 with Theorem 3.2, we see that the protocol (3) surpasses
protocol (2) in the sense that no in-degree balance condition is needed. We will see
in Section 3.3 that this really makes a difference in some situations.

A word is in order now about the necessity. The acyclic partition condition, i.e.,
Assumption 1, unfortunately is not a necessary condition for group pinning consen-
sus. (A counterexample is constructed in [19, Fig. 6], where the communication
graph consisting of 5 nodes is partitioned into two subgroups with bidirectional
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edges running between them.) That said, we will soon see in Section 3.3 that the
acyclic partition is not too limited.

3.3. Discussion on partition scheme. In this section, we discuss on how to
partition the network and choose the controllers appropriately so that the desired
group consensus could be achieved under our pinning protocols.

In view of the results developed in the previous sections, two natural questions
are in order. First, could the acyclic partition condition (i.e., Assumption 1) be
too restrictive? A remarkable result of Stanley [30] asserts that the number of

labeled DAGs on r nodes grows approximately as 1.7 ·2(r
2)r!(2/3)r, which ensures a

sufficient pool of candidates for any finite r. Indeed, the first few exact numbers for
r = 1, 2, 3, 4, 5, · · · are 1, 3, 25, 543, 29281, · · · . One also notices that if the contracted
graph is a tree, then it must be a DAG.

Second, what if the desired partition of the communication graph G does not
admit an acyclic partition?

Figure 1. An example where the original partition of G results
in a directed cycle in the contracted graph (see the left panel).
The subnetwork G1 is decomposed further into two subnetworks
to “break” the cycle (see the right panel, where the dashed arrow
indicates possible edges from new G1 to G5). Notice that no edges or
nodes are actually added/deleted—the network structure remains
the same except an additional node is pinned.

A generic scenario example is depicted in Fig. 1, where the contracted graph
of the whole network G contains a directed cycle. (Recall that each node in the
contracted graph represents a set of agents.) From our results above, the desired
pinning group consensus for all kinds of coupling strength cannot be guaranteed
under protocol (2) or (3). However, there are possible solutions at the expense of
extra controllers as indicated in Fig. 1—splitting a subnetwork into two new ones
so that either they are not linked to each other or they are linked but in a way that
inhibits directed cycles; exercising the same value of y` on each new subnetwork.
Note that the protocol (2) imposes a stronger condition on Assumption 2, which
limits largely its applicability in many situations compared to protocol (3).

To further illustrate the idea mentioned above, a concrete example is worked
out as follows. Consider a group of N = 6 agents with two subgroups G1 =
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Figure 2. Partitioning a network to meet Assumptions 1 and 2,
while maintain desired group consensus.

{v1, v2, v5, v6} and G2 = {v3, v4} (see Fig. 2 left panel). Clearly, the in-degree
balance condition holds true but there is a directed cycle in the contracted graph.
Theorems 3.1 and 3.2 cannot be applied directly. To overcome this problem, we
make a further partition and get three subgroups G1 = {v1, v2}, G2 = {v3, v4},
G3 = {v5, v6} (see Fig. 2 right panel). This partition satisfies Assumptions 1 and
2, but not the in-degree balance condition (since the edge weight c is non-zero.)

Take n = 3, m = 1, and let the agent dynamics (1) be specified as

A =

 −1 0 0
1 1 0
0 1 −1

 and B =

 0
1
0

 .
The pair (A,B) is stabilizable. We choose D` = diag(1, 0), ` = 1, 2, 3 as the pinning
control gain, and ∆Ξ = diag(1.2, 1.2, 0.75, 0.5, 0.2, 0.2). It is easy to solve the Riccati

equation (14) that P =

 4.1624 3.0015 −0.1445
3.0015 7.7823 1.0241
−0.1445 1.0241 2.0920

 with λmin(Q) = 0.4272

and β = 0.2. Thus, the gain matrix K = BTP = (3.0015, 7.7823, 1.0241). We take
the initial states xi(0), i = 1, · · · , 6 randomly in [−2, 2]3, and the initial values y1(0)
and y2(0) arbitrarily just to satisfy limt→∞ ‖y1(t)− y2(t)‖ 6= 0.

Define the quantities ∆1(t) = ‖x1(t)− y1(t)‖+ ‖x2(t)− y1(t)‖, ∆2(t) = ‖x3(t)−
y2(t)‖+‖x4(t)−y2(t)‖, and ∆3(t) = ‖x5(t)−y1(t)‖+‖x6(t)−y1(t)‖, which measure
the norm of error trajectories within subnetworks. Fig. 3(a) shows that the desired
group consensus is achieved for c = 1 and c = 0.1 under protocol (3). This agrees
with Theorem 3.1. Since the in-degree balance condition fails, Theorem 3.2 does
not apply. By taking a small c, for example c = 0.1, as shown in Fig. 3(b), the
group consensus cannot be achieved under protocol (2). Of course, this shows the
limitation of protocol (2), but by no means implies the necessity of the conditions
in Theorem 3.2.

4. Group pinning consensus analysis: Randomly switching topologies. In
this section, we reveal the effect of Markovian switching topology G(t) on the group
pinning consensus problem under Assumptions 3 and 4. The stationary distribution
π of the Markov process θ(t) is shown to be vital in the design of common consensus
gain. The system (1) with control laws (5) and (6) is tackled in Sections 4.1 and
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Figure 3. Norm of error trajectories ∆`(t) for multi-agent system
(1) with fixed topology. (a): protocol (3), c = 1 in the main panel,
and c = 0.1 in the inset; (b): protocol (2) and c = 0.1.

4.2, respectively. In Section 4.3, simulation results are presented to illustrate the
effectiveness of the theoretical results.

4.1. Convergence results for system (1) under protocol (5). For i = 1, · · · ,
N , let δi(t) = xi(t)− yī(t). If Assumption 4 holds with all α

(k)
``′ ≡ 0, we obtain for

any t ≥ 0,

N∑
j=1

aij(t)(xj(t)− xi(t)) =−
r∑
`=1

∑
vj∈V`

lij(t)(xj(t)− y`(t) + y`(t))

=−
N∑
j=1

lij(t)δj(t)−
r∑
`=1

( ∑
vj∈V`

lij(t)

)
y`(t)

=

N∑
j=1

aij(t)(δj(t)− δi(t)),

where L(t) = (lij(t)) is the Laplacian matrix of G(t) assuming the lower triangular
form as in (7). Recall that ẏ`(t) = Ay`(t) for ` = 1, · · · , r. We are led to the
conclusion that system (1) with protocol (5) can be rewritten as

δ̇i(t) = Aδi(t) +BK

( N∑
j=1

aij(t)(δj(t)− δi(t))− di(t)δi(t)
)

for i = 1, · · · , N .
Set δ(t) = (δT1 (t), · · · , δTN (t))T ∈ RnN , and D(t) = diag(d1(t), · · · , dN (t)). Then

we have the following compact form of the error dynamics

δ̇(t) = ((IN ⊗A)− (L(t) +D(t))⊗BK)δ(t). (15)

Recall that, for ` = 1, · · · , r, GS` is the induced subnetwork of the union inter-
action topology GS on V`. Similarly as in the previous sections, let ḠS` denote the
“extended” version of subnetwork GS` such that a virtual agent y` and a directed
edge from y` to the node in GS` that is pinned at some time t are added. Note that
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ḠS` is not unique (more precisely, has at most min{s,N`} versions) by definition

since the pinned nodes in G(k)
` can be different for different k ∈ S (c.f. Fig. 4).

Theorem 4.1. Suppose that (A,B) is stabilizable. Under Assumptions 3 and 4

with all α
(k)
``′ ≡ 0 (` > `′), if the agents in subgroups are pinned such that each ḠS` ,

` = 1, · · · , r, has a spanning tree, then the multi-agent system (1) under protocol
(5) can achieve group pinning consensus exponentially fast.

Moreover, if (A,B) is controllable, and K = σBTP , where the coefficient σ ≥
(mink∈S πk)−1 and P > 0 is given in (16) below, the group pinning consensus can
be achieved with any speed.

Before proceeding to the proof, we remark that the spanning tree condition in
Theorem 4.1 is imposed on only one version of ḠS` for each `. To see why this may

suffice, we recall that the Markov process θ(t) is ergodic. Hence, given k ∈ S, G(k)
`

will be visited infinite times, which is reminiscent of the well-known “frequently-
connected” condition proposed for achieving consensus in deterministic switching
networks [20].

Proof. Under Assumption 3, the Laplacian matrix of the union topology GS , de-
noted by LS , has the lower triangular form as in (7). Therefore,

L̄S := LS +DS =

 L
S
11 · · · 0
...

. . .
...

LSr1 · · · LSrr

+ diag(DS1 , · · · ,DSr ),

where DS = diag(DS1 , · · · ,DSr ) =
∑s
k=1D(k), D(k) = diag(d

(k)
1 , · · · , d(k)

N ).

Since Assumption 4 holds with all α
(k)
``′ ≡ 0 (` > `′), LS`` is the Laplacian matrix

of graph GS` for ` = 1, · · · , r. The Laplacian matrix of the “extend” graph ḠS` is thus

given by

[
LS`` +DS` −DS` 1N`

0 0

]
∈ R(N`+1)×(N`+1). As in the proof of Theorem

3.1, the spanning tree conditions imply that all the eigenvalues of LS`` + DS` are
with positive real parts. Thanks to the Lyapunov algebraic equation, there exists a
Ξ` > 0 such that Ξ`(LS`` +DS` ) + (LS`` +DS` )TΞ` > 0, ` = 1, · · · , r. It follows from
Lemma 2.4 that we can select some ε` > 0 such that ∆ΞL̄S + (L̄S)T∆Ξ > 0, where
∆ = diag(ε1IN1 , · · · , εrINr ) and Ξ = diag(Ξ1, · · · ,Ξr).

Define Q = (
√

∆Ξ)−1
(
∆ΞL̄S + (L̄S)T∆Ξ

)
(
√

∆Ξ)−1. We have λmin(Q) > 0.
Since (A,B) is stabilizable, by the algebraic Riccati inequality, there exists a P > 0
such that

PA+ATP − λmin(Q)PBBTP < 0.

Furthermore, we can select a β > 0 such that

PA+ATP − λmin(Q)PBBTP + βP < 0. (16)

Define the Lyapunov functions by

V (t) = E
(
δT (t)(∆Ξ⊗ P )δ(t)

)
and

Vk(t) = E
(
δT (t)(∆Ξ⊗ P )δ(t)1{θ(t)=k}

)
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for k ∈ S. By Lemma 2.5 and (15), we obtain

dVk(t) =E
(
dδT (t)(∆Ξ⊗ P )δ(t)1{θ(t)=k} + δT (t)(∆Ξ⊗ P )dδ(t)1{θ(t)=k}

)
+

s∑
j=1

γjkVj(t)dt+ o(dt)

=E
(
δT (t)

(
∆Ξ⊗ (PA+ATP )−

(
(L(t) +D(t))T∆Ξ⊗KTBTP

+ ∆Ξ(L(t) +D(t))⊗ PBK
))
δ(t)1{θ(t)=k}

)
+

s∑
j=1

γjkVj(t)dt+ o(dt). (17)

Since the Markov process θ(t) is ergodic, without loss of generality, we assume
that it starts from the invariant distribution π. Note that V (t) =

∑s
k=1 Vk(t),∑s

k=1 γjk = 0, and L̄S =
∑s
k=1(L(k) + D(k)). By taking K = σBTP with σ ≥

(mink∈S πk)
−1 ≥ π−1

k for any k ∈ S, we derive from (17) that

V̇ (t) ≤E
(
δT (t)

(
∆Ξ⊗ (PA+ATP )−

(
(L̄S)T∆Ξ + ∆ΞL̄S

)
⊗ PBBTP

)
δ(t)

)
=E
(
δT (t)(

√
∆Ξ⊗ In)

(
IN ⊗ (PA+ATP )−Q⊗ PBBTP

)
(
√

∆Ξ⊗ In)δ(t)
)
.

Employing (16) we further have

V̇ (t) ≤ −βE
(
δT (t)(

√
∆Ξ⊗ In)

(
IN ⊗ P )(

√
∆Ξ⊗ In)δ(t)

)
= −βV (t).

By the comparison principle, we obtain V (t) ≤ V (0)e−βt, which implies that the
multi-agent system (1) under protocol (5) can achieve group pinning consensus
exponentially fast with a speed β.

In addition, when (A,B) is controllable, there always exists a P > 0 solving
(16) for any positive β similarly as in the proof of Theorem 3.1. Hence, the group
pinning consensus can be achieved with any speed.

Remark 4. From the perspective of the design of gain matrix K, the choice of
positive definite matrix P in (16) depends on both the agent dynamics and the
network topologies. This differs from the design in [36, Theorem 1] for complete
consensus, where the selected matrix is independent of graphs.

Remark 5. It is worth noting that the same group consensus protocol over deter-
ministic switching topology was considered in [19]. Given a partition {V1, · · · ,Vr}.
It is assumed that the contracted graphs of the communication topologies are time-
invariant and acyclic (see Assumption 4 therein). Indeed, it suffices to only require
that the contracted graph of the union topology over time is acyclic. The same
proof presented there is still valid in such circumstances.

Remark 6. Note that we do not require balance of the underlying graphs (a graph
is called balanced if the out-degree is equal to the in-degree for every node [17]). This
provides additional flexibility on many applications as compared to the continuous-
time complete consensus over Markovian switching graphs, where the balance con-
dition is commonly assumed; see e.g. [14, 23, 36]. The balance condition is also
imposed in [19] to ensure group consensus over deterministic switching topology.
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Remark 7. When the Markov process θ(t) in question is not ergodic, the state
space S = {1, 2, · · · , s} can be decomposed uniquely into the form S = {J ∪ S1 ∪
· · · ∪ Sq}, where each Sj (j = 1, · · · , q) is a closed set of positive recurrent states
and J is a set of transient states [22]. The assumption in Theorem 4.1 needs

to be modified into that the agents in subgroups are pinned such that each ḠSj` ,
` = 1, · · · , r, and j = 1, · · · , q, has a spanning tree. Similar treatment has been
proposed in [15, 36] for complete consensus problems.

4.2. Convergence results for system (1) under protocol (6). As in Section
3.1 we here only focus on the case of r = 2 for ease of presentation. The general
case can be proved in the same way but the details are left to the readers.

Recall that δ(t) =
(
xT1 (t)− xT2 (t), · · · , xT1 (t)− xTN1

(t), xT1 (t)− yT1 (t), xTN1+1(t)−
xTN1+2(t), · · · , xTN1+1(t) − xTN (t), xTN1+1(t) − yT2 (t)

)T ∈ RnN . ḠS` denotes the “ex-

tended” version of subnetwork GS` such that a virtual agent y` and a directed edge
from y` to the node in GS` that is pinned at some (any) time t are added.

Theorem 4.2. Suppose that (A,B) is stabilizable. Under Assumptions 3 and 4, if
the agents in subgroups are pinned such that each ḠS` , ` = 1, · · · , r, has a spanning
tree, then the multi-agent system (1) under protocol (6) can achieve group pinning
consensus exponentially fast.

Moreover, if (A,B) is controllable, and K = σBTP , where the coefficient σ ≥
(mink∈S πk)−1 and P > 0 is given in (19) below, the group pinning consensus can
be achieved with any speed.

Proof. Set r = 2. In view of Proposition 1, we obtain for t ≥ 0,

δ̇(t) =
(
IN ⊗A−Z(t)⊗BK

)
δ(t), (18)

where Z(t) =

 Z1(t) 0

Z21(t) Z2(t)

 = F

 UH1 H̄1(t)U1 0

UH2 H̄21(t)U1 UH2 H̄2(t)U2

F−1, H̄21(t)

=

[
−A21(t) 0

0 0

]
∈ R(N2+1)×(N1+1), H̄`(t) =

[
L`(t) +D`(t) −D`(t)1N`

0 0

]
∈ R(N`+1)×(N`+1), D1(t) = diag(d1(t), · · · , dN1

(t)), D2(t) = diag(dN1+1(t), · · · ,
dN (t)), and L`(t) is the Laplacian matrix of G`(t), ` = 1, 2; U` is determined by the
Schur decomposition of H̄S` (i.e., replacing H̄` with H̄S` in (13)) for ` = 1, 2; F is de-

fined as in Proposition 1. Here, H̄S` =

[
LS` +DS` −DS` 1N`

0 0

]
∈ R(N`+1)×(N`+1),

where LS` is the Laplacian matrix of GS` and DS` is defined as in the proof of Theo-

rem 4.1, for ` = 1, 2. Similar notations will be made for ZS , ZS` , Z(k), Z(k)
` , H̄(k)

21 ,

H̄(k)
` , etc. for ` = 1, 2, k ∈ S.
Following the similar reasoning as in Theorem 3.1, we define a positive definite

matrix

Q = (
√

∆Ξ)−1(∆ΞZS + (ZS)T∆Ξ)(
√

∆Ξ)−1

with λmin(Q) > 0. Here, ∆ = diag(ε1IN1
, ε2IN2

) and Ξ = diag(Ξ1,Ξ2) are taken
such that Ξ`ZSi + (ZS` )TΞ` > 0 (` = 1, 2), and ∆ΞZS + (ZS)T∆Ξ > 0.

Since (A,B) is stabilizable, again by the algebraic Riccati inequality, there exist
a P > 0 such that

PA+ATP − λmin(Q)PBBTP < 0,



GROUP CONSENSUS WITH ACYCLIC PARTITION 569

and a β > 0 such that

PA+ATP − λmin(Q)PBBTP + βP < 0. (19)

Similarly, define the Lyapunov candidates by

V (t) = E
(
δT (t)(∆Ξ⊗ P )δ(t)

)
and

Vk(t) = E
(
δT (t)(∆Ξ⊗ P )δ(t)1{θ(t)=k}

)
for k ∈ S. By Lemma 2.5 and (18), we obtain

dVk(t) =E
(
dδT (t)(∆Ξ⊗ P )δ(t)1{θ(t)=k} + δT (t)(∆Ξ⊗ P )dδ(t)1{θ(t)=k}

)
+

s∑
j=1

γjkVj(t)dt+ o(dt)

=E
(
δT (t)

(
∆Ξ⊗ (PA+ATP )−

(
ZT (t)∆Ξ⊗KTBTP

+ ∆ΞZ(t)⊗ PBK
))
δ(t)1{θ(t)=k}

)
+

s∑
j=1

γjkVj(t)dt+ o(dt). (20)

Without loss of generality, we assume that the Markov process θ(t) starts from
the invariant distribution π. Note that V (t) =

∑s
k=1 Vk(t),

∑s
k=1 γjk = 0, and

H̄S =

[
H̄S1 0
H̄S21 H̄S2

]
=

s∑
k=1

[
H̄(k)

1 0

H̄(k)
21 H̄(k)

2

]
=

s∑
k=1

H̄(k).

Hence, ZS =
∑s
k=1Z(k) as F , U1, and U2 are time-invariant. Taking K = σBTP

with σ ≥ (mink∈S πk)
−1 ≥ π−1

k for any k ∈ S, we derive from (20) that

V̇ (t) ≤E
(
δT (t)

(
∆Ξ⊗ (PA+ATP )−

(
(ZS)T∆Ξ + ∆ΞZS

)
⊗ PBBTP

)
δ(t)

)
=E
(
δT (t)(

√
∆Ξ⊗ In)

(
IN ⊗ (PA+ATP )−Q⊗ PBBTP

)
(
√

∆Ξ⊗ In)δ(t)
)
.

Accordingly, we obtain from (19) that

V̇ (t) ≤ −βE
(
δT (t)(

√
∆Ξ⊗ In)

(
IN ⊗ P )(

√
∆Ξ⊗ In)δ(t)

)
= −βV (t).

The rest of the proof follows as in Theorem 4.1. Therefore, we conclude the proof
as desired.

The remarks after Theorem 4.1 can be applied here analogously.

4.3. Simulations. Consider the multi-agent system (1) with N = 6 agents divided
into two subgroups V1 = {v1, v2, v3} and V2 = {v4, v5, v6}. The communication
topology among agents will randomly switch between G(1) and G(2) (see Fig. 4
first row) following a time-homogeneous Markovian process θ(t) with generator

Γ =

[
−1 1
2 −2

]
and state space S = {1, 2}. The initial distribution of θ(t) is

given by its invariant distribution π = (2/3, 1/3)T .
Take n = 2, m = 1, and let the agent dynamics (1) be specified as

A =

[
−1 0
1 2

]
and B =

[
0
1

]
.
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Figure 4. Network topologies: G(1), G(2), and their union GS =
G(1) ∪G(2). Note that we have chosen one version of ḠS1 out of two
possible ones.

The pair (A,B) is stabilizable. With ḠS` (` = 1, 2) displayed in Fig. 4 last row, it is
straightforward to check that all assumptions in Theorems 4.1 and 4.2 are satisfied.
We take the initial states xi(0), i = 1, · · · , 6 randomly in [−2, 2]2, and the initial
values y1(0) and y2(0) arbitrarily just to satisfy limt→∞ ‖y1(t)− y2(t)‖ 6= 0.

Firstly, we consider the system (1) with protocol (5). TakeD(1) = diag(1, 0, 0, 1, 0,
0), D(2) = diag(0, 0, 1, 1, 0, 0) and ∆Ξ = diag(1, 0.1, 0.5, 0.3, 0.2, 0.1). It is easy to

solve the Riccati equation (16) that P =

[
1.0396 1.5701
1.5701 5.0228

]
with λmin(Q) = 0.8360

and β = 0.1. The gain matrix is solved as K = (4.7103, 15.0684). Fig. 5 shows a
sample path of the consensus seeking process, which agrees with Theorem 4.1.

Next, we consider the system (1) with protocol (6). Take D(1), D(2) as above, and
∆Ξ = diag(1, 1, 0.8, 0.3, 0.1, 0.1). Solving the Riccati equation (19) with λmin(Q) =

0.5721 and β = 0.1 gives P =

[
1.2852 2.3049
2.3049 7.2334

]
. The gain matrix is solved as

K = (6.9147, 21.7002). Fig. 6 shows a sample path of the consensus seeking process,
which is consistent with Theorem 4.2.

5. Conclusion. In this paper, the group consensus problem of continuous-time
linear multi-agent systems has been studied. Two different types of pinning control
protocols are proposed to ensure group consensus regardless of the magnitude of
the coupling strengths among the agents. Sufficient conditions guaranteeing the
group consensus under directed fixed interaction topology and randomly switching
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Figure 5. Error trajectories for multi-agent system (1) under ran-
domly switching topology using protocol (5).
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Figure 6. Error trajectories for multi-agent system (1) under ran-
domly switching topology using protocol (6). The same sample
path of θ(t) is used as in Fig. 5.

topology are derived in terms of simple graphic conditions. For one of the pro-
tocols studied here, the commonly used in-degree balance condition can be largely
relaxed. In the case of randomly switching topology, where the underlying networks
are governed by a continuous-time Markov process, it is shown that the group con-
sensus behavior is unrelated to the magnitude of the couplings among agents if the
union of the topologies corresponding to the positive recurrent states of the Markov
process has an acyclic partition. Numerical simulations are presented to illustrate
the effectiveness of our theoretical results and facilitate discussion on the choice of
pinning schemes.
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