[1]
|
S. Benzoni-Gavage and R. M. Colombo, An $n$-populations model for traffic flow, Euro. J. Appl. Math., 14 (2003), 587-612. doi: 10.1017/S0956792503005266
|
[2]
|
A. Bressan and K. Han, Optima and equilibria for a model of traffic flow, SIAM J. Math. Anal., 43 (2011), 2384-2417. doi: 10.1137/110825145
|
[3]
|
A. Bressan and K. Han, Nash equilibria for a model of traffic flow with several groups of drivers, ESAIM Control Optim. Calc. Var., 18 (2012), 969-986. doi: 10.1051/cocv/2011198
|
[4]
|
A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks, Netw. Heterog. Media, 8 (2013), 627-648. doi: 10.3934/nhm.2013.8.627
|
[5]
|
A. Bressan and K. T. Nguyen, Conservation law models for traffic flow on a network of roads, Netw. Heterog. Media, 10 (2015), 255-293. doi: 10.3934/nhm.2015.10.255
|
[6]
|
A. Bressan and F. S. Priuli, Infinite horizon noncooperative differential games, J. Differential Equations, 227 (2006), 230-257. doi: 10.1016/j.jde.2006.01.005
|
[7]
|
A. Bressan and F. Yu, Continuous Riemann solvers for traffic flow at a junction, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 4149-4171. doi: 10.3934/dcds.2015.35.4149
|
[8]
|
G. Bretti, M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 379-394. doi: 10.3934/dcdss.2014.7.379
|
[9]
|
M. Briani and E. Cristiani, An easy-to-use numerical algorithm for simulating traffic flow on networks: Theoretical study, Netw. Heterog. Media, 9 (2014), 519-552. doi: 10.3934/nhm.2014.9.519
|
[10]
|
S. Cacace, E. Cristiani and M. Falcone, Numerical approximation of Nash equilibria for a class of non-cooperative differential games, In: L. Petrosjan, V. Mazalov (eds.), Game Theory and Applications, Vol. 16, Chap. 4, Nova Publishers, New York, 2013.
|
[11]
|
G. Carlier, C. Jimenez and F. Santambrogio, Optimal transportation with traffic congestion and Wardrop equilibria, SIAM J. Control Optim., 47 (2008), 1330-1350. doi: 10.1137/060672832
|
[12]
|
G. Carlier and F. Santambrogio, A continuous theory of traffic congestion and Wardrop equilibria, J. Math. Sci., 181 (2012), 792-804. doi: 10.1007/s10958-012-0715-5
|
[13]
|
A. Cascone, C. D'Apice, B. Piccoli and L. Rarità, Optimization of traffic on road networks, Math. Models Methods Appl. Sci., 17 (2007), 1587-1617. doi: 10.1142/S021820250700239X
|
[14]
|
R. M. Colombo and H. Holden, On the Braess paradox with nonlinear dynamics and control theory, J. Optim. Theory Appl., (2015), 1-15. doi: 10.1007/s10957-015-0729-5
|
[15]
|
Z. Cong, B. De Schutter and R. Babuška, Ant colony routing algorithm for freeway networks, Transportation Res. Part C, 37 (2013), 1-19. doi: 10.1016/j.trc.2013.09.008
|
[16]
|
E. Cristiani, F. S. Priuli and A. Tosin, Modeling rationality to control self-organization of crowds: An environmental approach, SIAM J. Appl. Math., 75 (2015), 605-629. doi: 10.1137/140962413
|
[17]
|
A. Cutolo, C. D'Apice and R. Manzo, Traffic optimization at junctions to improve vehicular flows, International Scholarly Research Network ISRN Applied Mathematics, 2011 (2011), Article ID 679056, 19 pages. doi: 10.5402/2011/679056
|
[18]
|
C. Dogbé, Modeling crowd dynamics by the mean-field limit approach, Math. Comput. Modelling, 52 (2010), 1506-1520. doi: 10.1016/j.mcm.2010.06.012
|
[19]
|
C. S. Fisk, Game theory and transportation systems modelling, Transportation Res. Part B, 18 (1984), 301-313. doi: 10.1016/0191-2615(84)90013-4
|
[20]
|
A. Fügenschuh, M. Herty, A. Klar and A. Martin, Combinatorial and continuous models for the optimization of traffic flows on networks, SIAM J. Optim., 16 (2006), 1155-1176. doi: 10.1137/040605503
|
[21]
|
M. Garavello, The LWR traffic model at a junction with multibuffers, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 463-482. doi: 10.3934/dcdss.2014.7.463
|
[22]
|
M. Garavello and P. Goatin, The Cauchy problem at a node with buffer, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1915-1938. doi: 10.3934/dcds.2012.32.1915
|
[23]
|
M. Garavello and B. Piccoli, Source-destination flow on a road network, Commun. Math. Sci., 3 (2005), 261-283. doi: 10.4310/CMS.2005.v3.n3.a1
|
[24]
|
M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, Springfield, MO, 2006.
|
[25]
|
M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks, J. Optim. Theory Appl., 126 (2005), 589-616. doi: 10.1007/s10957-005-5499-z
|
[26]
|
M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks, SIAM J. Sci. Comput., 25 (2003), 1066-1087. doi: 10.1137/S106482750241459X
|
[27]
|
M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826. doi: 10.3934/nhm.2009.4.813
|
[28]
|
Y. Hollander and J. N. Prashker, The applicability of non-cooperative game theory in transport analysis, Transportation, 33 (2006), 481-496.
|
[29]
|
A. Lachapelle and M.-T. Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian crowds, Transportation Res. Part B, 45 (2011), 1572-1589. doi: 10.1016/j.trb.2011.07.011
|
[30]
|
M. J. Lighthill and G. B. Whitham, On kinematic waves II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
|
[31]
|
K. Nachtigall, Time depending shortest-path problems with applications to railway networks, Euro. J. Oper. Res., 83 (1995), 154-166. doi: 10.1016/0377-2217(94)E0349-G
|
[32]
|
A. Orda and R. Rom, Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length, J. Assoc. Comput. Mach., 37 (1990), 607-625. doi: 10.1145/79147.214078
|
[33]
|
F. S. Priuli, Infinite horizon noncooperative differential games with non-smooth costs, J. Math. Anal. Appl., 336 (2007), 156-170. doi: 10.1016/j.jmaa.2007.02.030
|
[34]
|
submitted. arXiv:1402.7296.
|
[35]
|
P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
|
[36]
|
J. G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst. Civ. Eng. Part II, 1 (1952), 767-768. doi: 10.1680/ipeds.1952.11362
|