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ABSTRACT. In this paper we propose a LWR-like model for traffic flow on
networks which allows to track several groups of drivers, each of them being
characterized only by their destination in the network. The path actually
followed to reach the destination is not assigned a priori, and can be chosen
by the drivers during the journey, taking decisions at junctions.

The model is then used to describe three possible behaviors of drivers, as-
sociated to three different ways to solve the route choice problem: 1. Drivers
ignore the presence of the other vehicles; 2. Drivers react to the current dis-
tribution of traffic, but they do not forecast what will happen at later times;
3. Drivers take into account the current and future distribution of vehicles.
Notice that, in the latter case, we enter the field of differential games, and, if
a solution exists, it likely represents a global equilibrium among drivers.

Numerical simulations highlight the differences between the three behaviors
and offer insights into the existence of equilibria.

1. Introduction. In this paper we deal with a new LWR-like (i.e. macroscopic,
differential, first-order) model for traffic flow on networks which allows one to track
several groups of drivers, each of them being characterized only by a specific des-
tination in the network. The model allows one to simulate Wardrop and Nash
equilibria in traffic flow.

1.1. Background. In the past decades a great attention has been devoted to mod-
els which describe vehicular traffic flows via conservation laws. In such models, one
studies the evolution of the density p = p(¢,x) of cars on a road, rather tracking
each single car. The natural assumption that the total mass is conserved along the
road leads to impose that p obeys

Op + 0z(pv(p)) =0, p(0,2) = po(z), (1)
for (t,2) € [0, 400[xR and for some initial distribution pg. The function v : [0, p«] —
[0, V4], for some positive normalization constants Vi, p., describes the dependence
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of the velocity of cars on their density. This kind of first-order models have been
introduced by Lighthill and Whitham [30] and by Richards [35].

However, in order to describe real situations where the cars move on a (typically
very complex) network of roads, the simple model (1) is not sufficient. This has
motivated several authors to consider analogous equations on a network N, which is
a directed graph whose nodes are called junctions and whose arcs are called roads.
The natural way to extend (1) to a network N is to assume that the conservation
law (1) is separately satisfied on each road for all times ¢ > 0. Moreover, additional
conditions have to be imposed at junctions, because in general the conservation of
the mass alone is not sufficient to characterize a unique solution when two or more
roads meet, even when the initial datum is piecewise constant. We refer the reader
to the book by Garavello and Piccoli [24] for more details about the general ill-
posedness of the problem at junctions. Multiple workarounds for such ill-posedness
have been suggested in the literature: maximization of the fluxes across junctions
(see [24]); buffer-like models where cars entering a junction with congested outgoing
roads join a queue and exits in FIFO fashion (see [5, 7, 21, 22, 27]); multi-path
models which replace the junctions with suitable overlapping paths (see [8, 9]). In
general, they all allow to determine a unique solution for the traffic evolution on
the network, but the solution might be different.

Finally, traffic flow models on networks were extended to handle multiple groups
of drivers sharing the network. The mathematical investigation on this subject has
been very active in the past few years [3, 8, 9, 15, 23], both from the theoretical and
the numerical point of view. The problem presents several difficulties and there is
still no comprehensive theory capable to describe realistic networks.

1.2. Goal. The aim of this paper is twofold. On the one hand, we introduce a
new differential model for multiple groups of drivers on a network. Fach group is
characterized only by a specific destination in the network. The preferred path to
be followed in order to reach the destination is not assigned a priori, and can be
modified during the journey, by making choices at junctions. Also, different drivers
with the same destination (i.e. belonging to the same group) may find it convenient
to use different paths at different times, because of, e.g., different traffic conditions.

On the other hand, we exploit such a model to introduce different degrees of
rationality in drivers’ choices, in the same spirit of [16]. Namely, we couple the evo-
lution equation with suitable control problems at junctions and we vary the amount
of information that drivers can exploit in their decision procedure. In this way, we
are able to describe both myopic contexts with low rationality involved, and high
rationality contexts where the drivers are capable to find global equilibria/optima
on the network. Numerical simulations, presented in section 6, will show how the
different degrees of rationality affect the final traffic flow.

In order to deal with multiple groups of drivers on N we proceed as follows. We
assume that at each time and on each road, the density of cars can be represented
by

Np
p(t,x) = Zpd(ta z),
d=1

where Np is the number of destinations in A, i.e. nodes of the network with no
outgoing arcs, and {pa}d=1,... Np are non-negative bounded functions representing
the density of drivers at (¢,z) whose target is to eventually reach the d-th destina-
tion. Of course, assuming that the destination does not change during the travel



A DESTINATION-PRESERVING MODEL FOR WARDROP EQUILIBRIA 859

and reasoning by linearity, it is natural to assume that each distribution satisfies

Orpa + 0x(pav(p)) =0, pa(0,z) = po.a(z)

outside junctions.

In order to allow drivers to change their path along the network during the
journey, we assume to be given a family of functions NEXT,4(¢,J), for d = 1,..., Np,
which describes, at each time ¢, what road to choose at junction J to drive towards
the d-th destination. These functions can be seen as control parameters to be either
imposed a priori by the network manager or to be chosen by the drivers as they
travel through the network. They are only used at junctions because once a car has
entered a certain road its path cannot be changed until next junction.

The motivation to introduce a traffic flow model with the above characteristics
comes from our interest in modeling different degrees of rationality in the drivers’
behavior. Following the ideas presented in [16], in the context of pedestrian dy-
namics, we want to describe drivers which are capable to plan strategically the
path toward their destination, making use of a certain amount of information. Of-
fering different amounts of such information will lead to different strategies that can
be interpreted as the result of different degrees of rationality in drivers’ choices.

First of all, let us assume that each driver assigns a weight wg(¢) to each road
R of the network, based on the information he/she has available. Then, at each
time ¢ and each junction J, drivers aiming to the d-th destination node, denoted
hereafter by Dy, choose NEXTg4(t,J) as the road exiting from J along the “lighter”
path between J and Dy. In other words, comparing the sum of weights of the various
paths joining J and Dy, NEXT,4(t,J) will be the first road of the path realizing the
minimum sum.

To fix the ideas, you can think that drivers want to get to their destination as
soon as possible, and that the weight they assign to each road R is simply the
time necessary to drive through it, either ignoring or taking into account traffic
conditions in R. In this case, at each time ¢ and each junction J, NEXTg4(t, J) will be
the outgoing road which ensures the shortest arrival time to the d-th destination.

We are now in the position to introduce more in detail the behaviors we can
identify.

e basic behavior (= no rationality): In this case, we assume that drivers have
a very limited knowledge of the current status of the network and they can
only choose their path on the basis of its geometry. Thus, each group will
choose at start the functions NEXT4 which give the most convenient sequence
of roads from their initial position to their destination as if no other cars are
present. In particular, the chosen path does never change during the evolution,
because it is independent of the distribution of cars on N.

e rational behavior (= mild rationality): In this case, we assume that drivers
own some devices that reveals in real time the current distribution of cars
on each arc of the road, e.g. a smartphone, and that they can react to the
modification of p in the network by updating their controls NEXT4 accordingly.
In this situation, at each time 7 > 0, drivers can update the weights wg(7) of
each road thanks to the knowledge of p(7,-) on A and select NEXT4(T,J) so
as to optimize their path.

e highly rational behavior (= high rationality): In this case, drivers are not
only informed of the current distribution of cars on each arc of the network,
but they can also forecast accurately the evolution of such distribution and
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the long term effect of their own choices on the global evolution of traffic
conditions. Here, the optimization problem depends on the whole distribution
of p in time and space, and thus it is fully coupled with the conservation law,
like in the case of pedestrian flow models described via mean-field games [16,
18, 29, 34]

Notice that, in the latter case, we enter the field of differential games, and, if a
solution exists for the resulting coupled system, it likely represents a global equilib-
rium among drivers on the network. More precisely, if the weight assigned to each
road simply corresponds to its travel time, we claim that the solution corresponding
to this behavior satisfies the so-called Wardrop’s first principle [36]:

The journey times on all the routes actually used are equal, and less
than those which would be experienced by a single vehicle on any unused
route.

In particular, no individual driver can reduce his path cost by switching routes.
Observe also that, since no unilateral change of strategy in some group of agents can
lead to a reduction of the cost, Wardrop’s equilibria can be seen as Nash equilibria
among the drivers, see, e.g., [12, Sect. 1].

1.3. Comparison with the relevant literature. There are several novelties in
our results compared to what is currently known in literature. First of all, the multi-
population model that we present here is, to our knowledge, the first one allowing
for time variable paths on the network. Indeed, early multi-population (or multi-
class) models either do not consider networks at all, see, e.g., [1] and references
therein, or require populations to only use a fixed path to go from their source to
their destination, see [23, 24] (cf. in particular [24, Def. 7.1.6, Thm. 7.2.1]). The
flexibility outlined above is not present in more recent models either: the multi-
path model investigated in [8, 9] tracks different groups of drivers characterized by
their path along the network, but paths cannot be modified at runtime; in [4] each
population can use multiple paths to get to their destination, but the choice has to
be performed offline, before the actual evolution starts, meaning that it cannot be
modified afterwards.

A second innovative aspect concerns the type of optimization problems that we
can study, thanks to the model we introduced. Several authors have presented
traffic optimization for differential models on networks, but the point of view has
been mostly the one of network managers. In other words, the overall flow on
N is optimized w.r.t. some given criterion, but without accounting in any way
the actual desires of drivers [13, 17, 20, 25, 26], which could be forced to take a
much longer path before being able to reach their destinations. While this can
be reasonable when dealing with very small networks, because in any case drivers
can get back to their shortest path after exiting from the “controlled” part of the
network, it seems unrealistic when dealing with large networks. On the other hand,
some optimization results consider the desires of the drivers, and offer them the
possibility to change path during the evolution, but only in the context of “static”
models [19, 31, 32]. Namely, on each road R of the network, a cost t — Cy(t) is fixed
and drivers can decide at each time which road to choose so to minimize the overall
cost. However, in these models it is not clear how to pre-compute the functions
Cr, without considering the actual evolution of car densities on A. For instance, it
can be very hard to predict the appearance of congestions which might reduce the
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convenience of certain arcs. The approach we propose here, instead, allows to fill
this gap, by coupling the optimization problem with the dynamics of the density.

A final aspect to consider is the connection between the solution to the cou-
pled system for highly rational behaviors and Nash equilibria among drivers. The
treatment of network flow as a differential game is not new. Some similar results
are available in the literature, especially in the “static” models where a cost to pass
through each road is given a priori and no car dynamics is considered [19, 28, 31, 32].
In our case the situation is much more complex because the costs depend on the
distribution of cars. Results of different nature are contained in [11, 12], where the
distribution of cars on the network is seen as a transport plan between a mass of
drivers concentrated at the origins and a mass of drivers concentrated at the desti-
nations. In this case, equilibria on the network can be found as optimal transport
plans, but the results are of stationary nature and it does not seem easy to include
in the transport problem the presence of roads with different properties (capacity,
maximal speed, etc.), which is instead almost straightforward in the models based
on conservation laws.

More similar results are the ones presented in [4, 5]. In the former paper, Nash
equilibria among drivers are studied in detail from the theoretical point of view.
Along the lines of the previous works [2, 3], the authors consider a model where
players/drivers can choose their departure time (which acts as a control parameter)
and the path they will follow on N so as to minimize a certain cost accounting for
the arrival time and for the duration of the journey. It is proved the existence of
a unique Nash equilibrium whenever the cost functional satisfies suitable regularity
and monotonicity properties. The main difference between the problem studied
here and the one in [4] is again related to the possibility to change path during
the journey: we allow drivers of each group to modify their initial choice at later
time, and this is why our controls are defined only at the junctions, in the form
of the functions NEXTy4. As a drawback, we are not able to prove, at the moment,
under which conditions the procedure we use to construct the Nash equilibrium
does indeed converge to a solution of the problem. This is a very complex problem
because it is quite common for differential games to have no Nash equilibria or,
conversely, infinitely many equilibria (cf. [6, 10, 33]).

Finally, in [5] a new multi-buffer model is introduced to handle the problems
at junctions, producing a continuous (in L') semigroup of solutions for the traffic
flow on the network. Such a model is very interesting and promising, but at the
moment its numerical implementation is still under development, making difficult
to use it in our context to compare which solutions are singled out when strategies
with different rationality degrees are implemented.

1.4. Paper organization. Section 2 presents the destination-preserving model,
while section 3 explains how to introduce different degrees of rationality in the
choices that drivers perform at junctions. Section 4 focuses on how the two aspects
can be coupled to describe rational traffic flows on a road network. In section 5
we discretize the equations numerically, and in section 6 we present the result of
some simulations which highlight the main differences between models with low
rationality and models with a higher degree of rationality. Finally, section 7 presents
conclusions and some open problems.

2. The destination-preserving model. We introduce here the model for the
evolution of car densities on the network.
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2.1. Preliminary notations and assumptions on the networks. In what fol-
lows, a network N will always be a directed graph consisting of a set of junctions
J (nodes) and a set of roads R (arcs), i.e.,

N=JUR.
We assume that for each junction J € 7, there exist disjoint subsets
INC(J) C R, ouT(J) C R,

representing, respectively, the incoming roads to J and the outgoing roads from
J. Among junctions, we distinguish two particular subsets consisting of origins O,
which are the junctions J such that INC(3) = 0, and destinations D, which are the
junctions J such that ouT(J) = §). The junctions in O U D can be considered as
boundary points of N. We also denote by Ni the number of roads, by N; the
number of junctions, and by Np the number of destinations.

We assume that each road R € R can be seen as an interval Jag, bg[ C R. Given a
road R € R, we will sometimes use START(R) (resp. END(R)) to indicate the junction
corresponding to the infimum ay (resp. to the supremum by) of the interval |ay, by|.

To avoid degeneracies, from now on we assume that in our network A the sets
J,R,0,D,J\ (OUD) are all non-empty, i.e., there are neither isolated nodes
nor isolated roads. Moreover, it is convenient (but not strictly necessary) assuming
that every destination is reachable from every origin.

2.2. Basic ideas. First of all, let us assume to be given a family of functions
NEXTq: [0, +00[x (J \ D) = R, for d = 1,..., Np, such that, for every t > 0,

NEXT4(t,J) € oUuT(J).

The role of NEXT4(t,J) is to prescribe, at each time ¢ and at each junction J, which
road will be chosen next by drivers of the d-th group who are passing through the
junction. Clearly, such functions can be seen as controls acting on the network
and they can be either imposed by the traffic manager or chosen by the drivers
themselves, depending on the situations that we want to model. In the former case,
the functions can be arbitrary functions. In the latter case, the functions NEXT4(t, J)
can be described in various ways, depending on the amount of information that we
assume to be available to drivers. The actual details on how to define these functions
in order to model drivers’ preferences will be given in section 3. It is useful to note
here that functions NEXT4 act as bang-bang-like controls, meaning that, at any fixed
time, they steer the groups of drivers to a single outgoing road. As a consequence,
the density pg of drivers belonging to the d-th group is not split in more than one
outgoing road. This is not true instead for the total density p.

Furthermore, let us assume that all functions {NEXTq}4=1, .. n, are piecewise
constant, i.e. that there exists a discretization of the interval [0, +oo[, with step
A7 such that the functions NEXT, are constant on each interval [hAT, (h + 1)AT],
h € N. This will be needed later in the construction of the model.

Finally, we have already mentioned that one of the most delicate parts of the
model is the handling of the traffic flow across junctions. Here, we treat separately
the flow away from the junctions and the flow in a neighborhood of each junction, see
Fig. 1. In order to introduce rigorously such a separation, we fix a small parameter
S }O,minRen @[ and, for each road R € R, we define an open interval I; C
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ay

FIGURE 1. Separation between roads and junctions.

Jag, bg[ as follows

lag, br — 4] if START(R) € O,
Iy =< Jag + 9, bg] if END(R) € D, (2)

lag + 6,by — 5[ otherwise.

In the following subsections, we introduce first the model in the interior of the roads
Urer Ir, and then the model in the prozimity of each junction 3 € J\ (OUD), i.e.
in the sets
Pr= |J bi—6b[u |J lao ao+d[. (3)
1€INC(J) 0€0UT(J)

To complete the definition of the model, suitable interface conditions will be pre-
sented to ensure that the solutions obtained in the separate parts of the network
do indeed give an admissible solution on the whole network A

Once the separate pieces are available, the problem on the whole network N
is solved on the interval [RAT, (h + 1)A7], h = 0,1,..., and then the solution at
t = (h+1)Ar is used as initial datum for the problem on the interval [(h+1)A7, (h+
2)AT].

2.3. Interior of the roads. The modeling of traffic flow away from the junctions
is done in the usual way. Each density distribution pg, representing the drivers with
destination d, evolves separately accordingly to the conservation law

Dpa+0(pav(p) =0, (t2) €lAr, (h+ DA x |J Ly (4)
RER
where p(t,z) = Zfivfl pa(t,x), complemented with initial conditions pg(hAT,-) on
the whole spatial domain and boundary conditions on O U D at any time. We use
here the classical Greenshield’s model for the velocity,

v(p) = Vi (1 - p) , (5)

P
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for fixed positive values p., Vi. The fact that the velocity depends on the whole
distribution p accounts for the fact that the velocity in the road is determined by
the total amount of cars, independently of their destination. Notice that the model
we are presenting here can be easily generalized to the case of different constants
Ps.r, Vi for each road R € R, i.e. to the case of roads with different capacity and
maximal speed.

Remark 1. We remark that, differently from other models presented in the litera-
ture, the density pg of drivers moving towards destination d is defined in every road
of the network. It might well be that py is identically zero in some roads.

2.4. Junctions. Let us consider a generic junction J € J \ (O U D). We observe
that J, together with the corresponding neighborhood P; defined in (3), can be seen
as a simplified network, denoted hereafter by N/, consisting of a single junction J
and [INC(J)| + |oUuT(J)| roads.

In our framework, the discretized functions {NEXTy}4 determine a unique path
on the network A for each group of drivers on each incoming road, consisting
of the incoming road itself and of the outgoing road given by NEXTy4. Moreover,
such a path remains fixed on the whole time interval [hAT, (h + 1)A7[, h € N,
because {NEXT4}4 are constant functions in such interval. Therefore, in order to
model the evolution of the densities on V), we can apply one of the several existing
approaches like, e.g., the source-destination model [23], the model proposed in [5],
or the multi-path model [8, 9].

In the following we shall employ the multi-path model since it is by far the
simplest one among the cited ones, not requiring any separate procedure to compute
the flux through the junction (e.g., the maximization of the flux). However, in order
to apply such a model we need to define suitably what “populations” (in the sense
of [8, 9]) are in our context: indeed, the multi-path model tracks the evolution of
different “populations” of drivers, characterized by their path along the network.

In our framework, we can identify up to [INC(J)| X Np paths (=populations) on
the subnetwork N, corresponding to all admissible combinations incoming-outgoing
roads at J (here, “admissible” means that outgoing roads for drivers with destination
Dy are given by NEXTy).

We are finally in the position to formulate our model on A on each interval of
times [RAT, (h+1)A7[. For any pair (i,d) € INC(J) x{1,..., Np}, we consider a new
unknown ,wEL ) which represents the density of a single population of drivers. The
new unknown is defined on the path Pi]i, ) On N;, which consists of the concatenation
of the last part of the incoming road 7 and the first part of the outgoing road
NEXTy4(t,J), i.e.,

79'(’1-7d) = [b; — 0,b;] U [ao, ao + 4], 0 = NEXTg4(t,J).

Note that two or more paths can share some portion of roads. Following [8, 9], on the
subnetwork N; we have to solve the following system of [INC(J)| X Np conservation
laws with space-dependent and discontinuous flux

Outtti,ay + Oz (s gy v(n')) =0, (t,2) €JRAT, (h+ )AT[ P, 4, Y(ird)  (6)

where p’ is the sum of all the densities defined on P(Ii d) living at x at the same
time, i.e.

Np
w(t, x) = Z Zu‘zi,d)(t,x), (t,x) €]hAT, (h+ 1)AT[XP}; 4,

i€INC(J) d=1
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and the velocity is still given by (5). Note that in this formulation the junction
(apparently) disappears since each path is considered as a single uninterrupted one-
dimensional domain. Actually, the junction is hidden in the function p’, which
couples the equations and has a discontinuity at the junction, see [8, 9] for details.

The system (6) is complemented by initial conditions /’(’Ez a) at time t = hAT, on
each path ’P‘(Ii’ ) If we are given only the initial conditions for the densities py’s, we
need to distribute such a value in the outgoing roads among the populations (i, d)
with ¢ € INC(J), i.e. we need to choose coefficients

A'Ei)d) €10,1] such that Z A'Ei,d) =1, (7)

1€INC(J)

and define “Ei,d) = A%i,d)f)d in the outgoing part of the path P(Ji7d). A possible choice
for the p; ;5 (hAT,-)’s is the following: for each pair (i,d), we define

bi
/ 11(; q) (RAT, ) dv
b; —

J hd i

b;
/ 11(i,a) (RAT, ) dx

i€mNc(y) V7T
and we set

pa(RAT, ) if x € [b; —9,b],

7 (hAT, ) =
:U’(z,d)( ) {A%id)pd(hAT’x) otherwise.

2.5. Mass conservation at interfaces. It remains to specify how the two models
are matched at the boundaries of the subnetwork A;. Luckily, the conservation of
mass across the interfaces © = b;—d and z = a,+4 is sufficient to determine uniquely
the solution at the interfaces. Indeed, if we are given the solutions {”Ez d)}(i7d) at
every time ¢ > 0 in the subnetwork A, we determine the boundary conditions for
the {pg}q in the interior of the roads as follows:

o forall i € INC(J) and all £ > 0, pa(t,b; — 6) = py; 4 (¢, b — 6);

e for all 0 € oUT(J) and all ¢t > 0,

Z 1ii,ay(tsao +98) if 0 = NEXTq(t,J),
pd(t7 Qo + 5) = i€INe(y)
0 otherwise.

Similarly, if we are given the solutions {pgq}q at every time ¢t > 0 in the domain
Uker Ir, we determine the boundary conditions for the {4, 4 }i,q4) in each subnet-
work N as follows:
e for all i € INC(J) and all ¢ > 0, ,u‘éi,d)(t,bi —0) = pa(t,b; — 9);
e for all 0 € oUT(J) and all ¢ > 0 choose again Aj; ;, with the properties in (7)
and define pif; o (t, a0 + 6) = A, 4 pa(t, a0 +0).

3. Modeling drivers’ choice processes via path optimization. In this sec-
tion we describe the procedure for determining the control functions NEXT4. As
mentioned in the introduction, our goal is to describe different decision processes to
model different degrees of drivers’ rationality. The common framework for all levels
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of rationality is that decisions are taken in order to optimize some performance cri-
terion that drivers have. Consistently with the fact that drivers’ choices are made
only at junctions, the optimization on N will be of discrete type.

Let us assume that it is given any total density of cars along the roads R for all
times [to, +00o[, i.e. any function

w: [to, +oo[ U lag, be[— [0, pi] s
RER

and that drivers with any destination assign some common weights wy[w] to each
road R € R, which in general will depend on the values of w in the whole road R
for all times. A natural choice to define such weights is to assume that they are
computed as follows:

a. since the drivers who start at time ¢ from the beginning of the road START(R)
expect to travel along the road R according to the microscopic dynamics

i(s) = vw(s, 2(s))), (to) = ax., (8)

v being the velocity field in (5), we define the arrival time at END(R) implicitly
as the value ¢y = ty[w](to) € [to, +00] such that the solution of the previous ODE
satisfies x(ty) = bg;

b. we now define the weight

trlw](to)

wnfiltt) = [ (st als) ds. (9
(0]

for some suitable nonnegative running costs £;. To fix the ideas, you can think to

the special case of weights which correspond to the travel times through each road,

namely /; = 1.

Notice that the generalization to the case of weights that also depend on the
destination D4 of each group of drivers is straightforward and left to the interested
reader: it is a matter of replacing the wy with suitable new weights wqr, and to
adapt accordingly the definition of the functions V; below.

Given a junction J € J and a destination D € D, we call path joining J with D
any sequence of arcs Ry,...,Ry € R such that START(R;) = J, END(Ry) = D and
END(Rj) = START(Rg41) for & = 1,..., N — 1. Moreover, in such a case we call
weight of the path the sum Eszl Wy, . Of course, whenever the weights wy vary in
time, due to a distribution w that varies in time, then also the weight of the path
will change in time.

By using the weights of paths, it is natural to define a value function for the group
of drivers aiming at the destination Dy as the function Vy: [0, 4+00[xJ — RU{+4o00}
such that Vy(¢,7J) gives the minimum weight of the path among all paths joining J
with Dy if one starts moving at time ¢. Functions NEXT4(¢,J) can be then defined
by choosing the outgoing road that belongs to the path realizing Vy(t, J).

To make things more precise, we distinguish three different processes that drivers
can use to define their weights wy during the evolution, based on the different
amounts of information that they can exploit.

3.1. Basic behavior. In case of basic behavior we simply assume that each driver
chooses his/her optimal next road at junctions ignoring the presence of other drivers
in the network, i.e. without considering the effect of the distribution p given on N.
This corresponds to compute the weights as wy[p = 0]. In this case, the weights are
the same for all times, and therefore the optimal path is time-independent as well.
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By means of the well known Dynamic Programming Principle, one can characterize
the value function Vy as the solution to the system
Vy(3) = min {V4(END(R)) + wg[0]}, VI, (10)
REOUT(J)
with boundary conditions on D given by V4(Dg) = 0 and Vy(D.) = 400 for e €
{1,...,Np}\ {d}. Here, wg[0] is as in (9) with {¢ = 0, w =0, and thus t; = b“%*““
Once V; has been computed, the optimal control is easily found as

NEXTq(t,J) = arg min {V4(END(R)) 4+ wg[0]},
REOUT(J)
which is thus constant in time.

3.2. Rational behavior. In case of rational behavior we assume that at any fixed
time 7 > 0 each driver is aware of the distribution p(7, -) in the whole network A and
uses this information to select his/her own optimal path towards the destination.
Then, treating 7 as a fixed parameter, we define the value function V. as the
solution to the system

Var(3) = min {Vi (END(R)) +walp(r,)l(T)}, V3, (11)

REOUT(J)

with boundary conditions on D given by Vy ,(Dg) = 0 and Vy ,(De) = +o0 for
ee€{l,...,Np}\ {d}. Here, wg[p(7,-)](7) is as in (9) with ty = 7 and w = p(7, ),
so that wg[p(7,)](7) = f:f Ly(s;p(T,2(8))) ds and z(-) denotes the (Carathéodory)
solution to (8)'. Once Vg, has been computed, the optimal control is easily found
as

NEXTy(7,J) = arg min {Vd,T(END(R)) + we[p(T, )](T)} .

REOUT(J)

Repeating the construction for every 7 > 0, we obtain the desired function NEXT4
at any time ¢t = 7.

3.3. Highly rational behavior. In case of highly rational behavior we assume
that drivers can exploit the complete knowledge of the distribution of cars p in the
whole network N at any time. Then, we define the value function Vy as the solution
to the system

Va(t,7) = amin {Va(t + Talp())(0), BND(R)) 4w o(, )} (D)}, ¥E 20, ¥, (12)
with boundary conditions on D, for all ¢ > 0, given by V4(¢,D4) = 0 and V(¢,D.) =
+oo for e € {1,..., Np}\ {d}. In (12) the notation wg[p(:,)](t) is used exactly like
in (9) with to = ¢, and Yr[p(-,-)](t) denotes the time needed to drive through road
R, when the total density p is accounted along the arc (equivalently Yr[p(+,)](¢) can
be thought as given by (9) with ¢y = ¢ and ¢y = 1). Once Vj; has been computed,
the optimal control is easily found as

NEXTy(t,3) = arg min {Valt+ Tulo())().BND(®) +unlp( 0} (13)

The difficulty in this case lies on the fact that the equation used to define the value
function Vy(t, J) is fully coupled with the model for the evolution of the density, since
the functions Vj affect the distribution p via NEXTy, and, in turn, the distribution

LObserve that if any portion of the road is fully congested (p = 1), then t; = +oo because cars
entering at ar have no way to reach by. On the other hand, whenever p < 1 in the whole road,
ty < 400 and v > 0, and this implies that a Carathéodory solution to (8) exists for positive times
because no trajectory can remain trapped in a switching point of the vector field v.
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p affects V. In particular, availability of information on the distribution p in the
whole time-space domain means that drivers do forecast the other drivers’ decisions
as well as the effect of their own choices on the drivers with different destinations.
This will lead us naturally to Nash equilibria among the drivers as if they were
players of a differential game.

4. Coupling the evolution model with the path optimization. In section 2,
we have presented how to construct a time-discrete solution to (4),(6) on the network
N, whenever piecewise constant functions NEXT,4 are given. On the other hand, in
section 3, we have presented several ways to define the functions NEXT4, whenever
a distribution of cars p is given in [0, +oo[ XA. Here, we want to show how to
combine the two constructions so as to describe different behaviors of the drivers
in the network. In particular, we focus our attention on the coupling between the
conservation laws (4),(6) and the Hamilton-Jacobi equation (10) or (11) or (12), and
on the discretization-in-time procedure of the functions NEXT4, which is needed to
apply the model described in section 2.

We face different situations depending on the behavior we are trying to model.

e Basic behavior: In this case, the functions NEXT4 are constant in time and
their construction only depends on the “geometry” of the network; as such,
there is no problem in coupling the two construction, since the discretization
of each function NEXT, is the function itself.

e Rational behavior: In this case, each function NEXT4 at time ¢ only depends
on the distribution of cars p(t, -) at that same time. Therefore, we can procede
iteratively: if we are given p and NEXTy on the interval [0, hAT], we can use
p(hAT, ) to construct NEXTq(hAT,-), for all d; and then keep this function
constant in [RAT, (h+1)AT], so to be able to solve (4),(6) up to time (h+1)Ar.

e Highly rational behavior: This is the most delicate case, because the functions
NEXT4 depend on the whole distribution p(-,-) on ]0, +oo[ x N, and, in turn,
p is affected by any change of the functions NEXT4. In order to construct a
solution to the coupled system (4),(6),(12),(13), we shall look for fixed points
of the following operator Z: given a distribution p on ]0,+oo[ XN, we use
such p to construct the functions {NEXT,}4 as described in section 3.3. Then,
we discretize the resulting functions by setting

NEXT?(t,J) = NEXTy(RAT, J), Vit e [hAT, (h+ 1)AT]

and we use such piecewise constant functions to construct a new distribution
on |0, 4o00[ x N that we denote with Z(p). At the moment, we are not able to
say under which conditions the operator p — Z(p) has fixed points. In next
sections we start investigating numerically the behavior of the operator =, by
studying the behavior of iterated applications Z(p), Z2(p), and so on.
5. Numerical approximation. Equations (4) and (6) have the same structure
and can be approximated by the same numerical scheme. Let us unify the numerical
handling of the two equations introducing a generic system of the form

Or g +8x(uav(u)) , (t,z) €]0,+0[xQq , a=1,...,N,, (14)
where:

o {Qata=1,..n, are N, > 0 one-dimensional domains, possibly coinciding (as
in (4)) or having some parts in common (as in (6));
® u, is the density of cars moving along Q,;
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e 1y is the sum of all the densities living at some point of @), at the same time,

- u(t,x) := Zua(t,x) .

Equation (14) is complemented with suitable initial and boundary conditions.
In order to employ the Godunov-based discretization proposed in [8, 9], it is
convenient to introduce the flux function

Fu) = wn(w),
with v as in (5), and rewrite (14) as
Orta+ 0 (S2f(w) . (ha) €0, 400[xQa, @=L Ney  (15)

setting “= = 0 if u = 0 (and then u, = 0 Vo) to avoid singularities.

We define a numerical grid in [0, +00[xQ, with space step Az and time step At.
We denote by xy := kAx, k € Z, the center of the k-th space cell along Q,, and
by t" := nAt, n € N, the center of the n-th time cell. We also denote by u* the
approximate density wu, (2, t™) and we naturally define

u™r = Zugk (16)

Equation (15) is discretized by means of the following Godunov-type scheme [8, 9],
which reads, at any internal cell k, as

kynt1 k At (ubm" k k uf~br k k

n+1 ,n [} ,n +1n [} —1,n ,n

et =l - 20 (B Gk bt - B Gt ) )
for n > 0 and a = 1,...,N,, where G is the classical Godunov numerical flux

defined, as usual, as

Clu ) = { min.ep, . f(2)  ifu- <uy, as)
MaXzelug,u_] f(Z) fu_ >ug.

The scheme (17) has been proven to hold some nice properties. In particular,
no special management of the junctions (i.e., the points where two or more Q,’s
meet) is needed since the scheme selects automatically a solution at junctions that
maximizes the flow along each path @, (user optimum). The scheme does not
compute in general the maximal flow that could possibly be transferred over the
node (global optimum), as it happens in more standard approaches [24]. Moreover,
when the demand of the incoming roads is larger than the supply of the outgoing
roads (i.e. queues are formed behind the junction), the scheme equidistributes the
incoming flux among the incoming roads, giving to the incoming roads the same
priority. See [8, 9] for more details.

Regarding the optimization problem, we simply apply a fixed-point algorithm
starting from the following initial guess:

V1) =0 if 1=Dg,
{ V() = 400 if J # Dy,
and then iterating the computation (10) or (11) or (12) for all 7 € J\D until
convergence is reached.
The case of the highly rational behavior clearly has some additional complica-

tions, as already explained in section 4. First of all, since we are forced to set a final
time T for the simulation, the value ¢ + T (t) appearing in (12) can be larger than
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T for some t. If this is the case, the value function is no longer defined, therefore
neither is the function NEXTy. We overcome this problem stopping the inflow of
new cars in such a way that the network empties before a certain time, thus making
not influential the fact that the value function is undefined at later times.

Second, it is not guaranteed that the iterations between the forward-in-time
equations (4),(6) and the backward-in-time equation (12) converge to a solution.
Numerical evidence shows that this is not always true: in some cases the algorithm
oscillates between two solutions, possibly two Wardrop equilibria for the system. Cf.
on this point the results in [10] for the numerical approximation of the differential
games studied in [6, 33].

We also remark that the initial guess used to trigger the fixed-point iterations
for the operator Z (see section 4) affects the final results. In this paper we have
chosen the density corresponding to the basic behavior as first guess. The density
corresponding to the rational behavior can be also used instead.

6. Numerical tests. In this section we present four numerical tests to prove the
feasibility of our model and to show the differences among the three behaviors
described in section 1.2. We choose V, = p, = 1in (5), 6 = Az, and T' =5 as the
final time. We consider the network depicted in Fig. 2, with Ng =8, Ny = 8, and
Np = 2. We choose Az = 0.01 and At = 0.005. The length of the roads are given

J7=D
’7 1

Jg=Dg

FIGURE 2. The network considered for the numerical tests (2 ori-
gins, 2 destinations, 8 roads, 8 junctions).

in the figure as multiples of Axz. The destination node for the first group is b; = J7,
for the second group is Do = Jg. It is also convenient setting A7 = At so that the
discretization in time of the functions NEXTy requires no ad hoc procedure.

At the initial time the network is empty. Boundary conditions are zero at every
nodes but J; and J3. At J; we impose p; = 0.3 and py = 0, so that only the group
1 is present. At J3 instead we impose p; = 0 and py = 0.4, so that only the group
2 is present. Boundary conditions are active for all ¢ € [0,T] in the case of basic
and rational behavior, while in the case of the highly rational behavior the inflow
stops at ¢ = 1. Observe that, due to the particular choice of the network and of the
initial data, drivers of the group 2 have a unique path leading to their destination,
that is R4 U Rg U Rg. On the other hand, drivers of group 1 can choose between
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R1 UR3 URg UR7 and Ry URs UR5. This also means that NEXT; can change in time
at Jo, while NEXT, is always constant at every junction of the network.
The road weights wy are all chosen to coincide with the travel time, i.e. wy = Ty.
In the next figures we show the two densities p; and po separately on roads R,
Ro, R3, R4, and Rg.

Basic behavior. In Fig. 3 we show the result for the basic behavior at time ¢t = 2.9.
As expected, this behavior prescribes drivers to follow the shortest path, which is,
for group 1 entering at junction J;, Ry U R3 U Rg U Ry and for group 2 entering
at junction J3, R4 U Rg U Rg. Then, roads Ry and Rs are unused. Note that the
road Rg is not able to gather the flows coming from roads Rz and R4, when drivers
of both groups arrive. When this happens, two queues are formed along these
incoming roads (perfectly visible in the figure). Note that the queues have the same
level of density, as for the properties of the multi-path scheme (17), but travels
backward at different velocities, due to the different boundary condition. Correctly,
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FiGURE 3. Basic behavior.
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at the beginning of road Rg we have the maximal flux, corresponding to the density
p1+ p2 =0.25+0.25 = 0.5.

Rational behavior. In Fig. 4 we show the result for the rational behavior at time
t = 2.9. The dynamics is more interesting than in the previous case. At first,
drivers of group 1 entering at junction J; will choose road R3 because the path is
shorter, but after some time the cars present in roads Rz and Rg (also including those
belonging to group 2 which arrive from road R4) make this path as “expensive” as
the one passing in roads Re and Rs. Therefore, the drivers’ preference at Jo starts
to oscillate between the two possibilities, generating in roads Re and R3 the waves
with positive speed that can be seen in the figure. The dynamics of group 2 is the
same as before, but we observe that, thanks to the reduced number of cars of group
1 coming from Rg, the queue forming at junction Js; and propagating in R4 has a
smaller level of density than in the previous case. Finally, no queue is formed in
road Rgs.
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FI1GURE 4. Rational behavior.
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Highly rational behavior. In this case the algorithm oscillates between two solu-
tions. The first one is shown in Fig. 5, where we depicted the situation corresponding
to the time ¢t = 1.15. Here, the drivers of group 1 entering at junction J; all choose
to use road Rg, because they can forecast that a group of drivers will occupy Rg
at a later time (those of group 2 coming from R4) and that such appearance will
make the shorter path less convenient. Drivers of group 2 will follow their usual
path R4 U Rg U Rg, but they will be undisturbed and no queue will appear at any
junction. The jump shown in the figure for ps along R4 is due to the boundary
condition, because at t = 1 the inflow for ps has passed from 0.4 to 0.

The second solution is shown in Fig. 6, where we depicted the situation corre-
sponding to the time ¢ = 0.73. In this case, drivers of group 1 entering at junction
J1 will first choose Ry (generating the wave that can be seen in the corresponding
figure) and then they switch to Rg. The choice of switching time is performed so
that drivers arrive at J5 when the majority of drivers of group 2 has already passed
the junction and is traveling along road Rg, reducing their effect on the dynamics
for p;. At a later stage a small queue will form in road R4 when drivers of group
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FIGURE

5. Highly rational behavior, case A.
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1 arrive to junction Js, because the merging of the two groups exceeds the flow
capacity of Rg. However, such queue disappears almost immediately because there
are only a few cars of the second group remaining in Ry (recall that the inflow ceases
at t = 1) and they soon pass through the junction.

7. Conclusions and open problems. In this paper we have presented a novel
model for traffic flows on a network, where drivers can modify their path during the
evolution while preserving their initial destination. The model consists in solving
separately the problem close to junctions and the one away from them, and then in
suitably matching the solutions at the interfaces. The theoretical properties of the
resulting combined model will be studied more in depth in a forthcoming paper,
but the numerical results seem to be encouraging. A point of particular interest is
whether the instability phenomena pointed out in [7] can occur also in our model.
This is unclear at the moment because, as described in detail in [9, Sect. 4], the
adjacent cell to each junction behaves like a discretization of a buffer and therefore
its presence might have the same effect as the single buffer junctions described in [5]
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to obtain a well-posed problem on the network N. In our view, however, the model
is interesting by itself, being to our knowledge the first model allowing for changes
in the path of groups of drivers during the evolution.

The second novelty of this work is the introduction of different procedures to de-
scribe the choices of drivers at junctions, so to describe different levels of rationality
(basic, rational and highly rational) as it was done in [16] for pedestrian flows. In
this context it is still unclear under which assumptions the highly rational model,
which is of particular interest since it leads to a Wardrop equilibrium on the net-
work, admits a solution. Another interesting open problem regards the stability of
Wardrop equilibria. Numerical tests have shown that in some networks the algo-
rithm oscillates between two non-equilibrium solutions, even if a small perturbation
of an equilibrium solution is used as initial guess. On the other hand, we never ob-
served oscillations among three or more solutions, even considering more complex
networks with multiple complex junctions (not limited to the case 1 x 2 and 2 x 1
depicted in Figure 2). A broader theoretical understanding about the relationship
between the network and the equilibria seems to be necessary to proceed in this
research field. Even without this knowledge, however, we believe that the introduc-
tion of rationality performed here can be a first step in a more ambitious program:
to improve network design and network control so as to steer drivers’ choices to-
wards higher rationality than the amount of information they have available could
allow. Following [16], we would like to adopt a network-scale control procedure to
reproduce a rational evolution, even in regimes of reduced rationality. This would
allow, for instance, to avoid undesired phenomena like Braess paradox (cf. [14]).

Similar considerations could be adapted also to models describing supply chains
or multi-commodity flow problems. In these situations the control problems which
give different degrees of rationality can describe some control procedure operated at
junctions of the network by human beings who e.g. have to choose the destination
of the various goods, based on different amounts of information about the structure
and the current usage of each arc. Network optimization instead can be used by the
network manager so as to pilot the choices of the operators at junctions towards a
desirable global distribution, by acting on the capacity of the various arcs.
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