
Citation: Emiliano Cristiani, Fabio S. Priuli. A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks[J]. Networks and Heterogeneous Media, 2015, 10(4): 857-876. doi: 10.3934/nhm.2015.10.857
[1] | Abel Cabrera Martínez, Iztok Peterin, Ismael G. Yero . Roman domination in direct product graphs and rooted product graphs. AIMS Mathematics, 2021, 6(10): 11084-11096. doi: 10.3934/math.2021643 |
[2] | Fu-Tao Hu, Xing Wei Wang, Ning Li . Characterization of trees with Roman bondage number 1. AIMS Mathematics, 2020, 5(6): 6183-6188. doi: 10.3934/math.2020397 |
[3] | Rangel Hernández-Ortiz, Luis Pedro Montejano, Juan Alberto Rodríguez-Velázquez . Weak Roman domination in rooted product graphs. AIMS Mathematics, 2021, 6(4): 3641-3653. doi: 10.3934/math.2021217 |
[4] | Mingyu Zhang, Junxia Zhang . On Roman balanced domination of graphs. AIMS Mathematics, 2024, 9(12): 36001-36011. doi: 10.3934/math.20241707 |
[5] | Jian Yang, Yuefen Chen, Zhiqiang Li . Some sufficient conditions for a tree to have its weak Roman domination number be equal to its domination number plus 1. AIMS Mathematics, 2023, 8(8): 17702-17718. doi: 10.3934/math.2023904 |
[6] | Saeed Kosari, Yongsheng Rao, Zehui Shao, Jafar Amjadi, Rana Khoeilar . Complexity of signed total $k$-Roman domination problem in graphs. AIMS Mathematics, 2021, 6(1): 952-961. doi: 10.3934/math.2021057 |
[7] | Zhibin Du, Ayu Ameliatul Shahilah Ahmad Jamri, Roslan Hasni, Doost Ali Mojdeh . Maximal first Zagreb index of trees with given Roman domination number. AIMS Mathematics, 2022, 7(7): 11801-11812. doi: 10.3934/math.2022658 |
[8] | Bana Al Subaiei, Ahlam AlMulhim, Abolape Deborah Akwu . Vertex-edge perfect Roman domination number. AIMS Mathematics, 2023, 8(9): 21472-21483. doi: 10.3934/math.20231094 |
[9] | Chang-Xu Zhang, Fu-Tao Hu, Shu-Cheng Yang . On the (total) Roman domination in Latin square graphs. AIMS Mathematics, 2024, 9(1): 594-606. doi: 10.3934/math.2024031 |
[10] | Abel Cabrera-Martínez, Andrea Conchado Peiró . On the $ \{2\} $-domination number of graphs. AIMS Mathematics, 2022, 7(6): 10731-10743. doi: 10.3934/math.2022599 |
In this paper, we shall only consider graphs without multiple edges or loops. Let $ G = (V(G), E(G)) $ be a graph, $ v \in V(G) $, the neighborhood of $ v $ in $ G $ is denoted by $ N(v) $. That is to say $ N(v) = \{u| uv \in E(G), u \in V(G)\} $. The degree of a vertex $ v $ is denoted by $ d(v) $, i.e. $ d(v) = |N(v)| $. A graph is trivial if it has a single vertex. The maximum degree and the minimum degree of a graph $ G $ are denoted by $ \Delta(G) $ and $ \delta(G) $, respectively. Denote by $ K_n $ the complete graph on $ n $ vertices.
A subset $ D $ of the vertex set of a graph $ G $ is a dominating set if every vertex not in $ D $ has at least one neighbor in $ D $. The domination number $ \gamma(G) $ is the minimum cardinality of a dominating set of $ G $. A dominating set $ D $ of $ G $ with $ |D| = \gamma(G) $ is called a $ \gamma $-set of $ G $.
Roman domination of graphs is an interesting variety of domination, which was proposed by Cockayne et al. [6]. A Roman dominating function (RDF) of a graph $ G $ is a function $ f: V(G) \rightarrow \{0, 1, 2\} $ such that every vertex $ u $ for which $ f(u) = 0 $ is adjacent to at least one vertex $ v $ for which $ f(v) = 2 $. The weight $ w(f) $ of a Roman dominating function $ f $ is the value $ w(f) = \sum_{u \in V(G)}f(u) $. The minimum weight of an RDF on a graph $ G $ is called the Roman domination number $ \gamma_R(G) $ of $ G $. An RDF $ f $ of $ G $ with $ w(f) = \gamma_{R}(G) $ is called a $ \gamma_{R} $-function of $ G $. The problems on domination and Roman domination of graphs have been investigated widely, for example, see list of references [8,9,10,13] and [3,7,12], respectively.
In 2016, Chellali et al. [5] introduced a variant of Roman dominating functions, called Roman {2}-dominating functions. A Roman $\{ 2 \}$-dominating function (R$\{ 2 \}$DF) of $ G $ is a function $ f: V\rightarrow \{0, 1, 2\} $ such that $ \sum_{u\in N(v)}f(u)\geq 2 $ for every vertex $ v\in V $ with $ f(v) = 0 $. The weight of a Roman {2}-dominating function $ f $ is the sum $ \sum_{v\in V}f(v) $. The Roman {2}-domination number $ \gamma_{\{R2\}}(G) $ is the minimum weight of an R{2}DF of $ G $. Note that if $ f $ is an R{2}DF of $ G $ and $ v $ is a vertex with $ f(v) = 0 $, then either there is a vertex $ u\in N(v) $ with $ f(u) = 2 $, or at least two vertices $ x, y \in N(v) $ with $ f(x) = f(y) = 1 $. Hence, an R{2}DF of $ G $ is also an RDF of $ G $, which is also mentioned by Chellali et al [5]. Moreover, they showed that the decision problem for Roman {2}-domination is NP-complete, even for bipartite graphs.
In fact, a Roman {2}-dominating function is essentially the same as a weak $ \{2\} $-dominating function, which was introduced by Brešar et al. [1] and studied in literatures [2,11,14,15].
For a mapping $ f:V(G)\rightarrow \{0, 1, 2\} $, let $ (V_0, V_1, V_2) $ be the ordered partition of $ V(G) $ induced by $ f $ such that $ V_i = \{x: f(x) = i\} $ for $ i = 0, 1, 2 $. Note that there exists a 1-1 correspondence between the function $ f $ and the partition $ (V_0, V_1, V_2) $ of $ V(G) $, so we will write $ f = (V_0, V_1, V_2) $.
Chellali et al. [4] obtained the following lower bound of Roman domination number.
Lemma 1. (Chellali et al. [4]) Let $ G $ be a nontrivial connected graph with maximum degree $ \Delta $. Then $ \gamma_{R}(G)\geq\frac{\Delta+1}{\Delta}\gamma(G) $.
In this paper, we generalize this result on nontrivial connected graph $ G $ with maximum degree $ \Delta $ and minimum degree $ \delta $. We prove that $ \gamma_{R}(G)\geq\frac{\Delta+2\delta}{\Delta+\delta}\gamma(G) $. As a corollary, we obtain that $ \frac{3}{2}\gamma(G)\leq\gamma_{R}(G)\leq 2\gamma(G) $ for any nontrivial regular graph $ G $. Moreover, we prove that $ \gamma_{R}(G)\leq2\gamma_{\{R2\}}(G)-1 $ for every graph $ G $ and there exists a graph $ I_k $ such that $ \gamma_{\{R2\}}(I_k) = k $ and $ \gamma_{R}(I_k) = 2k-1 $ for any integer $ k\geq2 $.
Lemma 2. (Cockayne et al. [6]) Let $ f = (V_0, V_1, V_2) $ be a $ \gamma_{R} $-function of an isolate-free graph $ G $ with $ |V_1| $ as small as possible. Then
(i) No edge of $ G $ joins $ V_1 $ and $ V_2 $;
(ii) $ V_1 $ is independent, namely no edge of $ G $ joins two vertices in $ V_1 $;
(iii) Each vertex of $ V_0 $ is adjacent to at most one vertex of $ V_1 $.
Theorem 3. Let $ G $ be a nontrivial connected graph with maximum degree $ \Delta(G) = \Delta $ and minimum degree $ \delta(G) = \delta $. Then
$ $
|
(2.1) |
Moreover, if the equality holds, then
$ \gamma(G) = \frac{n(\Delta+\delta)}{\Delta\delta+\Delta+\delta} \; \; \mathit{\text{and}}\; \; \gamma_R(G) = \frac{n(\Delta+2\delta)}{\Delta\delta+\Delta+\delta}. $ |
Proof. Let $ f = (V_0, V_1, V_2) $ be a $ \gamma_{R} $-function of $ G $ with $ V_1 $ as small as possible. By Lemma 2, we know that $ N(v)\subseteq V_0 $ for any $ v\in V_1 $ and $ N(v_1)\cap N(v_2) = \emptyset $ for any $ v_1, v_2\in V_1 $. So we have
$ $
|
(2.2) |
Since $ G $ is nontrivial, it follows that $ V_2\neq \emptyset $. Note that every vertex in $ V_2 $ is adjacent to at most $ \Delta $ vertices in $ V_0 $; we have
$ $
|
(2.3) |
By Formulae (2.2) and (2.3), we have
$ $
|
(2.4) |
By the definition of an RDF, every vertex in $ V_0 $ has at least one neighbor in $ V_2 $. So $ V_1\cup V_2 $ is a dominating set of $ G $. Together with Formula (2.4), we can obtain that
$ \gamma(G)\leq |V_1|+|V_2|\leq \frac{\Delta}{\delta}|V_2|+|V_2| = \frac{\Delta+\delta}{\delta}|V_2|. $ |
Note that $ f $ is a $ \gamma_{R} $-function of $ G $; we have
$ \gamma_R(G) = |V_1|+2|V_2| = (|V_1|+|V_2|)+|V_2|\geq \gamma(G)+\frac{\delta}{\Delta+\delta}\gamma(G) = \frac{\Delta+2\delta}{\Delta+\delta}\gamma(G). $ |
Moreover, if the equality in Formula (2.1) holds, then by previous argument we obtain that $ |V_1| = \frac{|V_0|}{\delta} $, $ |V_0| = \Delta|V_2| $, and $ V_1\cup V_2 $ is a $ \gamma $-set of $ G $. Then we have
$ n = |V_0|+|V_1|+|V_2| = |V_0|+\frac{|V_0|}{\delta}+\frac{|V_0|}{\Delta} = \frac{\Delta\delta+\Delta+\delta}{\Delta\delta}|V_0|. $ |
Hence, we have
$ |V_0| = \frac{n\Delta\delta}{\Delta\delta+\Delta+\delta}, \; \; |V_1| = \frac{n\Delta}{\Delta\delta+\Delta+\delta}, \;\text{ and }\; |V_2| = \frac{n\delta}{\Delta\delta+\Delta+\delta}. $ |
So
$ \gamma_R(G) = |V_1|+2|V_2| = \frac{n(\Delta+2\delta)}{\Delta\delta+\Delta+\delta} \;\text{ and }\; \gamma(G) = |V_1|+|V_2| = \frac{n(\Delta+\delta)}{\Delta\delta+\Delta+\delta} $ |
since $ V_1\cup V_2 $ is a $ \gamma $-set of $ G $. This completes the proof.
Now we show that the lower bound in Theorem 3 can be attained by constructing an infinite family of graphs. For any integers $ k\geq 2 $, $ \delta\geq 2 $ and $ \Delta = k\delta $, we construct a graph $ H_k $ from $ K_{1, \Delta} $ by adding $ k $ news vertices such that each new vertex is adjacent to $ \delta $ vertices of $ K_{1, \Delta} $ with degree 1 and no two new vertices has common neighbors. Then add some edges between the neighbors of each new vertex $ u $ such that $ \delta(H_k) = \delta $ and the induced subetaaph of $ N(u) $ in $ H_k $ is not complete. The resulting graph $ H_k $ is a connected graph with maximum degree $ \Delta(G) = \Delta $ and maximum degree $ \delta(G) = \delta $. It can be checked that $ \gamma(H_k) = k+1 $ and $ \gamma_R(H_k) = k+2 = \frac{\Delta+2\delta}{\Delta+\delta}\gamma(G) $.
For example, if $ k = 2 $, $ \delta = 3 $ and $ \Delta = k\delta = 6 $, then the graph $ H_2 $ constructed by the above method is shown in Figure 1, where $ u_1 $ and $ u_2 $ are new vertices.
Furthermore, by Theorem 3, we can obtain a lower bound of the Roman domination number on regular graphs.
Corollary 4. Let $ G $ be an $ r $-regular graph, where $ r\geq 1 $. Then
$ $
|
(2.5) |
Moreover, if the equality holds, then
$ \gamma(G) = \frac{2n}{r+2} \; \; \mathit{\text{and}}\; \; \gamma_R(G) = \frac{3n}{r+2}. $ |
Proof. Since $ G $ is $ r $-regular, we have $ \Delta(G) = \delta(G) = r $. By Theorem 3 we can obtain that this corollary is true.
For any integer $ n\geq 2 $, denote by $ G_{2n} $ the $ (2n-2) $-regular graph with $ 2n $ vertices, namely $ G_{2n} $ is the graph obtained from $ K_{2n} $ by deleting a perfect matching. It can be checked that $ \gamma(G_{2n}) = 2 $ and $ \gamma_R(G_{2n}) = 3 = \frac{3}{2}\gamma(G) $ for any $ n\geq 2 $. Hence, the bound in Corollary 4 is attained.
Note that $ \gamma_{R}(G)\leq2\gamma(G) $ for any graph $ G $; we can conclude the following result.
Corollary 5. Let $ G $ be an $ r $-regular graph, where $ r\geq 1 $. Then
$ $
|
Chellali et al. [5] obtain the following bounds for the Roman {2}-domination number of a graph $ G $.
Lemma 6. (Chellali et al. [5]) For every graph $ G $, $ \gamma(G)\leq\gamma_{\{R2\}}(G)\leq\gamma_{R}(G)\leq2\gamma(G) $.
Lemma 7. (Chellali et al. [5]) If $ G $ is a connected graph of order $ n $ and maximum degree $ \Delta(G) = \Delta $, then
$ \gamma_{\{R2\}}(G)\geq\frac{2n}{\Delta+2}. $ |
Theorem 8. For every graph $ G $, $ \gamma_{R}(G)\leq2\gamma_{\{R2\}}(G)-1 $. Moreover, for any integer $ k\geq2 $, there exists a graph $ I_k $ such that $ \gamma_{\{R2\}}(I_k) = k $ and $ \gamma_{R}(I_k) = 2k-1 $.
Proof. Let $ f = (V_0, V_1, V_2) $ be an $ \gamma_{\{R2\}} $-function of $ G $. Then $ \gamma_{\{R2\}}(G) = |V_1|+2|V_2| $ and $ \gamma_{R}(G)\leq 2|V_1|+2|V_2| $ since $ V_1\cup V_2 $ is a dominating set of $ G $. If $ |V_2|\geq 1 $, then $ \gamma_{R}(G)\leq 2|V_1|+2|V_2| = 2\gamma_{\{R2\}}(G)-2|V_2|\geq 2\gamma_{\{R2\}}(G)-2 $. If $ |V_2| = 0 $, then every vertex in $ V_0 $ is adjacent to at least two vertices in $ V_1 $. So for any vertex $ u\in V_1 $, $ f' = (V_0, \{u\}, V_1\setminus \{u\}) $ is an RDF of $ G $. Then we have $ \gamma_{R}(G)\leq 1+2|V_1\setminus \{u\}| = 2|V_1|-1 = 2\gamma_{\{R2\}}(G)-1 $.
For any integer $ k\geq2 $, let $ I_k $ be the graph obtained from $ K_k $ by replacing every edge of $ K_k $ with two paths of length 2. Then $ \Delta(I_k) = 2(k-1) $ and $ \delta(I_k) = 2 $. We first prove that $ \gamma_{\{R2\}}(I_k) = k $. Since $ V(I_k) = |V(K_k)|+2|E(K_k)| = k+2\cdot\frac{k(k-1)}{2} = k^2 $, by Lemma 7 we can obtain $ \gamma_{\{R2\}}(I_k)\geq\frac{2|V(I_k)|}{\Delta(I_k)+2} = \frac{2k^2}{2(k-1)+2} = k $. On the other hand, let $ f(x) = 1 $ for each $ x\in V(I_k) $ with $ d(x) = 2(k-1) $ and $ f(y) = 0 $ for each $ y\in V(I_k) $ with $ d(y) = 2 $. It can be seen that $ f $ is an R$ \{2\} $DF of $ I_k $ and $ w(f) = k $. Hence, $ \gamma_{\{R2\}}(I_k) = k $.
We now prove that $ \gamma_{R}(I_k) = 2k-1 $. Let $ g = \{V'_1, V'_2, V'_3\} $ be a $ \gamma_{R} $-function of $ I_k $ such that $ |V'_1| $ is minimum. For each 4-cycle $ C = v_1v_2v_3v_4v_1 $ of $ I_k $ with $ d(v_1) = d(v_3) = 2(k-1) $ and $ d(v_2) = d(v_4) = 2 $, we have $ w_g(C) = g(v_1)+g(v_2)+g(v_3)+g(v_4)\geq 2 $. If $ w_g(C) = 2 $, then by Lemma 2(iii) we have $ g(v_i)\in \{0, 2\} $ for any $ i\in\{1, 2, 3, 4\} $. Hence, one of $ v_1 $ and $ v_3 $ has value 2 and $ g(v_2) = g(v_4) = 0 $. If $ w_g(C) = 3 $, then by Lemma 2(i) we have $ \{g(v_1), g(v_3)\} = \{1, 2\} $ or $ \{g(v_2), g(v_4)\} = \{1, 2\} $. When $ \{g(v_2), g(v_4)\} = \{1, 2\} $, let $ \{g'(v_1), g'(v_2)\} = \{1, 2\} $, $ g'(v_2) = g'(v_4) = 0 $ and $ g'(x) = g(x) $ for any $ x\in V(I_k)\setminus \{v_1, v_2, v_3, v_4\} $. Then $ g' $ is also a $ \gamma_{R} $-function of $ I_k $. If $ w_g(C) = 4 $, then exchange the values on $ C $ such that $ v_1, v_3 $ have value 2 and $ v_2, v_4 $ have value 0. So we obtain that $ I_k $ has a $ \gamma_{R} $-function $ h $ such that $ h(y) = 0 $ for any $ y\in V(I_k) $ with degree 2. Note that any two vertices of $ I_k $ with degree $ 2(k-1) $ belongs to a 4-cycle considered above; we can obtain that there is exactly one vertex $ z $ of $ I_k $ with degree $ 2(k-1) $ such that $ h(z) = 1 $. Hence, $ \gamma_{R}(I_k) = w(h) = 2k-1 $.
Note that the graph $ I_k $ constructed in Theorem 8 satisfies that $ \gamma(I_k) = k = \gamma_{\{R2\}}(I_k) $. By Theorem 8, it suffices to prove that $ \gamma(I_k) = k $. Let $ A = \{v: v\in V(I_k), d(v) = 2(k-1)\} $ and $ B = V(I_k)\setminus A $. We will prove that $ I_k $ has a $ \gamma $-set containing no vertex of $ B $. Let $ D $ be a $ \gamma $-set of $ I_k $. If $ D $ contains a vertex $ u\in B $. Since the degree of $ u $ is 2, let $ u_1 $ and $ u_2 $ be two neighbors of $ u $ in $ I_k $. Then $ d(u_1) = d(u_2) = 2(k-1) $ and, by the construction of $ I_k $, $ u_1 $ and $ u_2 $ have two common neighbors $ u, u' $ with degree 2. Hence, at least one of $ u', u_1 $, and $ u_2 $ belongs to $ D $. Let $ D' = (D\setminus\{u, u'\})\cup\{u_1, u_2\} $. Then $ D' $ is also a $ \gamma $-set of $ I_k $. Hence, we can obtain a $ \gamma $-set of $ I_k $ containing no vertex of $ B $ by performing the above operation for each vertex $ v\in D\cap B $. So $ A $ is a $ \gamma $-set of $ I_k $ and $ \gamma(I_k) = |A| = k $.
By Lemma 6 and Theorem 8, we can obtain the following corollary.
Corollary 9. For every graph $ G $, $ \gamma_{\{R2\}}(G)\leq\gamma_{R}(G)\leq2\gamma_{\{R2\}}(G)-1 $.
Theorem 10. For every graph $ G $, $ \gamma_{R}(G)\leq\gamma(G)+\gamma_{\{R2\}}(G)-1 $.
Proof. By Lemma 6 we can obtain that $ \gamma_{R}(G)\leq2\gamma(G)\leq \gamma(G)+\gamma_{\{R2\}}(G) $. If the equality holds, then $ \gamma_{R}(G) = 2\gamma(G) $ and $ \gamma(G) = \gamma_{\{R2\}}(G) $. So $ \gamma_{R}(G) = 2\gamma_{\{R2\}}(G) $, which contradicts Theorem 8. Hence, we have $ \gamma_{R}(G)\leq\gamma(G)+\gamma_{\{R2\}}(G)-1 $.
In this paper, we prove that $ \gamma_{R}(G)\geq\frac{\Delta+2\delta}{\Delta+\delta}\gamma(G) $ for any nontrivial connected graph $ G $ with maximum degree $ \Delta $ and minimum degree $ \delta $, which improves a result obtained by Chellali et al. [4]. As a corollary, we obtain that $ \frac{3}{2}\gamma(G)\leq\gamma_{R}(G)\leq 2\gamma(G) $ for any nontrivial regular graph $ G $. Moreover, we prove that $ \gamma_{R}(G)\leq2\gamma_{\{R2\}}(G)-1 $ for every graph $ G $ and the bound is achieved. Although the bounds in Theorem 3 and Theorem 8 are achieved, characterizing the graphs that satisfy the equalities remain a challenge for further work.
The author thanks anonymous referees sincerely for their helpful suggestions to improve this work. This work was supported by the National Natural Science Foundation of China (No.61802158) and Natural Science Foundation of Gansu Province (20JR10RA605).
The author declares that they have no conflict of interest.
[1] |
S. Benzoni-Gavage and R. M. Colombo, An $n$-populations model for traffic flow, Euro. J. Appl. Math., 14 (2003), 587-612. doi: 10.1017/S0956792503005266
![]() |
[2] |
A. Bressan and K. Han, Optima and equilibria for a model of traffic flow, SIAM J. Math. Anal., 43 (2011), 2384-2417. doi: 10.1137/110825145
![]() |
[3] |
A. Bressan and K. Han, Nash equilibria for a model of traffic flow with several groups of drivers, ESAIM Control Optim. Calc. Var., 18 (2012), 969-986. doi: 10.1051/cocv/2011198
![]() |
[4] |
A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks, Netw. Heterog. Media, 8 (2013), 627-648. doi: 10.3934/nhm.2013.8.627
![]() |
[5] |
A. Bressan and K. T. Nguyen, Conservation law models for traffic flow on a network of roads, Netw. Heterog. Media, 10 (2015), 255-293. doi: 10.3934/nhm.2015.10.255
![]() |
[6] |
A. Bressan and F. S. Priuli, Infinite horizon noncooperative differential games, J. Differential Equations, 227 (2006), 230-257. doi: 10.1016/j.jde.2006.01.005
![]() |
[7] |
A. Bressan and F. Yu, Continuous Riemann solvers for traffic flow at a junction, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 4149-4171. doi: 10.3934/dcds.2015.35.4149
![]() |
[8] |
G. Bretti, M. Briani and E. Cristiani, An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 379-394. doi: 10.3934/dcdss.2014.7.379
![]() |
[9] |
M. Briani and E. Cristiani, An easy-to-use numerical algorithm for simulating traffic flow on networks: Theoretical study, Netw. Heterog. Media, 9 (2014), 519-552. doi: 10.3934/nhm.2014.9.519
![]() |
[10] | S. Cacace, E. Cristiani and M. Falcone, Numerical approximation of Nash equilibria for a class of non-cooperative differential games, In: L. Petrosjan, V. Mazalov (eds.), Game Theory and Applications, Vol. 16, Chap. 4, Nova Publishers, New York, 2013. |
[11] |
G. Carlier, C. Jimenez and F. Santambrogio, Optimal transportation with traffic congestion and Wardrop equilibria, SIAM J. Control Optim., 47 (2008), 1330-1350. doi: 10.1137/060672832
![]() |
[12] |
G. Carlier and F. Santambrogio, A continuous theory of traffic congestion and Wardrop equilibria, J. Math. Sci., 181 (2012), 792-804. doi: 10.1007/s10958-012-0715-5
![]() |
[13] |
A. Cascone, C. D'Apice, B. Piccoli and L. Rarità, Optimization of traffic on road networks, Math. Models Methods Appl. Sci., 17 (2007), 1587-1617. doi: 10.1142/S021820250700239X
![]() |
[14] |
R. M. Colombo and H. Holden, On the Braess paradox with nonlinear dynamics and control theory, J. Optim. Theory Appl., (2015), 1-15. doi: 10.1007/s10957-015-0729-5
![]() |
[15] |
Z. Cong, B. De Schutter and R. Babuška, Ant colony routing algorithm for freeway networks, Transportation Res. Part C, 37 (2013), 1-19. doi: 10.1016/j.trc.2013.09.008
![]() |
[16] |
E. Cristiani, F. S. Priuli and A. Tosin, Modeling rationality to control self-organization of crowds: An environmental approach, SIAM J. Appl. Math., 75 (2015), 605-629. doi: 10.1137/140962413
![]() |
[17] |
A. Cutolo, C. D'Apice and R. Manzo, Traffic optimization at junctions to improve vehicular flows, International Scholarly Research Network ISRN Applied Mathematics, 2011 (2011), Article ID 679056, 19 pages. doi: 10.5402/2011/679056
![]() |
[18] |
C. Dogbé, Modeling crowd dynamics by the mean-field limit approach, Math. Comput. Modelling, 52 (2010), 1506-1520. doi: 10.1016/j.mcm.2010.06.012
![]() |
[19] |
C. S. Fisk, Game theory and transportation systems modelling, Transportation Res. Part B, 18 (1984), 301-313. doi: 10.1016/0191-2615(84)90013-4
![]() |
[20] |
A. Fügenschuh, M. Herty, A. Klar and A. Martin, Combinatorial and continuous models for the optimization of traffic flows on networks, SIAM J. Optim., 16 (2006), 1155-1176. doi: 10.1137/040605503
![]() |
[21] |
M. Garavello, The LWR traffic model at a junction with multibuffers, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 463-482. doi: 10.3934/dcdss.2014.7.463
![]() |
[22] |
M. Garavello and P. Goatin, The Cauchy problem at a node with buffer, Discrete Contin. Dyn. Syst. Ser. A, 32 (2012), 1915-1938. doi: 10.3934/dcds.2012.32.1915
![]() |
[23] |
M. Garavello and B. Piccoli, Source-destination flow on a road network, Commun. Math. Sci., 3 (2005), 261-283. doi: 10.4310/CMS.2005.v3.n3.a1
![]() |
[24] | M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, Springfield, MO, 2006. |
[25] |
M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks, J. Optim. Theory Appl., 126 (2005), 589-616. doi: 10.1007/s10957-005-5499-z
![]() |
[26] |
M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks, SIAM J. Sci. Comput., 25 (2003), 1066-1087. doi: 10.1137/S106482750241459X
![]() |
[27] |
M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826. doi: 10.3934/nhm.2009.4.813
![]() |
[28] | Y. Hollander and J. N. Prashker, The applicability of non-cooperative game theory in transport analysis, Transportation, 33 (2006), 481-496. |
[29] |
A. Lachapelle and M.-T. Wolfram, On a mean field game approach modeling congestion and aversion in pedestrian crowds, Transportation Res. Part B, 45 (2011), 1572-1589. doi: 10.1016/j.trb.2011.07.011
![]() |
[30] |
M. J. Lighthill and G. B. Whitham, On kinematic waves II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
![]() |
[31] |
K. Nachtigall, Time depending shortest-path problems with applications to railway networks, Euro. J. Oper. Res., 83 (1995), 154-166. doi: 10.1016/0377-2217(94)E0349-G
![]() |
[32] |
A. Orda and R. Rom, Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length, J. Assoc. Comput. Mach., 37 (1990), 607-625. doi: 10.1145/79147.214078
![]() |
[33] |
F. S. Priuli, Infinite horizon noncooperative differential games with non-smooth costs, J. Math. Anal. Appl., 336 (2007), 156-170. doi: 10.1016/j.jmaa.2007.02.030
![]() |
[34] | submitted. arXiv:1402.7296. |
[35] |
P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
![]() |
[36] |
J. G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst. Civ. Eng. Part II, 1 (1952), 767-768. doi: 10.1680/ipeds.1952.11362
![]() |
1. | Chang-Xu Zhang, Fu-Tao Hu, Shu-Cheng Yang, On the (total) Roman domination in Latin square graphs, 2024, 9, 2473-6988, 594, 10.3934/math.2024031 | |
2. | Sakander Hayat, Raman Sundareswaran, Marayanagaraj Shanmugapriya, Asad Khan, Venkatasubramanian Swaminathan, Mohamed Hussian Jabarullah, Mohammed J. F. Alenazi, Characterizations of Minimal Dominating Sets in γ-Endowed and Symmetric γ-Endowed Graphs with Applications to Structure-Property Modeling, 2024, 16, 2073-8994, 663, 10.3390/sym16060663 | |
3. | Tatjana Zec, On the Roman domination problem of some Johnson graphs, 2023, 37, 0354-5180, 2067, 10.2298/FIL2307067Z | |
4. | Jian Yang, Yuefen Chen, Zhiqiang Li, Some sufficient conditions for a tree to have its weak Roman domination number be equal to its domination number plus 1, 2023, 8, 2473-6988, 17702, 10.3934/math.2023904 |