Loading [MathJax]/jax/output/SVG/jax.js

Gas flow in pipeline networks

  • Received: 01 September 2005 Revised: 01 October 2005
  • Primary: 76N15; Secondary: 35Lxx.

  • We introduce a model for gas flow in pipeline networks based on the isothermal Euler equations. We model the intersection of multiple pipes by posing an additional assumption on the pressure at the interface. We give a method to obtain solutions to the gas network problem and present numerical results for sample networks.

    Citation: Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks[J]. Networks and Heterogeneous Media, 2006, 1(1): 41-56. doi: 10.3934/nhm.2006.1.41

    Related Papers:

    [1] Mapundi K. Banda, Michael Herty, Axel Klar . Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1(1): 41-56. doi: 10.3934/nhm.2006.1.41
    [2] Michael Herty . Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2(1): 81-97. doi: 10.3934/nhm.2007.2.81
    [3] Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering . Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295
    [4] Mapundi K. Banda, Michael Herty, Axel Klar . Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1(2): 295-314. doi: 10.3934/nhm.2006.1.295
    [5] Fabian Rüffler, Volker Mehrmann, Falk M. Hante . Optimal model switching for gas flow in pipe networks. Networks and Heterogeneous Media, 2018, 13(4): 641-661. doi: 10.3934/nhm.2018029
    [6] Yogiraj Mantri, Michael Herty, Sebastian Noelle . Well-balanced scheme for gas-flow in pipeline networks. Networks and Heterogeneous Media, 2019, 14(4): 659-676. doi: 10.3934/nhm.2019026
    [7] Martin Gugat, Rüdiger Schultz, Michael Schuster . Convexity and starshapedness of feasible sets in stationary flow networks. Networks and Heterogeneous Media, 2020, 15(2): 171-195. doi: 10.3934/nhm.2020008
    [8] Fabio Della Rossa, Carlo D’Angelo, Alfio Quarteroni . A distributed model of traffic flows on extended regions. Networks and Heterogeneous Media, 2010, 5(3): 525-544. doi: 10.3934/nhm.2010.5.525
    [9] Markus Dick, Martin Gugat, Günter Leugering . Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Networks and Heterogeneous Media, 2010, 5(4): 691-709. doi: 10.3934/nhm.2010.5.691
    [10] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171. doi: 10.3934/nhm.2017006
  • We introduce a model for gas flow in pipeline networks based on the isothermal Euler equations. We model the intersection of multiple pipes by posing an additional assumption on the pressure at the interface. We give a method to obtain solutions to the gas network problem and present numerical results for sample networks.


  • This article has been cited by:

    1. Andre F. Caldeira, Christophe Prieur, Daniel Coutinho, Valter J. S. Leite, 2015, Modeling and control of flow with dynamical boundary actions, 978-1-4799-7787-1, 1579, 10.1109/CCA.2015.7320835
    2. Michael Herty, 2015, Multi-scale modeling and nodal control for gas transportation networks, 978-1-4799-7886-1, 4585, 10.1109/CDC.2015.7402935
    3. Christophe Chalons, Pierre-Arnaud Raviart, Nicolas Seguin, The interface coupling of the gas dynamics equations, 2008, 66, 0033-569X, 659, 10.1090/S0033-569X-08-01087-X
    4. Vitaliy Gyrya, Anatoly Zlotnik, An explicit staggered-grid method for numerical simulation of large-scale natural gas pipeline networks, 2019, 65, 0307904X, 34, 10.1016/j.apm.2018.07.051
    5. Pia Bales, Oliver Kolb, Jens Lang, 2009, Chapter 33, 978-3-642-01969-2, 337, 10.1007/978-3-642-01970-8_33
    6. Mapundi K. Banda, Michael Herty, Multiscale modeling for gas flow in pipe networks, 2008, 31, 01704214, 915, 10.1002/mma.948
    7. Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001
    8. Mapundi Kondwani Banda, 2015, Chapter 9, 978-3-319-11321-0, 439, 10.1007/978-3-319-11322-7_9
    9. Rinaldo M. Colombo, Francesca Marcellini, Coupling conditions for the 3×3 Euler system, 2010, 5, 1556-181X, 675, 10.3934/nhm.2010.5.675
    10. Mauro Garavello, Paola Goatin, The Cauchy problem at a node with buffer, 2012, 32, 1553-5231, 1915, 10.3934/dcds.2012.32.1915
    11. Lars Schewe, Martin Schmidt, Johannes Thürauf, Structural properties of feasible bookings in the European entry–exit gas market system, 2020, 18, 1619-4500, 197, 10.1007/s10288-019-00411-3
    12. Markus Dick, Martin Gugat, Gunter Leugering, 2012, Feedback stabilization of quasilinear hyperbolic systems with varying delays, 978-1-4673-2124-2, 125, 10.1109/MMAR.2012.6347931
    13. Martin Schmidt, Marc C. Steinbach, Bernhard M. Willert, High detail stationary optimization models for gas networks, 2015, 16, 1389-4420, 131, 10.1007/s11081-014-9246-x
    14. Daniel Rose, Martin Schmidt, Marc C. Steinbach, Bernhard M. Willert, Computational optimization of gas compressor stations: MINLP models versus continuous reformulations, 2016, 83, 1432-2994, 409, 10.1007/s00186-016-0533-5
    15. Gregory A. Von Wald, Austin J. Stanion, Deepak Rajagopal, Adam R. Brandt, Biomethane addition to California transmission pipelines: Regional simulation of the impact of regulations, 2019, 250, 03062619, 292, 10.1016/j.apenergy.2019.05.031
    16. Jean-Michel Coron, Georges Bastin, Brigitte d'Andréa-Novel, Dissipative Boundary Conditions for One-Dimensional Nonlinear Hyperbolic Systems, 2008, 47, 0363-0129, 1460, 10.1137/070706847
    17. Martin Gugat, Michael Herty, Axel Klar, Günther Leugering, Veronika Schleper, 2012, Chapter 7, 978-3-0348-0132-4, 123, 10.1007/978-3-0348-0133-1_7
    18. Klaus-Jochen Engel, Marjeta Kramar FijavŽ, Exact and positive controllability of boundary control systems, 2017, 12, 1556-181X, 319, 10.3934/nhm.2017014
    19. Gunhild A. Reigstad, Tore Flåtten, Nils Erland Haugen, Tor Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, 2015, 12, 0219-8916, 37, 10.1142/S0219891615500022
    20. Gunhild A. Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow, 2015, 75, 0036-1399, 679, 10.1137/140962759
    21. Alfredo López-Benito, Francisco J. Elorza Tenreiro, Luis C. Gutiérrez-Pérez, Steady-state non-isothermal flow model for natural gas transmission in pipes, 2016, 40, 0307904X, 10020, 10.1016/j.apm.2016.06.057
    22. Alina Chertock, Michael Herty, Şeyma Nur Özcan, 2018, Chapter 28, 978-3-319-91544-9, 345, 10.1007/978-3-319-91545-6_28
    23. Evgenii S. Baranovskii, Vyacheslav V. Provotorov, Mikhail A. Artemov, Alexey P. Zhabko, Non-Isothermal Creeping Flows in a Pipeline Network: Existence Results, 2021, 13, 2073-8994, 1300, 10.3390/sym13071300
    24. Michael Herty, Mohammed Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, 2008, 56, 02712091, 485, 10.1002/fld.1531
    25. Simone Göttlich, Michael Herty, Ute Ziegler, Modeling and optimizing traffic light settings in road networks, 2015, 55, 03050548, 36, 10.1016/j.cor.2014.10.001
    26. Mapundi K. Banda, Michael Herty, Jean Medard T. Ngnotchouye, On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections, 2015, 276, 03770427, 81, 10.1016/j.cam.2014.08.021
    27. H. Egger, A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks, 2018, 40, 1064-8275, A108, 10.1137/16M1094373
    28. Mapundi K. Banda, Axel-Stefan Häck, Michael Herty, Numerical Discretization of Coupling Conditions by High-Order Schemes, 2016, 69, 0885-7474, 122, 10.1007/s10915-016-0185-x
    29. Rinaldo M. Colombo, Mauro Garavello, On the Cauchy Problem for the p-System at a Junction, 2008, 39, 0036-1410, 1456, 10.1137/060665841
    30. Martin Gugat, Günter Leugering, Alexander Martin, Martin Schmidt, Mathias Sirvent, David Wintergerst, MIP-based instantaneous control of mixed-integer PDE-constrained gas transport problems, 2018, 70, 0926-6003, 267, 10.1007/s10589-017-9970-1
    31. BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART, EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA, 2010, 20, 0218-2025, 1859, 10.1142/S0218202510004817
    32. Mahdi Debouza, Ahmed Al-Durra, Khaled Al-Wahedi, Mohamed Abou-Khousa, Assessment of Black Powder Concentrations in Natural Gas Pipeline Networks, 2020, 8, 2169-3536, 71395, 10.1109/ACCESS.2020.2987109
    33. Markus Dick, Martin Gugat, Michael Herty, Günter Leugering, Sonja Steffensen, Ke Wang, 2014, Chapter 31, 978-3-319-05082-9, 487, 10.1007/978-3-319-05083-6_31
    34. M. Dick, M. Gugat, M. Herty, S. Steffensen, On the relaxation approximation of boundary control of the isothermal Euler equations, 2012, 85, 0020-7179, 1766, 10.1080/00207179.2012.703787
    35. EIKE FOKKEN, SIMONE GÖTTLICH, MICHAEL HERTY, Efficient simulation of coupled gas and power networks under uncertain demands, 2022, 0956-7925, 1, 10.1017/S0956792522000079
    36. RINALDO M. COLOMBO, CRISTINA MAURI, EULER SYSTEM FOR COMPRESSIBLE FLUIDS AT A JUNCTION, 2008, 05, 0219-8916, 547, 10.1142/S0219891608001593
    37. J.-M. Coron, B. d'Andrea-Novel, G. Bastin, A Strict Lyapunov Function for Boundary Control of Hyperbolic Systems of Conservation Laws, 2007, 52, 0018-9286, 2, 10.1109/TAC.2006.887903
    38. M. Herty, J. Mohring, V. Sachers, A new model for gas flow in pipe networks, 2010, 33, 01704214, 845, 10.1002/mma.1197
    39. RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025
    40. Mauro Garavello, Benedetto Piccoli, Time-varying Riemann solvers for conservation laws on networks, 2009, 247, 00220396, 447, 10.1016/j.jde.2008.12.017
    41. Markus Dick, Martin Gugat, Günter Leugering, A strict H1-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction, 2011, 1, 2155-3297, 225, 10.3934/naco.2011.1.225
    42. Masayasu Suzuki, Jun-ichi Imura, Kazuyuki Aihara, 2011, Controllability and observability of networked systems of linear hyperbolic partial differential equations, 978-1-61284-801-3, 1335, 10.1109/CDC.2011.6161198
    43. Michael Herty, Siegfried Müller, Aleksey Sikstel, Coupling of Compressible Euler Equations, 2019, 47, 2305-221X, 769, 10.1007/s10013-019-00353-7
    44. Gunhild A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, 2014, 9, 1556-181X, 65, 10.3934/nhm.2014.9.65
    45. Eike Fokken, Tillmann Mühlpfordt, Timm Faulwasser, Simone Göttlich, Oliver Kolb, 2021, Chapter 12, 978-3-030-62731-7, 263, 10.1007/978-3-030-62732-4_12
    46. Ghada Ben Belgacem, Chaker Jammazi, On the finite-time boundary dissipative for a class of hyperbolic systems. The networks example, 2016, 49, 24058963, 186, 10.1016/j.ifacol.2016.07.435
    47. Martin Gugat, Rüdiger Schultz, Boundary Feedback Stabilization of the Isothermal Euler Equations with Uncertain Boundary Data, 2018, 56, 0363-0129, 1491, 10.1137/16M1090156
    48. Rinaldo M. Colombo, Graziano Guerra, Yannick Holle, Non conservative products in fluid dynamics, 2022, 66, 14681218, 103539, 10.1016/j.nonrwa.2022.103539
    49. I Khujayev, O Bozorov, S Akhmadjonov, Investigation of the propagation of waves of sudden change in mass flow rate of fluid and gas in a “short” pipeline approach, 2020, 1441, 1742-6588, 012146, 10.1088/1742-6596/1441/1/012146
    50. Mauro Garavello, 2011, Chapter 15, 978-1-4419-9553-7, 293, 10.1007/978-1-4419-9554-4_15
    51. R. Borsche, J. Kall, A. Klar, T. N. H. Pham, Kinetic and related macroscopic models for chemotaxis on networks, 2016, 26, 0218-2025, 1219, 10.1142/S0218202516500299
    52. Simone Göttlich, Camill Harter, A weakly coupled model of differential equations for thief tracking, 2016, 11, 1556-1801, 447, 10.3934/nhm.2016004
    53. Georges Bastin, Jean-Michel Coron, Simona Oana Tamasoiu, Stability of linear density-flow hyperbolic systems under PI boundary control, 2015, 53, 00051098, 37, 10.1016/j.automatica.2014.12.025
    54. Gunhild Allard Reigstad, Tore Flåtten, 2015, Chapter 66, 978-3-319-10704-2, 667, 10.1007/978-3-319-10705-9_66
    55. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, 2017, 344, 00219991, 187, 10.1016/j.jcp.2017.04.066
    56. Ferdinand Thein, Stabilization of a Multi‐Dimensional System of Hyperbolic Balance Laws – A Case Study, 2023, 22, 1617-7061, 10.1002/pamm.202200056
    57. Lucas O. Müller, Pablo J. Blanco, A high order approximation of hyperbolic conservation laws in networks: Application to one-dimensional blood flow, 2015, 300, 00219991, 423, 10.1016/j.jcp.2015.07.056
    58. Benedetto Piccoli, Andrea Tosin, 2012, Chapter 112, 978-1-4614-1805-4, 1748, 10.1007/978-1-4614-1806-1_112
    59. Yannick Holle, Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, 2020, 269, 00220396, 1192, 10.1016/j.jde.2020.01.005
    60. Martin Gugat, Michael Herty, Siegfried Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, 2017, 12, 1556-181X, 371, 10.3934/nhm.2017016
    61. Mapundi K. Banda, Michael Herty, Towards a space mapping approach to dynamic compressor optimization of gas networks, 2011, 32, 01432087, 253, 10.1002/oca.929
    62. Michael Schuster, Elisa Strauch, Martin Gugat, Jens Lang, Probabilistic constrained optimization on flow networks, 2022, 23, 1389-4420, 1, 10.1007/s11081-021-09619-x
    63. Mapundi K. Banda, Gediyon Y. Weldegiyorgis, Numerical boundary feedback stabilisation of non-uniform hyperbolic systems of balance laws, 2020, 93, 0020-7179, 1428, 10.1080/00207179.2018.1509133
    64. Georges Bastin, Jean-Michel Coron, Brigitte d'Andrea-Novel, 2008, Boundary feedback control and Lyapunov stability analysis for physical networks of 2×2 hyperbolic balance laws, 978-1-4244-3123-6, 1454, 10.1109/CDC.2008.4738857
    65. Hao Yang, Bin Jiang, Vincent Cocquempot, 2014, Chapter 6, 978-3-319-07883-0, 143, 10.1007/978-3-319-07884-7_6
    66. Martin Gugat, Michael Herty, Hui Yu, 2018, Chapter 50, 978-3-319-91544-9, 651, 10.1007/978-3-319-91545-6_50
    67. Martin Gugat, Michael Schuster, Stationary Gas Networks with Compressor Control and Random Loads: Optimization with Probabilistic Constraints, 2018, 2018, 1024-123X, 1, 10.1155/2018/7984079
    68. Simone Göttlich, Stephan Martin, Thorsten Sickenberger, Time-continuous production networks with random breakdowns, 2011, 6, 1556-181X, 695, 10.3934/nhm.2011.6.695
    69. E. Fokken, S. Göttlich, O. Kolb, Modeling and simulation of gas networks coupled to power grids, 2019, 119, 0022-0833, 217, 10.1007/s10665-019-10026-6
    70. Raul Borsche, Axel Klar, 2021, Chapter 2, 978-3-030-67103-7, 37, 10.1007/978-3-030-67104-4_2
    71. Masayasu Suzuki, Jun-ichi Imura, Kazuyuki Aihara, Analysis and stabilization for networked linear hyperbolic systems of rationally dependent conservation laws, 2013, 49, 00051098, 3210, 10.1016/j.automatica.2013.08.016
    72. Martin Gugat, Günter Leugering, Ke Wang, Neumann boundary feedback stabilization for a nonlinear wave equation: A strict H2-lyapunov function, 2017, 7, 2156-8499, 419, 10.3934/mcrf.2017015
    73. Simone Göttlich, Peter Schillen, Numerical discretization of boundary control problems for systems of balance laws: Feedback stabilization, 2017, 35, 09473580, 11, 10.1016/j.ejcon.2017.02.002
    74. Michael Chertkov, Scott Backhaus, Vladimir Lebedev, Cascading of fluctuations in interdependent energy infrastructures: Gas-grid coupling, 2015, 160, 03062619, 541, 10.1016/j.apenergy.2015.09.085
    75. Andrea Corli, Ingenuin Gasser, Mária Lukáčová-Medvid’ová, Arne Roggensack, Ulf Teschke, A multiscale approach to liquid flows in pipes I: The single pipe, 2012, 219, 00963003, 856, 10.1016/j.amc.2012.06.054
    76. Riccardo Sacco, Lucia Carichino, Carlo de Falco, Maurizio Verri, Francesco Agostini, Thomas Gradinger, A multiscale thermo-fluid computational model for a two-phase cooling system, 2014, 282, 00457825, 239, 10.1016/j.cma.2014.08.003
    77. Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002
    78. Martin Gugat, Michaël Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, 2011, 17, 1292-8119, 28, 10.1051/cocv/2009035
    79. Graziano Guerra, Michael Herty, Francesca Marcellini, Modeling and analysis of pooled stepped chutes, 2011, 6, 1556-181X, 665, 10.3934/nhm.2011.6.665
    80. Mapundi K. Banda, Michael Herty, Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws, 2013, 3, 2156-8499, 121, 10.3934/mcrf.2013.3.121
    81. Xia Li, Yungang Liu, Zaihua Xu, Jian Li, 2017, Flatness approach and its application to distributed parameter systems, 978-1-5386-3524-7, 6794, 10.1109/CAC.2017.8244001
    82. Jens Brouwer, Ingenuin Gasser, Michael Herty, Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks, 2011, 9, 1540-3459, 601, 10.1137/100813580
    83. Pascal Mindt, Jens Lang, Pia Domschke, Entropy-Preserving Coupling of Hierarchical Gas Models, 2019, 51, 0036-1410, 4754, 10.1137/19M1240034
    84. Markus Dick, Martin Gugat, Günter Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, 2010, 5, 1556-181X, 691, 10.3934/nhm.2010.5.691
    85. F. Daude, R.A. Berry, P. Galon, A Finite-Volume method for compressible non-equilibrium two-phase flows in networks of elastic pipelines using the Baer–Nunziato model, 2019, 354, 00457825, 820, 10.1016/j.cma.2019.06.010
    86. Richard C Barnard, Kai Huang, Cory Hauck, A mathematical model of asynchronous data flow in parallel computers*, 2020, 85, 0272-4960, 865, 10.1093/imamat/hxaa031
    87. R. M. Colombo, G. Guerra, M. Herty, V. Schleper, Optimal Control in Networks of Pipes and Canals, 2009, 48, 0363-0129, 2032, 10.1137/080716372
    88. Mapundi K. Banda, Michael Herty, Jean-Medard T. Ngnotchouye, Toward a Mathematical Analysis for Drift-Flux Multiphase Flow Models in Networks, 2010, 31, 1064-8275, 4633, 10.1137/080722138
    89. Benedetto Piccoli, Andrea Tosin, 2013, Chapter 576-3, 978-3-642-27737-5, 1, 10.1007/978-3-642-27737-5_576-3
    90. M. Tyloo, L. Pagnier, P. Jacquod, The key player problem in complex oscillator networks and electric power grids: Resistance centralities identify local vulnerabilities, 2019, 5, 2375-2548, 10.1126/sciadv.aaw8359
    91. Andrea Corli, Ulrich Razafison, Massimiliano D. Rosini, Coherence and flow-maximization of a one-way valve, 2022, 56, 2822-7840, 1715, 10.1051/m2an/2022053
    92. David Fernando Novella Rodriguez, Emmanuel Witrant, Olivier Sename, 2016, Chapter 14, 978-3-319-18071-7, 275, 10.1007/978-3-319-18072-4_14
    93. R Borsche, A Klar, Kinetic layers and coupling conditions for nonlinear scalar equations on networks, 2018, 31, 0951-7715, 3512, 10.1088/1361-6544/aabc91
    94. Jeroen J. Stolwijk, Volker Mehrmann, Error Analysis and Model Adaptivity for Flows in Gas Networks, 2018, 26, 1844-0835, 231, 10.2478/auom-2018-0027
    95. Simone Göttlich, Peter Schillen, Numerical Feedback Stabilization with Applications to Networks, 2017, 2017, 1026-0226, 1, 10.1155/2017/6896153
    96. Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 3, 978-3-030-93014-1, 39, 10.1007/978-3-030-93015-8_3
    97. Andrea Corli, Magdalena Figiel, Anna Futa, Massimiliano D. Rosini, Coupling conditions for isothermal gas flow and applications to valves, 2018, 40, 14681218, 403, 10.1016/j.nonrwa.2017.09.005
    98. Michael Herty, Siegfried Müller, Nils Gerhard, Gaoming Xiang, Bing Wang, Fluid-structure coupling of linear elastic model with compressible flow models, 2018, 86, 02712091, 365, 10.1002/fld.4422
    99. Martin Gugat, Jens Habermann, Michael Hintermüller, Olivier Huber, Constrained exact boundary controllability of a semilinear model for pipeline gas flow, 2023, 0956-7925, 1, 10.1017/S0956792522000389
    100. Benedetto Piccoli, Andrea Tosin, 2009, Chapter 576, 978-0-387-75888-6, 9727, 10.1007/978-0-387-30440-3_576
    101. S. Amin, F. M. Hante, A. M. Bayen, Exponential Stability of Switched Linear Hyperbolic Initial-Boundary Value Problems, 2012, 57, 0018-9286, 291, 10.1109/TAC.2011.2158171
    102. MOUHAMADOU SAMSIDY GOUDIABY, GUNILLA KREISS, A RIEMANN PROBLEM AT A JUNCTION OF OPEN CANALS, 2013, 10, 0219-8916, 431, 10.1142/S021989161350015X
    103. Eike Fokken, Simone Göttlich, Oliver Kolb, 2020, Chapter 5, 978-3-030-32156-7, 67, 10.1007/978-3-030-32157-4_5
    104. M. Gugat, M. Herty, V. Schleper, Flow control in gas networks: Exact controllability to a given demand, 2011, 34, 01704214, 745, 10.1002/mma.1394
    105. Saeed Jamalzadeh, Kash Barker, Andrés D. González, Sridhar Radhakrishnan, Protecting infrastructure performance from disinformation attacks, 2022, 12, 2045-2322, 10.1038/s41598-022-16832-w
    106. Dirk Helbing, Jan Siegmeier, Stefan Lämmer, 2013, Chapter 6, 978-3-642-32159-7, 335, 10.1007/978-3-642-32160-3_6
    107. Michael Herty, Coupling Conditions for Networked Systems of Euler Equations, 2008, 30, 1064-8275, 1596, 10.1137/070688535
    108. Michael Herty, Mohammed Seaïd, Assessment of coupling conditions in water way intersections, 2013, 71, 02712091, 1438, 10.1002/fld.3719
    109. Martin Gugat, Stefan Ulbrich, The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up, 2017, 454, 0022247X, 439, 10.1016/j.jmaa.2017.04.064
    110. R. M. Colombo, M. Herty, V. Sachers, On 2×2 Conservation Laws at a Junction, 2008, 40, 0036-1410, 605, 10.1137/070690298
    111. CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042
    112. Alessia Marigo, Benedetto Piccoli, A Fluid Dynamic Model for T-Junctions, 2008, 39, 0036-1410, 2016, 10.1137/060673060
    113. Martin Gugat, Markus Dick, Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction, 2011, 1, 2156-8499, 469, 10.3934/mcrf.2011.1.469
    114. Martin Gugat, Markus Dick, Günter Leugering, 2013, Chapter 26, 978-3-642-36061-9, 255, 10.1007/978-3-642-36062-6_26
    115. Alexandre Morin, Gunhild A. Reigstad, Pipe Networks: Coupling Constants in a Junction for the Isentropic Euler Equations, 2015, 64, 18766102, 140, 10.1016/j.egypro.2015.01.017
    116. Martin Gugat, Markus Dick, Günter Leugering, Gas Flow in Fan-Shaped Networks: Classical Solutions and Feedback Stabilization, 2011, 49, 0363-0129, 2101, 10.1137/100799824
    117. Rinaldo M. Colombo, 2011, Chapter 13, 978-1-4419-9553-7, 267, 10.1007/978-1-4419-9554-4_13
    118. Simone Göttlich, Michael Herty, Christian Ringhofer, 2012, Chapter 11, 978-0-85729-643-6, 265, 10.1007/978-0-85729-644-3_11
    119. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    120. Seok Woo Hong, Chongam Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, 2011, 65, 02712091, 707, 10.1002/fld.2212
    121. Martin Gugat, Günter Leugering, Simona Tamasoiu, Ke Wang, H 2-stabilization of the Isothermal Euler equations: a Lyapunov function approach, 2012, 33, 0252-9599, 479, 10.1007/s11401-012-0727-y
    122. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Reprint of: Finite volume methods for multi-component Euler equations with source terms, 2018, 169, 00457930, 40, 10.1016/j.compfluid.2018.03.057
    123. Simone Göttlich, Thomas Schillinger, Control strategies for transport networks under demand uncertainty, 2022, 48, 1019-7168, 10.1007/s10444-022-09993-9
    124. Mauro Garavello, The LWR traffic model at a junction with multibuffers, 2014, 7, 1937-1179, 463, 10.3934/dcdss.2014.7.463
    125. Simone Göttlich, Oliver Kolb, Kerstin Lux, Chance‐constrained optimal inflow control in hyperbolic supply systems with uncertain demand, 2021, 42, 0143-2087, 566, 10.1002/oca.2689
    126. R. Borsche, A. Klar, Kinetic Layers and Coupling Conditions for Macroscopic Equations on Networks I: The Wave Equation, 2018, 40, 1064-8275, A1784, 10.1137/17M1138364
    127. Andrea Corli, Massimiliano D. Rosini, Coherence of Coupling Riemann Solvers for Gas Flows Through Flux-Maximizing Valves, 2019, 79, 0036-1399, 2593, 10.1137/19M1257093
    128. Arsen Klevtsovskiy, Taras Mel'nyk, Asymptotic approximation for the solution to a semilinear parabolic problem in a thin star-shaped junction, 2018, 41, 01704214, 159, 10.1002/mma.4603
    129. Christophe Prieur, Joseph Winkin, Georges Bastin, Robust boundary control of systems of conservation laws, 2008, 20, 0932-4194, 173, 10.1007/s00498-008-0028-x
    130. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Finite volume methods for multi-component Euler equations with source terms, 2017, 156, 00457930, 113, 10.1016/j.compfluid.2017.07.004
    131. Saurabh Amin, Falk M. Hante, Alexandre M. Bayen, 2008, Stability analysis of linear hyperbolic systems with switching parameters and boundary conditions, 978-1-4244-3123-6, 2081, 10.1109/CDC.2008.4739181
    132. Andrea Corli, Massimiliano D. Rosini, Coherence and chattering of a one‐way valve, 2019, 99, 0044-2267, e201800250, 10.1002/zamm.201800250
    133. F. Daude, P. Galon, A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction, 2018, 362, 00219991, 375, 10.1016/j.jcp.2018.01.055
    134. R. Nanmaran, A.S. Vickram, P. Senthil Kumar, A. Saravanan, S. Srimathi, V. Velmurugan, Gayathri Rangasamy, Experimental analysis on the effect of pipe and orifice diameter in inter tank hydrogen transfer, 2023, 03603199, 10.1016/j.ijhydene.2023.04.111
    135. Martin Burger, Ina Humpert, Jan-Frederik Pietschmann, Dynamic Optimal Transport on Networks, 2023, 29, 1292-8119, 54, 10.1051/cocv/2023027
    136. Ikrom Akramov, Raul Borsche, Nils Eckhard, Axel Klar, Interface layers and coupling conditions on networks for linearized kinetic BGK equation, 2023, 0, 1937-5093, 0, 10.3934/krm.2023029
    137. O. Sh. Bozorov, I. Khujaev, Kh. Aminov, Sh. Khojikulov, D. Bazarov, Application of fourier method to study propagation of compression shock wave in pipelines with damper, 2023, 401, 2267-1242, 01045, 10.1051/e3sconf/202340101045
    138. Michael Herty, Ferdinand Thein, Stabilization of a multi-dimensional system of hyperbolic balance laws, 2023, 0, 2156-8472, 0, 10.3934/mcrf.2023033
    139. Michael Herty, Niklas Kolbe, Siegfried Müller, A Central Scheme for Two Coupled Hyperbolic Systems, 2023, 2096-6385, 10.1007/s42967-023-00306-5
    140. Junyao Xie, Biao Huang, Stevan Dubljevic, Moving horizon estimation for pipeline leak detection, localization, and constrained size estimation, 2024, 188, 00981354, 108777, 10.1016/j.compchemeng.2024.108777
    141. Niklas Kolbe, Michael Herty, Siegfried Müller, Numerical Schemes for Coupled Systems of Nonconservative Hyperbolic Equations, 2024, 62, 0036-1429, 2143, 10.1137/23M1615176
    142. Sergio García-Marín, Wilson González-Vanegas, C. E. Murillo-Sánchez, MPNG: A MATPOWER-Based Tool for Optimal Power and Natural Gas Flow Analyses, 2024, 39, 0885-8950, 5455, 10.1109/TPWRS.2022.3195684
    143. Simone Göttlich, Patrick Mehlitz, Thomas Schillinger, Inverse demand tracking in transportation networks, 2024, 1432-2994, 10.1007/s00186-024-00875-y
    144. Michael Herty, Ferdinand Thein, Boundary feedback control for hyperbolic systems, 2024, 30, 1292-8119, 71, 10.1051/cocv/2024062
    145. Martin Gugat, Xu Huang, Zhiqiang Wang, Constrained exact boundary controllability of a quasilinear model for pipeline gas flow, 2024, 0003-6811, 1, 10.1080/00036811.2024.2432529
    146. Martin Gugat, Michael Schuster, Jan Sokołowski, The location problem for compressor stations in pipeline networks, 2024, 12, 2325-3444, 507, 10.2140/memocs.2024.12.507
    147. Martin Gugat, New Lyapunov functions for systems with source terms, 2025, 53, 2720-4278, 163, 10.2478/candc-2024-0008
    148. Michael Herty, Ferdinand Thein, On the relation between approaches for boundary feedback control of hyperbolic systems, 2025, 82, 09473580, 101182, 10.1016/j.ejcon.2025.101182
    149. Martin Gugat, New Lyapunov functions for systems with source terms, 2025, 53, 2720-4278, 163, 10.2478/candc-2024-008
    150. Andrea Corli, Massimiliano D. Rosini, Ulrich Razafison, 2024, Mathematical Modeling of Chattering and the Optimal Design of a Valve*, 979-8-3503-1633-9, 76, 10.1109/CDC56724.2024.10886245
    151. Martin Gugat, Boundary Stabilization of Quasi-linear Hyperbolic Systems with Varying Time-Delay, 2025, 63, 0363-0129, 452, 10.1137/24M1648570
    152. Michael T. Redle, Michael Herty, An asymptotic-preserving scheme for isentropic flow in pipe networks, 2025, 20, 1556-1801, 254, 10.3934/nhm.2025013
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7561) PDF downloads(464) Cited by(150)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog