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Abstract. We consider a system of scalar nonlocal conservation laws on net-
works that model a highly re-entrant multi-commodity manufacturing system

as encountered in semi-conductor production. Every single commodity is mod-

eled by a nonlocal conservation law, and the corresponding PDEs are coupled
via a collective load, the work in progress. We illustrate the dynamics for two

commodities. In the applications, directed acyclic networks naturally occur,

therefore this type of networks is considered. On every edge of the network
we have a system of coupled conservation laws with nonlocal velocity. At the

junctions the right hand side boundary data of the foregoing edges is passed

as left hand side boundary data to the following edges and PDEs. For dis-
tributing junctions, where we have more than one outgoing edge, we impose

time dependent distribution functions that guarantee conservation of mass.
We provide results of regularity, existence and well-posedness of the multi-

commodity network model for Lp-, BV - and W 1,p-data. Moreover, we define

an L2-tracking type objective and show the existence of minimizers that solve
the corresponding optimal control problem.

1. Introduction. We consider a system of nonlocal conservations laws that mod-
els multi-commodity flow on networks. This generalizes a model for supply chains
that has been introduced in [5] and – for unbounded space horizon – been studied
in [10]. In [2] the authors consider systems of nonlocal conservation laws, where
the “nonlocalness” is realized by a convolution, while in [8] scalar nonlocal conser-
vation laws are investigated, arising particularly in traffic flow modelling. Thereby,
the nonlocal modeling is again realized by a convolution over a neighborhood of a
given position x. For finite space-time horizon [11] offers regularity results for the
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underlying PDE and shows existence of an optimal control in an optimal control
framework for a single commodity. In [20] the authors use a formal Lagrange ap-
proach to compute an optimal control numerically. For the named finite time-space
horizon the model reads for T ∈ R>0 as

ρ̇(t, x) = −λ(W (t, ρ))ρx(t, x) (t, x) ∈ (0, T )× (0, 1)

ρ(0, x) = ρ0(x) x ∈ (0, 1)

λ(W (t, ρ))ρ(t, 1) = a(t) t ∈ (0, T )

W (t, ρ) :=

1∫
0

ρ(t, s) ds t ∈ [0, T ].

Here, we have λ ∈ C1(R≥0;R>0) and ρ0 and a are given data of a certain regularity.
A typical example for λ is λ(W ) = 1

1+W (see [5],[20]). The function W (t, ρ) is called
work in progress.
ρ̇(t, x) denotes the partial derivative with respect to the first variable, which

we call t and identify it canonically as time variable, while ρx denotes the partial
derivative of ρ with respect to the second variable x, identified as space variable.
The “nonlocalness” of the model is due to the work in progress W (t, ρ) that takes
into account the load of goods on the entire lane, parametrized by x ∈ (0, 1). We
extend this model to a multi-commodity flow model on networks.

For the extension to networks we name [17, 18]. In [16] the authors consider
the extension of stationary isothermal Euler equations on pipeline networks for gas
transportation. Multi-commodity models come primary from linear min-cost-flow
problems as given in [6, 12, 19, 4].

For first order informations and the (formal) Lagrange approach to compute
optimality conditions and to obtain the adjoint PDEs we refer to [20] and [15],
where the authors also study the regularity of the emerging adjoint PDE.

In Section 2 we introduce the named multi-commodity model and propose a
detailed analysis of the regularity with respect to initial and boundary data (Lp, BV,
W 1,p). We illustrate the dynamics and the introduced interdependence for two
commodities in Section 2.4.

Furthermore, we show the well-posedness of the model in Section 3.3 if gen-
eralized to networks as performed in Section 3. Thereby, the distribution of the
multi-commodity flow on dispersing vertices will be realized time-dependent (see
Definition 3.2), while in the concerning literature the distribution is often constant
in time [17]. Also the named distribution functions will be subject to optimization,
such that we have a model, optimizing the inflow and outflow with respect to a
given demand, and also the routing of goods in the supply chain. We refer to the
objective functional in Definition 3.6.

To show existence of minimizers we have to choose the distribution functions from
the set of functions with finite BV -norm as done in Section 3.4. In application, this
set seems to be a good choice since it still allows jumps in the distribution functions
with respect to time but not infinitely many – assuming the height of the jumps
is not converging to zero sufficiently fast. The work is finalized by a conclusion in
Section 4.

2. The multi-commodity model. First, we will concentrate on one single edge
and generalize the results to networks in Section 3, afterwards.
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Definition 2.1 (Number of commodities). In the following N ∈ N denotes the
number of different commodities and N := {1, . . . , N} the set of commodities.

Definition 2.2 (Assumptions on the velocity functions). For N ∈ N let λ ∈
C1(R≥0;RN>0) be a vector of velocities and Λ ∈ C1(R≥0;RN×N≥0 ) with

(Λ(·))i,j :≡ δi,jλi(·) for i, j ∈ N

a diagonal matrix (δi,j represents the Kronecker delta).

Then we consider for T ∈ R>0 the initial boundary value problem

ρ̇(t, x) = −Λ(W (t,ρ))ρx(t, x) (t, x) ∈ (0, T )× (0, 1), (1)

ρ(0, x) = ρ0(x) x ∈ (0, 1), (2)

Λ(W (t,ρ))ρ(t, 0) = a(t) t ∈ (0, T ), (3)

using the integral expression, the so called generalized WIP (work in progress),

W (t,ρ) :=

N∑
i=1

1∫
0

ρi(t, s) ds t ∈ [0, T ]. (4)

Thereby, the functions ρ and ρ0 are vectors of dimension N , Λ(W (t,ρ))ρx(t, x),
Λ(W (t,ρ))ρ(t, 1) and Λ(W (t,ρ))ρ(t, 0) denote the usual matrix vector products.

Remark 1 (Invertibility of Λ(W (·,ρ))). Due to the assumption in Definition 2.2
we can invert Λ(W (t,ρ)) and write

ρ(t, 0) = Λ(W (t,ρ))−1a(t) ∀t ∈ [0, T ],

where Λ(W (·,ρ))−1 is given by

(Λ(W (·,ρ)))
−1
i,j ≡ δi,j

1

λi(W (·,ρ))
i, j ∈ N.

Let us notice at this point that the PDE model is nonlinear, since λ(W (·,ρ))
itself also depends on the solution of the PDEs system. Let us furthermore notice
that the expression

W (t,ρ) =
∑
i∈N

1∫
0

ρi(t, s) ds

collects the load of all commodities at time t ∈ [0, T ] and is still called WIP (work
in progress). We refer also to Remark 3. The modeling is reasonable since one
can expect from a processing unit, processing several goods simultaneously that the
load of one single commodity influences the processing velocity of any remaining
commodity in the processing unit. This behavior is the reason to call the dynamics
nonlocal.

In the following we will propose a strict and rigorous analysis study concerning
regularity of the system of PDEs with respect to the regularity of initial and bound-
ary values. To this end we have to define the weak solution of the PDEs system
and come up with the canonical definition as was for instance proposed in [11] for
the single-commodity model.
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2.1. Weak solution for the multi-commodity model.

Definition 2.3 (Weak solution of the PDE system). Let N ∈ N, T ∈ R>0, ρ0 ∈
L1((0, 1);RN ), a ∈ L1((0, T );RN ) and λ ∈ C1(R≥0;RN>0) be given. A weak solution
to the system of PDEs given in Equation (1) - Equation (4) is a function ρ ∈
C([0, T ];L1((0, 1);RN )), satisfying the following condition:

∀τ ∈ [0, T ], ∀φ ∈ Φτ , ∀i ∈ N :

τ∫
0

1∫
0

ρi(t, x)
(
φ̇i(t, x) + λi(W (t,ρ))φix(t, x)

)
dxdt

+

τ∫
0

ai(t)φi(t, 0) dt+

1∫
0

ρ0,i(x)φi(0, x) dx = 0 .

Thereby,

Φτ :=
{
φ ∈ C1([0, τ ]× [0, 1])N : φ(τ, x) = 0 ∀x ∈ [0, 1] and φ(t, 1) = 0 ∀t ∈ [0, τ ]

}
represents the space of test functions, depending on τ and

W (t,ρ) :=

N∑
i=1

1∫
0

ρi(t, x) dx, t ∈ [0, T ].

We prove existence of a solution for boundary and initial data of Lp regularity
(p ∈ [1,∞)). In the corresponding proof of Theorem 2.7 we construct the solution
with the help of the method of characteristics. That solution can used to deduce
regularity results for BV -data and even W 1,p-data (again for p ∈ [1,∞)).

2.2. Preparations for the proof of the main theorem. For a better under-
standing and shorter notation we collect some definitions:

Definition 2.4 (Definitions regarding λ). Let N ∈ N and λ be given as in Defini-
tion 2.2 and M ∈ R>0. Then we define for i ∈ N

λi(M) := sup
0≤W≤M

λi(W ) λi(M) := inf
0≤W≤M

λi(W )

λ(M) := max
i∈N

λi(M) λ(M) := min
i∈N

λi(M)

di(M) := sup
0≤W≤M

∣∣λi′(W )
∣∣ d(M) := max

i∈N
di(M).

For the proof of Theorem 2.7 we need the following Lemmata:

Lemma 2.5 (A property of the weak solution). If ρ ∈ C([0, T ];L1((0, 1);RN )) is a
weak solution as defined in Definition 2.3 to the initial boundary value problem given
in Equation (1) - Equation (4), we obtain for every τ ∈ [0, T ], for every ψ ∈ Ψτ

and for every i ∈ N

τ∫
0

1∫
0

ρi(t, x)
(
ψ̇i(t, x) + λi(W (t,ρ))ψix(t, x)

)
dx dt+

τ∫
0

ai(t)ψi(t, 0) dt

−
1∫

0

ρi(τ, x)ψi(τ, x) dx+

1∫
0

ρ0,i(x)ψi(0, x) dx = 0,
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where
Ψτ :=

{
ψ ∈ C1([0, τ ]× [0, 1])N : ψ(t, 1) = 0 ∀t ∈ [0, τ ]

}
. (5)

Proof. We refer to [11, Lemma 2.2]. Although we consider a system of PDEs coupled
via the multi-commodity property the proof is almost identical.

Lemma 2.6 (A property of Lp functions). Let p ∈ [1,∞), I := (a, b) ⊆ R an open
and bounded interval and f ∈ Lp(I) be given. Then we have

∀ε > 0, ε < b−a
2 : lim

h↘0
‖f(·+ h)− f‖Lp(a,b−ε) = 0

Proof. The proof can easily be carried out by using the density result

C∞c (a, b)
‖·‖Lp(a,b)

= Lp(a, b)

as for instance stated in [23, Theorem 6.3.15], and approximating f by compactly
supported smooth functions.

2.3. Existence, uniqueness and regularity of solutions. In this section we will
prove the existence and uniqueness of a weak solution and will provide regularity
results for Lp-data, BV -data and W 1,p-data, where p ∈ [1,∞) is given.

Theorem 2.7 (Existence, uniqueness and regularity for Lp-data). For N ∈ N,
p ∈ [1,∞) and T ∈ R>0 let ρ0 ∈ Lp((0, 1);RN≥0) and a ∈ Lp((0, T );RN≥0) be given.

Then the initial boundary value problem defined in Equation (1) - Equation (4)
admits a unique weak solution ρ as defined in Definition 2.3 with regularity

ρ ∈ C([0, T ];Lp((0, 1);RN )) ∩ C([0, 1];Lp((0, T );RN )).

Furthermore, the solution ρ is component-by-component nonnegative almost every-
where in (0, T )× (0, 1).

Proof. Let us begin with citing the reference [11, Proof of Theorem 2.3]. Therein
the claimed result is shown for p = 1 and N = 1, i.e. for only one commodity in
the Banach space L1.

Although the proof that we will provide for the multi-commodity case N > 1,
has a similar structure and uses the same tools as in the given reference, there are
substantial differences to consider:

• We will construct a solution of the initial boundary value problem with the
methods of characteristics. Due to the nonlocal flux the characteristics are
solutions of a fixed-point equation. For N > 1 the existence of a solution
of the named fixed-point equation has to be shown simultaneously for all
commodities, since the change of one characteristics influences every remaining
characteristics. We solve this problem by considering the appropriate product
space in Equation (12) for the system of fixed-point equations and by applying
Banach fixed-point theorem in Equations (16),(17).

• Another difficulty consists in extending the results to an arbitrary time T as
done on Page 760. For one commodity we have to iterate the solution scheme
as soon as the characteristic ξ arrives at 1, since henceforward the solution is
just dependent on the boundary value and independent on the initial value.
For N > 1 we have N different commodities and for any of these commodities
we have to deal with the problem that every corresponding characteristic –
sooner or later – arrives at 1 for the first time. Once every characteristic
has arrived at 1, the solution, henceforward, is again just dependent on the
boundary values.
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Existence of Solutions: The main strategy of proving existence relies on showing
the existence of characteristics. This is done in the following. With the help of these
characteristics it becomes quite easy to construct the solution for every commodity
i ∈ N. We define for δ ∈ [0, T ] and N ∈ N

ΩN
δ,M :=

{
ξ ∈ C([0, δ])N : ξ(0) = 0, λi(M) ≤ ξi(t)− ξi(t)

t− t
≤ λi(M)

∀i ∈ N, ∀t, t ∈ [0, δ], t > t

}
, (6)

where we refer to Definition 2.4. In the Definition of ΩN
δ,M the M is given by

M :=
∑
i∈N

(
‖ai‖L1((0,T );R) + ‖ρ0,i‖L1((0,1);R)

)
. (7)

Let us point out that we will name ξ as characteristic curve. Furthermore, we define
the following mapping, depending on initial and boundary data ρ0 and a:

F : ΩN
δ,M → C([0, δ])N ,

F i(ξ)(t) :=

t∫
0

λi

(
N∑
j=1

( s∫
0

aj(σ) dσ +

1−ξj(s)∫
0

ρ0,j(x) dx
))

ds, t ∈ [0, δ], i ∈ N.

As one can observe, this equation will become a fixed-point equation in ξ (assuming

that F will again map onto ΩN
δ,M as a subset of C([0, δ])N ). For t, t ∈ [0, δ] and

t > t we obtain by the Definition of ΩN
δ,M in (6)

F i(ξ)(t)− F i(ξ)(t) =

t∫
t

λi

(
N∑
j=1

( s∫
0

aj(σ) dσ +

1−ξj(s)∫
0

ρ0,j(x) dx
))

ds

≤
t∫
t

λi(M) ds = (t− t)λi(M) (8)

and

F i(ξ)(t)− F i(ξ)(t) =

t∫
t

λi

(
N∑
j=1

( s∫
0

aj(σ) dσ +

1−ξj(s)∫
0

ρ0,j(x) dx
))

ds

≥
t∫
t

λi(M) ds = (t− t)λi(M), (9)

recalling Definition 2.4 and M as defined in Equation (7). The latter estimation is

only valid if the expression
1−ξj(s)∫

0

ρ0,j(x) dx is well defined, i.e. 1− ξj(s) ≥ 0. This is

certain if δ < 1
λj(M)

, but the afore-mentioned estimate has to hold for every j ∈ N,
so we assume

δ < min
j∈N

1
λj(M)

(10)
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and, hence, we obtain by Inequality (8) and Inequality (9)

λi(M) ≤ F i(ξ)(t)− F i(ξ)(t)

t− t
≤ λi(M) for i ∈ N,

which results in

F : ΩN
δ,M → ΩN

δ,M

for δ ∈ (0, T ] and

δ < min
i∈N

1
λi(M)

. (11)

Note that such a δ > 0 always exists since λi(M) is a strictly positive continuous
function which attains its maximum and minimum over a compact set. Now we
have F to be a self-map and it remains to show that F is a contraction map on
ΩN
δ,M with respect to a certain normed space. To this end we define a norm of the

product space C([0, δ])N as

‖ξ‖C([0,δ])N :=

N∑
j=1

‖ξj‖C([0,δ]) =

N∑
j=1

max
t∈[0,δ]

|ξj(t)| for ξ ∈ C([0, δ])N . (12)

This makes the space C([0, δ])N a normed space, actually a Banach space.
In the following we will show that with respect to this norm the mapping F is

contractive. We have the following estimate for i ∈ N, ξ1, ξ2 ∈ ΩN
δ,M and t ∈ [0, δ]:

|F i(ξ2)(t)− F i(ξ1)(t)| =∣∣∣∣∣
t∫

0

λi

( N∑
j=1

s∫
0

aj(σ) dσ +

1−ξ2
j (s)∫

0

ρ0,j(x) dx
)
− λi

( N∑
j=1

s∫
0

aj(σ) dσ +

1−ξ1
j (s)∫

0

ρ0,j(x) dx
)

ds

∣∣∣∣∣
Using a Taylor expansion up to order 1 to linearize λi, i.e. using the mean value
theorem, the latter expression can be estimated as

|F i(ξ2)(t)− F i(ξ1)(t)|

≤

∣∣∣∣∣
t∫

0

λ′i

( N∑
j=1

s∫
0

aj(σ) dσ +

1−ξ2
j (s)∫

0

ρ0,j(x) dx+ θ
) N∑
j=1

1−ξ2
j (s)∫

1−ξ1
j (s)

ρ0,j(x) dxds

∣∣∣∣∣,
where

θ ∈

〈
0,

N∑
j=1

1−ξ1
j (s)∫

1−ξ2
j (s)

ρ0,j(x) dx

〉
(13)

and 〈·, ·〉 is defined as

〈·, ·〉 :=

{
R× R → 2R

(a, b) 7→ (min{a, b},max{a, b}).

Using the triangle inequality and pulling out the supremum of λ′i, we estimate:

|F i(ξ2)(t)− F i(ξ1)(t)| ≤ di(M)

t∫
0

∣∣∣ N∑
j=1

1−ξ2
j (s)∫

1−ξ1
j (s)

ρ0,j(x) dx
∣∣∣ds (14)
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Thereby, we recall Definition 2.4 and the definition of M in Equation (7) and remark
that

N∑
j=1

( s∫
0

aj(σ) dσ +

1−ξ2
j (s)∫

0

ρ0,j(x) dx
)

+ θ ≤M

for every θ as given in Equation (13).
To eliminate the absolute value in the integral we define

ξ(t) := min{ξ1(t), ξ2(t)} and ξ(t) := max{ξ1(t), ξ2(t)}.

Thereby max and min are meant component-wise and obviously ξ, ξ are elements

of ΩN
δ,M . This is due to the fact that the functions (x, y) 7→ min{x, y} and (x, y) 7→

max{x, y} are continuous itself and the restrictions in ΩN
δ,M are also satisfied. We

can furthermore estimate Inequality (14)

di(M)

t∫
0

∣∣∣ N∑
j=1

1−ξ2
j (s)∫

1−ξ1
j (s)

ρ0,j(x) dx
∣∣∣ds ≤ di(M)

N∑
j=1

t∫
0

∣∣∣ 1−ξ2
j (s)∫

1−ξ1
j (s)

ρ0,j(x) dx
∣∣∣ds

≤ di(M)

N∑
j=1

t∫
0

1−ξ
j
(s)∫

1−ξj(s)

ρ0,j(x) dxds,

since ρ0 is nonnegative by assumption. Changing the order of integration and using
that ξ1

j , ξ
2
j , ξj , ξj are strictly monotonically increasing for all j ∈ N and, therefore,

invertible, we obtain

di(M)

N∑
j=1

t∫
0

1−ξ
j
(s)∫

1−ξj(s)

ρ0,j(x) dx ds

= di(M)

N∑
j=1

1−ξ
j
(t)∫

1−ξj(t)

t∫
ξ
−1
j (1−x)

ρ0,j(x) dsdx+ di(M)

N∑
j=1

1∫
1−ξ

j
(t)

ξ−1

j
(1−x)∫

ξ
−1
j (1−x)

ρ0,j(x) dsdx

= di(M)

N∑
j=1

1−ξ
j
(t)∫

1−ξj(t)

ρ0,j(x)
(
t− ξ−1

j (1− x)
)

dx

+ di(M)

N∑
j=1

1∫
1−ξ

j
(t)

ρ0,j(x)
(
ξ−1

j
(1− x)− ξ−1

j (1− x)
)

dx

≤ di(M)

N∑
j=1

1−ξ
j
(t)∫

1−ξj(t)

ρ0,j(x) dx ·
(
ξ−1

j
(ξ
j
(t))− ξ−1

j (ξ
j
(t))
)
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+ di(M)

N∑
j=1

1∫
1−ξ

j
(t)

ρ0,j(x)
(
ξ−1

j
(1− x)− ξ−1

j (1− x)
)

dx

≤ di(M)

N∑
j=1

1−ξ
j
(t)∫

1−ξj(t)

ρ0,j(x) dx ·
(
ξ−1

j
(ξ
j
(t))− ξ−1

j (ξ
j
(t))
)

+ di(M)

N∑
j=1

1∫
1−ξj(t)

ρ0,j(x) sup
x∈[1−ξ

j
(t),1]

(
ξ−1

j
(1− x)− ξ−1

j (1− x)
)

dx

≤ di(M)

N∑
j=1

sup
y∈[0,ξ

j
(t)]

(
ξ−1

j
(y)− ξ−1

j (y)
) 1∫

1−ξj(t)

ρ0,j(x) dx.

Thereby, we have used that ξ
−1

j (1−x) is decreasing and ξ
−1

j (1−x) ≥ ξ−1

j (ξ
j
(t)) ∀x ∈

[1− ξj(t), 1− ξj(t)].

It remains to estimate the expression sup
y∈[0,ξ

j
(t)]

(
ξ−1

j
(y)− ξ−1

j (y)
)

. We do this

in the following way for given t ∈ [0, δ], j ∈ N and y ∈ [0, ξ
j
(t)]:

0 ≤ ξ−1

j
(y)− ξ−1

j (y) =

(
ξ−1

j
(y)−

ξ−1

j
(y)+ξ

−1
j (y)

2

)
+

(
ξ−1

j
(y)+ξ

−1
j (y)

2 − ξ−1

j (y)

)
Using t − t ≤ 1

λj(M) (ξj(t) − ξj(t)) for t > t according to Definition (6), i.e. the

definition of ΩN
δ,M , we furthermore estimate(
ξ−1

j
(y)−

ξ−1

j
(y)+ξ

−1
j (y)

2

)
+

(
ξ−1

j
(y)+ξ

−1
j (y)

2 − ξ−1

j (y)

)
= 1
λj(M)

(
ξj

(
ξ−1

j
(y)+ξ

−1
j (y)

2

)
− ξ

j

(
ξ−1

j
(y)+ξ

−1
j (y)

2

))
≤ 1
λj(M)‖ξ

1
j − ξ

2
j‖C([0,δ]) ≤ 1

λ(M)‖ξ
1
j − ξ

2
j‖C([0,δ]) .

For the latter inequality see Definition 2.4. Altogether we have for every i ∈ N the
estimate

|F i(ξ2)(t)− F i(ξ1)(t)| ≤ di(M)
λ(M)

N∑
j=1

‖ξ1
j − ξ

2
j‖C([0,δ])

1∫
1−ξj(t)

ρ0,j(x) dx

≤ d(M)
λ(M)

N∑
j=1

‖ξ1
j − ξ

2
j‖C([0,δ])

1∫
1−λ(M)δ

ρ0,j(x) dx ,

using Inequality (10). Since we have ρ0 ∈ Lp((0, 1);RN ) and a ∈ Lp((0, T );RN ), we

can choose δ ∈
(

0, 1
λ(M)

)
sufficiently small such that for every j ∈ N and ∀x ∈ [0, 1]
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sufficiently large as well as for t ∈ (0, T ) sufficiently small we have

t+
λ(M)
λ(M) δ∫
t

aj(y) dy +

x∫
x−λ(M)δ

ρ0,j(y) dy ≤ λ(M)

2Nd(M)
(15)

The existence of such δ > 0 uniformly in x and t is guaranteed by [25, Theorem
8.18]. Therein the uniform continuity of the Lebesgue integral with respect to the
measure of integration is stated, i.e. for a function f ∈ L1(I;R) with I ⊂ R a real
interval we have

∀ε > 0 ∃δ > 0 ∀Ĩ ⊂ I : µ(Ĩ) ≤ δ =⇒ ‖f‖L1(Ĩ;R) ≤ ε,

where µ(Ĩ) denotes the one dimensional Lebesgue measure of a measurable set

Ĩ ⊂ R. Therefore, choosing ε = λ(M)
2Nd(M) we obtain such a δ for ρ0,j and also

uniformly in j (N is a finite set), since λ(M) and λ(M) are constant. The same
holds true for aj such that we can take the smallest δ > 0, δ < min

i∈N
1
λi

, satisfying

Inequality (15) for every j ∈ N.
By that inequality we obtain for i ∈ N and x = 1

‖F i(ξ2)− F i(ξ1)‖C([0,δ]) ≤ 1
2N

N∑
j=1

‖ξ1
j − ξ

2
j‖C([0,δ]) = 1

2N ‖ξ
1 − ξ2‖C([0,δ])N (16)

and, thus,

‖F (ξ2)− F (ξ1)‖C([0,δ])N ≤ 1
2‖ξ

1 − ξ2‖C([0,δ])N . (17)

Therefore, F is a contraction in ΩN
δ,M and by the Banach fixed-point theorem and

the closedness of ΩN
δ,M we know that there exists a unique fixed-point ξ satisfying

the equation

ξ ≡ F (ξ).

Since ξ ∈ ΩN
δ,M we know furthermore that ξ(t) is component-wise increasing with

respect to t ∈ [0, δ]. Also, by the definition of F (ξ)(t), we can compute for t ∈ [0, δ]
the derivative by the fundamental theorem of calculus as

d
dtF (ξ)(t) = λ

(
N∑
j=1

( t∫
0

aj(σ) dσ +

1−ξj(t)∫
0

ρ0,j(x) dx
))

.

Obviously, this is a continuous function for t ∈ [0, δ] and, therefore, we can conclude
that ξ ∈ C1([0, δ])N and

ξ′(t) = d
dtF (ξ)(t) for t ∈ [0, δ].

As mentioned above, we are now able to give the explicit solution of the initial
boundary value problem using the constructed characteristic, and state the solution
for i ∈ N as:

ρi(t, x) =

ρ0,i(x− ξi(t)) for 0 ≤ ξi(t) ≤ x ≤ 1, 0 ≤ t ≤ δ
ai(ξ

−1
i (ξi(t)−x))

ξ′i(ξ
−1
i (ξi(t)−x))

for 0 ≤ x ≤ ξi(t) ≤ 1, 0 ≤ t ≤ δ,
(18)
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where

ξ(t) =

t∫
0

λ(W (s,ρ)) ds

is by the latter fixed-point results for sufficiently small t ∈ [0, δ] unique. For t ∈ [0, δ]
we can compute W (t,ρ) and upon substituting t = ξ−1

i (ξi(t)− s), s = s− ξi(t) for
i ∈ N we estimate

W (t,ρ) =

N∑
i=1

1∫
0

ρi(t, s) ds =

N∑
i=1

 ξi(t)∫
0

ai(ξ
−1
i (ξi(t)−s))

ξ′i(ξ
−1
i (ξi(t)−s))

ds+

1∫
ξi(t)

ρ0,i(s− ξi(t)) ds


=

N∑
i=1

 t∫
0

ai(t) dt +

1−ξi(t)∫
0

ρ0,i(s) ds

 (19)

≤
N∑
i=1

(
‖ai‖L1((0,T );R) + ‖ρi‖L1((0,1);R)

)
= M. (20)

Therefore, we have

0 < λi(M) ≤ ξ′i(t) = λi(W (t,ρ)) ≤ λi(M) ∀t ∈ [0, δ], i ∈ N.

The further steps to show that solution (18) is indeed a weak solution of postulated
regularity will be omitted. Considering every single commodity on its own, this can
be done exactly as in [11, Theorem 2.3].
Uniqueness of the solution: Let us assume that we have another weak solution
ρ̃ to the initial boundary value problem stated in Equations (1)-(4). Then we can
apply Lemma 2.5 to obtain the following integral equation for every τ ∈ [0, δ],
ψ ∈ Ψτ as defined in (5) and i ∈ N :

τ∫
0

1∫
0

ρ̃i(t, x)
(
ψ̇i(t, x) + λi(W (t, ρ̃))ψix(t, x)

)
dxdt+

τ∫
0

ai(t)ψi(t, 0) dt

−
1∫

0

ρ̃i(τ, x)ψi(τ, x) dx+

1∫
0

ρ0,i(x)ψi(0, x) dx = 0.

(21)

The approach to show uniqueness is to define the “right” test function ψ ∈ Ψτ .

Therefore, let ξ̃(t) :=
t∫

0

λ(W (s, ρ̃)) ds and ψ0 ∈ C1
c ((0, 1))N . Furthermore, let for

i ∈ N and 0 ≤ t ≤ τ the function ψ : [0, τ ]× [0, 1]→ RN be defined as

ψi(t, x) :=

{
ψ0,i

(
ξ̃i(τ)− ξ̃i(t) + x

)
for 0 ≤ x ≤ ξ̃i(t)− ξ̃i(τ) + 1,

0 for 0 ≤ ξ̃i(t)− ξ̃i(τ) + 1 ≤ x ≤ 1.
(22)

The function ψi obviously belongs for every i ∈ N to C1([0, τ ]× [0, 1]). However, it
also belongs to Ψτ , since it also has the property ψ(0, x) = 0 for every x ∈ [0, 1]. So
it is a suitable test function. Furthermore, this test function satisfies the following
end boundary value problem,

ψ̇(t, x) + Λ(W (t, ρ̃))ψx(t, x) = 0 (t, x) ∈ [0, τ ]× [0, 1] (23)

ψ(τ, x) = ψ0(x) x ∈ [0, 1]
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ψ(t, 1) = 0 t ∈ [0, τ ]

which can easily be verified. If we insert this function into Equation (21) as a test
function, we obtain by integration by substitution (the first term vanishes, since ψ
satisfies the afore-mentioned PDE (23)) and the definition of ψi in Equation (22)
for i ∈ N

1∫
0

ρ̃i(τ, x)ψi(τ, x) dx =

1∫
0

ρ̃i(τ, x)ψ0,i(x) dx

=

τ∫
0

ai(t)ψi(t, 0) dt+

1∫
0

ρ0,i(x)ψi(0, x) dx

=

τ∫
0

ai(t)ψ0,i

(
ξ̃i(τ)− ξ̃i(t)

)
dt+

1−ξ̃i(τ)∫
0

ρ0,i(x)ψ0,i

(
ξ̃i(τ) + x

)
dx

=

ξ̃i(τ)∫
0

ai(ξ̃i
−1

(ξ̃i(τ)−y))

ξ̃i
′
(ξ̃i
−1

(ξ̃i(τ)−y))
ψ0,i(y) dy +

1∫
ξ̃i(τ)

ρ0,i(y − ξ̃i(τ))ψ0,i(y) dy .

Since this equation is true for every τ ∈ [0, δ] and ψ0 ∈ C1
c ((0, 1)), we can use the

fundamental lemma of calculus of variations in [9, Corollary 4.24] and the fact that
C∞0 ((0, T )) ⊂ C1

c ((0, 1)) to conclude that the solution ρ̃ ∈ C([0, δ];Lp((0, 1);RN ))
can be stated for i ∈ N and t ∈ [0, δ] as

ρ̃i(t, x) =

ρ0,i(x− ξ̃i(t)) for 0 ≤ ξ̃i(t) ≤ x
ai(ξ̃i

−1
(ξ̃i(t)−x))

ξ̃i
′
(ξ̃i
−1

(ξ̃i(t)−x))
for 0 ≤ x ≤ ξ̃i(t).

(24)

Now the solution ρ̃ can be used to compute ξ̃, since

ξ̃(t) =

t∫
0

λ(W (s, ρ̃)) ds

=

t∫
0

λ

(
N∑
i=1

( ξ̃i(s)∫
0

ai(ξ̃i
−1

(ξ̃i(s)−x))

ξ̃i
′
(ξ̃i
−1

(ξ̃i(s)−x))
dx+

1∫
ξ̃i(s)

ρ0,i(x− ξ̃i(s)) dx
))

ds

=

t∫
0

λ

(
N∑
i=1

( s∫
0

ai(t) dt +

1−ξ̃i(s)∫
0

ρ0,i(s) ds
))

ds = F (ξ̃)(t) .

Also ξ̃ satisfies the fixed-point equation and ξ̃ ∈ ΩN
δ,M . This directly implies ξ̃ ≡ ξ

since the Banach fixed-point theorem guarantees a unique fixed-point of F in ΩN
δ,M .

Therefore, we see by the construction of ρ̃ that we have ρ̃ ≡ ρ in (0, δ) × (0, 1)
for δ sufficiently small.
Extension to time t ∈ [0, T ]: Since we know that for δ1 := δ > 0 small enough
we have a unique weak solution ρ1 := ρ of regularity C([0, δ1];L1((0, 1);RN )), we
can define another initial boundary value problem in ρ2

ρ̇2(t, x) + Λ(W (t,ρ2))ρ2
x(t, x) = 0
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ρ2(0, x) = ρ1(δ1, x)

Λ(W (t,ρ2))ρ2(t, 0) = a(t+ δ1).

As a result of the regularity of ρ1 we have ρ1(δ1, ·) ∈ L1((0, 1);RN ) and also a(·+
δ1) ∈ L1((0, T − δ1);RN ). So the new initial boundary value problem in ρ2 with
the afore-mentioned initial and boundary data is of the same type as the initial
boundary value problem in ρ1. We again apply the fixed-point argument and can
find δ2 > 0, such that

ρ2 ∈ C([0, δ2];L1((0, 1);RN )).

Iterating this procedure, illustrated in Figure 1, we obtain a sequence ρk and δk > 0,
k ∈ N, k ≥ 2, satisfying the weak formulation in Definition 2.3 of

ρ̇k(t, x) + Λ(W (t,ρk))ρkx(t, x) = 0 (t, x) ∈ [0, δk]× (0, 1)

ρk(0, x) = ρk−1(δk−1, x) x ∈ (0, 1)

Λ(W (t,ρk))ρk(t, 0) = a

(
t+

k−1∑
j=1

δj

)
t ∈ [0, δk]

with regularity

ρk ∈ C([0, δk];L1((0, 1);RN )).

Of course, we stop the procedure if
k∑
j=1

δj > T. The solution on the whole time

horizon can then be written for t ∈

[
0,

k∑
j=1

δj

]
as

ρ(t, x) :=



ρ1(t, x) for (t, x) ∈ (0, δ1]× (0, 1)

ρ2(t− δ1, x) for (t, x) ∈ (δ1, δ1 + δ2]× (0, 1)
...

...

ρk

(
t−

k−1∑
j=1

δk, x

)
for (t, x) ∈

(
k−1∑
j=1

δj ,
k∑
j=1

δj

]
× (0, 1) .

Therefore, we must make sure that we can exhaust the full time horizon, i.e. the
sum

∑
k

δk is unbounded.

To guarantee the named property we provide a proof using mathematical induc-
tion:

Considering ρ2, the initial value is for x ∈ [0, 1] and i ∈ N piecewise defined as

ρ2
i (0, x) =

ρ0,i(x− ξi(δ)) x ≥ ξi(δ)
ai(ξ

−1
i (ξi(δ)−x))

ξ′i(ξ
−1
i (ξi(δ)−x))

x ≤ ξi(δ),
(25)

where ξ denotes the characteristic curve corresponding to the existence interval
[0, δ] and ρ1. By Equation (25) and the estimate in (20) we obtain – whenever
1− λ(M)δ2 < ξi(δ) – for i ∈ N

1∫
1−λ(M)δ2

ρ2
0,i(y) dy =

ξi(δ)∫
1−λ(M)δ2

ai(ξ
−1
i (ξi(δ)−x))

ξ′i(ξ
−1
i (ξi(δ)−x))

dx+

1∫
ξi(δ)

ρ0,i(x− ξi(δ)) dx
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=

ξ−1
i (ξi(δ)−1+λ(M)δ2)∫

0

ai(y) dy +

1−ξi(δ)∫
0

ρ0,i(y) dy. (26)

If 1 − λ(M)δ2 ≥ ξi(δ) then ρ2
i (0, x) is in a sufficiently large neighborhood around

x = 1 only dependent on the initial data and we can apply Inequality (15) with
δ2 = δ.

Now we show that also for the case 1 − λ(M)δ2 < ξi(δ) we can choose δ2 = δ.
We estimate the area of integration and obtain the estimate

ξ−1
i (ξi(δ)− 1 + λ(M)δ2) ≤ λ(M)

λ(M)
δ2,

since δ ∈
(

0, 1
λ(M)

)
and, therefore, ξi(δ) ≤ 1. Thus, we can indeed set δ2 = δ.

Let us furthermore mention that the area of integration in the second integral
in Equation (26) is at most λ(M)δ, such that we can apply Inequality (15) on
Equation (26) and obtain for i ∈ N

1∫
1−λ(M)δ

ρ2
i (0, x) dx ≤ λ(M)

2Nd(M)
.

Therefore, we have shown that also in the second iteration for extending the time
we have for δ2 = δ a contraction as demanded in Inequality (17) with contraction
factor 1

2 and can prolongate the existence interval to 2δ.

If we do this for ρ3, we obtain as initial data for i ∈ N

ρ3
i (0, x) = ρ2

i (0, δ) =


ρ0,i(x− ξ

1
i (δ)− ξ

2
i (δ)) ξ1

i (δ) + ξ2
i (δ) ≤ x

ai((ξ
1
i )−1(ξ1

i (δ)+ξ2
i (δ)−x))

ξ1
i
′((ξ1

i )−1(ξ1
i (δ)+ξ2

i (δ)−x))
ξ2
i (δ) ≤ x ≤ ξ

1
i (δ) + ξ2

i (δ)

ai(δ+(ξ2
i )−1(ξ2

i (δ)−x))

ξ2
i
′((ξ2

i )−1(ξ2
i (δ)−x))

ξ2
i (δ) ≥ x

where ξ1 and ξ2 denote the characteristics on [0, δ], [δ, 2δ] respectively. Applying
the fixed-point argument again, we end up with showing that the estimate

1∫
1−λ(M)δ3

ρ3
0,i(y) dy ≤ λ(M)

2Nd(M)
(27)

is true for sufficiently large δ3 > 0 to guarantee that we can exhaust the full time
horizon with a sequence of these initial boundary value problems.

We have to distinguish two cases:

• ξ1
i (δ) + ξ2

i (δ) ≤ 1: We obtain for Equation (27) the estimate

1∫
1−λ(M)δ3

ρ3
0,i(y) dy ≤

λ(M)δ3∫
0

ρ0,i(y) dy +

λ(M)
λ(M) δ3∫

0

ai(y) dy ≤ λ(M)

2Nd(M)
, (28)

when choosing δ3 = δ and applying Equation (15). Furthermore, we have
used that ξ−1

i is for every i ∈ N Lipschitz-continuous with Lipschitz constant
1

λ(M) .
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• ξ1
i (δ) + ξ2

i (δ) > 1: Then, the initial value ρ3
i (0, x) is not explicitly dependent

on ρ0 and we have just to perform the analogous estimate as in Inequality (28)
omitting the first summand.

This procedure can be iterated arbitrarily and we can choose, by induction,
δk = δ for every k ∈ N.

Altogether, we can extend the solution to a unique solution on the full time
horizon t ∈ [0, T ] for finite but arbitrary T > 0 and i ∈ N to

ρi(t, x) =


ρ0,i(x− ξi(t)) for 0 ≤ ξi(t) ≤ x ≤ 1, 0 ≤ t ≤ T
ai(ξ

−1
i (ξi(t)−x))

ξ′i(ξ
−1
i (ξi(t)−x))

for 0 ≤ x ≤ ξi(t) ≤ 1, 0 ≤ t ≤ T
ai(ξ

−1
i (ξi(t)−x))

ξ′i(ξ
−1
i (ξi(t)−x))

for 0 ≤ x ≤ 1, ξ−1
i (1) ≤ t ≤ T.

(29)

t

x

T

1

(0, 0)

ρ0(x)

a(t)

ρ1(t, x) ρ2(t, x) ρ3(t, x)

ρ1(δ1, x) = ρ2(0, x) ρ2(δ2, x) = ρ3(0, x)

δ1 δ2

(T, 1)

ξ(t)

ξ(t)− ξ(δ1)

ξ(t)− ξ(δ2)

Figure 1. Decomposition of the PDE on the time horizon [0, T ]
into a finite number (here 3) of initial boundary value problems on
smaller time horizons

Lp-regularity and nonnegativity: Let us assume that ρ0 ∈ Lp((0, 1);RN≥0) and

a ∈ Lp((0, T );RN≥0
) are given and let t, t ∈ [0, T ], t > t be fixed. We obtain for

i ∈ N, inserting the explicit solution for ρ as stated in Equation (29),

‖ρi(t, ·)− ρi(t, ·)‖
p
Lp((0,1);R) =

1∫
0

|ρi(t, s)− ρi(t, s)|p ds

=

ξi(t)∫
0

∣∣∣ai(ξ
−1
i (ξi(t)−s))

ξ′i(ξ
−1
i (ξi(t)−s))

− ai(ξ
−1
i (ξi(t)−s))

ξ′i(ξ
−1
i (ξi(t)−s))

∣∣∣p ds
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+

ξi(t)∫
ξi(t)

|ρi(t, s)− ρi(t, s)|p ds

+

1∫
ξi(t)

∣∣ρ0,i(s− ξi(t))− ρ0,i(s− ξi(t))
∣∣p ds .

Now, applying Lemma 2.6 and recalling that ξ is continuously differentiable and
strictly monotone, therefore invertible, we can easily conclude that for t→ t the first

and third term converge to zero, while the second term
ξi(t)∫
ξi(t)

|ρi(t, s) − ρi(t, s)|p ds

tends to zero for t → t due to the measure of integration tends to zero and the
integrand is bounded in the Lp-norm.

Altogether, we obtain the claimed regularity for every good i ∈ N, and finally

ρ ∈ C([0, T ];Lp((0, 1);RN )).

The result ρ ∈ C([0, 1];Lp((0, T );RN )) can analogously be proved. We omit the
details. Finally, due to the explicit construction of the solution in Equation (29) by
characteristics, it is easy to verify the nonnegativity of the solution.

Remark 2 (Existence of a weak solution for arbitrary large time). One might ask
why we can expect global solution and not only local solutions for the pde system in
Equation (1)-Equation (4) in time as it is, generally, for nonlinear conservation laws
and why we do not need any smallness assumptions on initial data and boundary
conditions. This is due to the fact that the velocity function λ is not dependent on
the space domain and is - for finite W - strictly positive. Additionally, the work
in progress W (t,ρ) is not increasing over time as can be seen in Inequality (20).
Both conditions prevent any blow-up and we can expect a global solution in time
as stated in Theorem 2.7.

Remark 3 (The work in progress “WIP” W (·, ∗)). To be more precise about the
definition of W (·, ∗) we can define it for N ∈ N and T ∈ R>0 as

W :


[0, T ]× C([0, T ];L1((0, 1);RN≥0)) → C([0, T ];R≥0)

(t,ρ) 7→
N∑
i=1

1∫
0

ρi(t, s) ds.
(30)

Thereby, the necessary regularity in the Definition 2.3 for W (·, ∗) is justified by
Theorem 2.9.

The following Theorem contains regularity results for BV -input data:

Theorem 2.8 (Regularity for BV -data). For N ∈ N and T ∈ R>0 let ρ0 ∈
BV ((0, 1);RN≥0) and a ∈ BV ((0, T );RN≥0) be given. Then the initial boundary value

problem defined in Equation (1) - Equation (4) admits a unique weak solution ρ as
defined in Definition 2.3 with the additional regularity

ρ ∈ L∞((0, T );BV ((0, 1);RN )) ∩ L∞((0, 1);BV ((0, T );RN )).
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Proof. Recall the definition of the BV -norm ‖ · ‖BV (Ω) := ‖ · ‖L1(Ω) + | · |V (Ω), where

Ω ⊂ Rd for d ∈ N open and bounded and V is the total variation, i.e.

|f |V (Ω) := sup
φ∈C1

c (Ω;Rd)
‖φ‖

L∞(Ω;Rd)
≤1

∫
Ω

f(x) div(φ(x)) dx.

Note that | · |V (Ω) is only a semi-norm (take f ≡ const) and we denote it by | · | and
not by ‖ · ‖. Coming back to our estimate, we only have d = 1 and to prove

‖ρ‖L∞((0,T );BV ((0,1);RN )) <∞,

i.e.

‖ρ‖L∞((0,T );L1((0,1);RN )) + |ρ|L∞((0,T );V ((0,1);RN )) <∞.
Since BV (I) ↪→ Lp(I) for all p ∈ [1,∞] and I ⊂ R an open bounded interval (see
[3, Corollary 3.49]), and the trivial embedding

C([0, T ];L1((0, 1);RN )) ↪→ L∞((0, T );L1((0, 1);RN )),

we can easily conclude the regularity with respect to the L∞((0, T );L1(0, 1);RN ))-
topology by Theorem 2.7.

For the regularity with respect to L∞((0, T );V ((0, 1);RN )) let t ∈ [0, T ], i ∈ N

fixed, assume for simplicity and without loss of generality T ≤ ξ−1
i (1). Then, the

following estimate yields

|ρi(t, ·)|V (0,1) ≤ sup
φ∈C1

c ((0,1))
‖φ‖L∞(0,1)≤1

 ξ(t)∫
0

ai(ξ
−1
i (ξi(t)− x))

ξ′i(ξ
−1
i (ξi(t)− x))

φ′(x) dx



+ sup
φ∈C1

c ((0,1))
‖φ‖L∞(0,1)≤1

 1∫
ξ(t)

ρ0,i(x− ξi(t))φ′(x) dx

 . (31)

To be able to estimate the second term by the variation, we first extend ρ0,i to

ρ̃0,i(x) :=

{
ρ0,i(x) for x ≥ 0

0 for x < 0.

and obtain

sup
φ∈C1

c ((0,1))
‖φ‖L∞(0,1)≤1

1∫
ξi(t)

ρ0,i(x− ξi(t))φ′(x) dx = sup
φ∈C1

c ((0,1))
‖φ‖L∞(0,1)≤1

1−ξi(t)∫
−ξi(t)

ρ̃0,i(y)φ′(y + ξi(t)) dy

≤ sup
ψ∈C1

c ((−ξi(t),1−ξi(t)))
‖ψ‖L∞(−ξi(t),1−ξi(t))≤1

1−ξi(t)∫
−ξi(t)

ρ̃0,i(y)ψ′(y) dy

≤ |ρ0,i(0)|+ |ρ0,i|V (0,1) <∞. (32)

Thereby, the boundary value ρ0,i(0) can be defined for i ∈ N as

ρ0,i(0) := lim
h→0

1
h

h∫
0

ρ0,i(x) dx (33)
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as done in [14, 2.10 Theorem]. For this definition, the behavior of the function in a
neighborhood of 0 is crucial. A very similar approach can be used to estimate the
first term in Inequality (31) to obtain the estimate

sup
φ∈C1

c ((0,1))
‖φ‖L∞(0,1)≤1

 ξ(t)∫
0

ai(ξ
−1
i (ξi(t)− x))

ξ′i(ξ
−1
i (ξi(t)− x))

φ′(x) dx

 ≤ |ai(0)|+ |ai|V (0,T ). (34)

Thereby, similar to Equation (33), the boundary value can be defined for i ∈ N as
(see again [14, 2.10 Theorem])

ai(0) := lim
h→0

1
h

h∫
0

ai(t) dt.

Since both estimates (32) and (34) are uniform in t, we finally have

ess sup
t∈[0,T ]

|ρi(t, ·)|V (0,1) ≤ |ai(0)|+ |ai|V (0,T ) + |ρ0,i(0)|+ |ρ0,i|V (0,1).

The boundedness of the right hand side for every i ∈ N concludes the proof. Let us
point out that we did not show the claimed regularity L∞((0, 1);BV ((0, T );RN )).
However, the proof is very similar to the case of proofing L∞((0, T );BV ((0, 1);RN ))
regularity and will be omitted.

Remark 4 (C([0, T ];BV (0, 1)) and C([0, T ];L∞(0, 1))). Assume for simplicityN =
1, although the following argumentation is still valid for the multi-commodity cases:
One might ask why we cannot expect regularity of the solution in Theorem 2.7 for
p = ∞. Since the Lp-norm for p ∈ [1,∞) smoothes jumps, the Lp-norm in space
changes continuously in time. For p = ∞ this is not true. For instance, jumps
in the space domain could vanish over time, such that the L∞-norm would change
discontinuously.

With the same argumentation one can explain – and give counterexamples –
why we cannot expect C([0, T ];BV (0, 1)) regularity but only L∞((0, T );BV (0, 1))
regularity in Theorem 2.8.

Remark 5 (The evaluation of ρ for every t ∈ [0, T ], x ∈ [0, 1] respectively, BV ).
Let us point out that the regularity result for BV data in Theorem 2.8 does not
guarantee that taking any x ∈ [0, 1] the solution is BV regular with respect to time
and – vice versa – taking any t ∈ [0, T ] the solution BV regular with respect to the
space. To prove that, one can use the solution - constructed by the characteristics
- and verify it explicitly, or one can use the following result:

Corollary 1 (BV regularity for every x ∈ [0, 1] and for every t ∈ [0, T ]). For
N ∈ N, T ∈ R>0 let q ∈ C([0, T ];L1((0, 1);RN )) ∩ L∞((0, T );BV ((0, 1);RN )) be
given. Then we have

q(t, ·) ∈ BV ((0, 1);RN ) ∀t ∈ [0, T ].

Proof. Without loss of generality we chose N = 1. A generalization to arbi-
trary N ∈ N is evident. Therefore, let q be an element of C([0, T ];L1(0, 1)) ∩
L∞((0, T );BV (0, 1)). Then for every t ∈ [0, T ] there exists a sequence (tk)k∈N ⊂
[0, T ], tk → t such that for every k ∈ N q(tk, ·) ∈ BV (0, 1).
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Since q ∈ C([0, T ];L1(0, 1)), the limit lim
tk→t

q(tk, ·) is an element of L1(0, 1). Now

using [3, Proposition 3.13], we obtain q(t, ·) ∈ BV (0, 1). The arbitrary choice of
t ∈ [0, T ] concludes the proof.

For the sake of completeness we provide – as a last regularity result – regularity
for W 1,p-data:

Theorem 2.9 (Regularity for W 1,p-data). For N ∈ N, p ∈ [1,∞) and T ∈ R>0

let ρ0 ∈ W 1,p((0, 1);RN≥0) and a ∈ W 1,p((0, T );RN≥0) be given. Let furthermore the
compatibility condition

a(0) = Λ(W (0,ρ))ρ0(0) (35)

be satisfied. Then the initial boundary value problem defined in Equation (1) -
Equation (4) admits a unique weak solution ρ as defined in Definition 2.3 with
additional regularity

ρ ∈ C([0, T ];W 1,p((0, 1);RN )) ∩ C([0, 1];W 1,p((0, T );RN )).

Proof. We know by the proof of Theorem 2.7 and Remark 3 that at least

W (·,ρ) ∈ C([0, T ];R≥0)

and since W 1,p ↪→ Lp this is also true for Theorem 2.9. As in the proof of [15,
Theorem 4.7] we can obtain for every i ∈ N the postulated regularity result.

Remark 6 (The Compatibility Condition and the Continuity of the Solution). Let
us mention that the compatibility condition in Equation (35) is reasonable due to
the Sobolev embedding theorem

W 1,p(I) ↪→ C(I) and p ∈ [1,∞]

in [1][Theorem 4.12, Part I and Part II, p. 85]) for I ⊂ R an open bounded interval.
Let us furthermore mention that the regularity of the solution ρ in the latter

Theorem 2.9 allows to choose a continuous representative ρ, such that the positivity
of the solution is satisfied for every (t, x) ∈ [0, T ]× [0, 1].

2.4. An example. To get a better understanding of the proposed multi-commo-
dity coupling and the resulting dynamics, we give an easy example. Let N = 2 and
T = 2 and consider the two conservation laws

ρ̇1(t, x) = −λ1(W (t,ρ))ρx,1(t, x) ρ̇2(t, x) = −λ2(W (t,ρ))ρx,2(t, x)

ρ0,1(x) = 0 ρ0,2(x) = 0

a1(t) = 1 a2(t) = 2

λ1(W ) = 1
1+W λ2(W ) = 1 +W

coupled by the “work in progress”

W (t,ρ) =

2∑
i=1

1∫
0

ρi(t, s) ds =

1∫
0

ρ1(t, s) + ρ2(t, s) ds.

Thereby, we define the outflow at the right hand side x = 1 as y ≡ Λ(W (·,ρ))ρ(·, 1).
Since we assumed ρ0 ≡ 0, we do not have to solve a fixed-point equation to

state the solution and – using Equation (29) and the expression in Equation (20)
for W (t,ρ) – come easily up with W (t,ρ) = 3t and, thus,

1
1+3t

= λ1(W (t,ρ)) 1 + 3t = λ2(W (t,ρ))
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ρ1(t, x) =

{
0 for x ≥ ln(1+3t)

3
1+3t
e3x else

ρ2(t, x) =

0 for x ≥ (1+3t)2−1
6

2√
(1+3t)2−6x

else

y1(t) = 0 y2(t) =

0 for t ≤
√

7−1
3

2(1+3t)√
(1+3t)2−6

else.

Figure 2 shows the graphs of ρ1 and ρ2 on (0, T ) × (0, 1) for T = 2. As one
can see, the more goods are passed on the supply chain the more the velocity for
commodity 1 decreases, since we have chosen as velocity function 1

1+W . The velocity
becomes so slow that no good actually arrives at x = 1. This is completely different
for commodity 2. Since we have as velocity function 1 +W the more goods we have

on the supply chain the higher the velocity becomes, such that for t >
√

7−1
3 goods

arrive at x = 1.

ρ1

x

t

ρ2

x
t

Figure 2. ρ1 and ρ2 for given inflow a1 ≡ 1 and a2 ≡ 2, ρ0 ≡ 0

Changing a2 ≡ 0, i.e. we do not have any goods for the commodity 2, also
the dynamics for ρ1 changes due to the coupling in the WIP W and we obtain
W (t,ρ) = t and, therefore,

λ1(W (t,ρ)) = 1
1+t

λ2(W (t,ρ)) = 1 + t

ρ1(t, x) =

{
0 for x ≥ ln(1 + t)
1+t
ex

else
ρ2(t, x) = 0

y1(t) =

{
0 for t ≤ e− 1
1
e

else
y2(t) = 0.

Figure 3 illustrates these solutions. Since in comparison with the aforementioned
example, illustrated in Figure 2 the amount of goods on the supply chain is signif-
icantly lower, the propagation speed of commodity 1 is higher, and goods arrive
at the boundary x = 1 for t > e − 1 as can be seen in Figure 3. The density of
commodity 2 is identically zero, since initial and boundary data are zero.

3. The multi-commodity model on networks.

3.1. Some definitions regarding the network setting.

Definition 3.1 (Definition of the network). A network is a directed acyclic graph
G = (E,V) (DAG) as for instance defined in [13, Definition B.14] with a set of edges
E and a set of vertices V. The set of edges can be decomposed into
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ρ1

x

t

ρ2

x
t

Figure 3. ρ1 and ρ2 for given inflow a1 ≡ 1 and a2 ≡ 0, ρ0 ≡ 0

E = Em ∪̇ Es ∪̇ Ee,

where Es is the set of starting edges, Ee the set of ending edges, and Em the set of
edges which are connected at the corresponding start and end node to other edges.

Furthermore V can be decomposed into

V = Vs ∪̇Vm,

where Vs are the vertices with only outgoing or only incoming edges, the start
and end vertices (sources and sink), and Vm the set of vertices with at least one
incoming and one outgoing edge.

The set Vd is the set of vertices with more than one outgoing edge. Let Ei(v) be
the set of edges which end in v for given v ∈ V and Eo(v) the set of edges which
start in v. We define

Vd := {v ∈ V : Eo(v) > 1}
and, additionally,

Vs := {v ∈ V : Ei(v) = ∅ ∨ Eo(v) = ∅} and Vm := {v ∈ V : |Ei(v)| · |Eo(v)| 6= 0}.

In Figure 4 we give an example of such a network.

v1

v2

v3

v4

v5

v6

v7

v8

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

Figure 4. A typical supply network with two commodities, E =
{ei, i = 1, . . . , 11}, V = {vi, i = 1, . . . , 8}, Vm = V \ {v1, v7.v8},
Vd = {v1, v2, v3, v6}, Ee = {e10, e11},Es = {e1, e2}, Ei(v2) =
{e1, e7}, Eo(v2) = {e3, e4}, . . .
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Definition 3.2 (The set of distribution functions). Let N ∈ N, T ∈ R>0, a network
as defined in Definition 3.1 be given and D :=

∑
v∈Vd

|Eo(v)|. Then we define the set

of distribution functions as

Σ :=

{
σ ∈ L∞((0, T );RN≥0)D : σe,v(t) ≥ 0,

∑
e∈Eo(v)

σe,v(t) = 1

∀t ∈ (0, T ) a.e., v ∈ Vd, e ∈ Eo(v)

}
and for an arbitrary subset X ⊆ L∞((0, T );RN )

ΣX :=

{
σ ∈ Σ : σe,v ∈ X ∀v ∈ Vd, ∀e ∈ Eo(v)

}
.

3.2. The dynamics on the network.

Definition 3.3 (The dynamics on the network). Let N ∈ N, T ∈ R>0 and a
network as defined in Definition 3.1 with edges E and vertices V be given. For
e ∈ E let ρe0 as initial load on every edge be given as well as the velocity functions
λe ∈ C1(R≥0;RN>0). Eventually, for e ∈ Es let the inflow ae be given. Then the
dynamics on the network for (t, x) ∈ (0, T )× (0, 1) can be stated as

ρ̇e(t, x) = −Λe(W (t,ρe))ρe
x(t, x) e ∈ E

ρe(0, x) = ρe
0(x) e ∈ E

Λe(W (t,ρe))ρe(t, 0) = ae(t) e ∈ Es

using the integral expression as defined in Equation (30) in Remark 3

W (t,ρe) :=

N∑
i=1

1∫
0

ρe
i(t, s) ds e ∈ E,

and the node conditions with Σ as defined in Definition 3.2

σ ∈ Σ

Λeo(v)(W (t,ρeo(v)))ρeo(v)(t, 0) =
∑

e∈Ei(v)

Λe(W (t,ρe))ρe(t, 1) v ∈ Vm \Vd

σe,v(t)�
∑

ē∈Ei(v)

Λē(W (t,ρē))ρē(t, 1) = Λe(W (t,ρe))ρe(t, 0) v ∈ Vd, e ∈ Eo(v)

for t ∈ [0, T ] a.e.. For the abbreviations considering the network topology we again
refer to Definition 3.1. The symbol � denotes the component-wise multiplication
and is for N ∈ N defined as

� :


RN × RN → RN

(a, b) 7→


a1b1

...

aNbN

 .

For a better understanding of the dynamics in Definition 3.3 and Definition 3.2
we add an interpretation:

The set of vectors ρe0 gives the load of goods at the time t = 0 on every edge
e ∈ E. Since in a general network there is most likely more than one inflow, Es is
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the set of starting edges, and the corresponding vectors ae represent for e ∈ Es the
influx of goods into the network. The functions ae will be subject to optimization
in Section 3.4, for instance, to track a certain demand. Furthermore, the equation∑
ē∈Ei(v)

Λē(W (t,ρē))ρē(t, 1) = Λe(W (t,ρe))ρe(t, 0) ∀t ∈ [0, T ] a.e. stands for the con-

servation of goods and is defined for every vertex which has ingoing edges and one
outgoing edge (otherwise we would have to distribute the good in a certain way), i.e.
for every v ∈ Vm \Vd. Thus, the equation σe,v(t)�

∑
ē∈Ei(v)

Λē(W (t,ρē))ρē(t, 1) =

Λe(W (t,ρe))ρe(t, 0) ∀t ∈ [0, T ] a.e. states with the help of the distribution vectors
σe,v for every good which amount should be distributed and on which distribut-
ing edge. This equation is only defined for vertices, where there is more than one
outgoing edge, v ∈ Vm. The distribution functions σe,v are nonnegative and sum-
marize to 1 for every distributing edge v ∈ Vd and for every good to ensure that
every single good is also conserved in the case of distributing edges. Of course, the
distribution functions are also subject to optimization in Section 3.4.

Altogether, the model simulates for a given network the flow of N (possible)
different goods. The generality of the model allows distributing and collecting
edges as well as N different goods. Coupling of the different goods only consists of
the collective load W (t,ρe) at time t ∈ [0, T ].

3.3. Well-posedness of the network-model for different spaces.

Theorem 3.4 (Well-posedness for Lp-data). Let N ∈ N be the number of com-
modities, T ∈ R>0, p ∈ [1,∞) and let a network with edges E and vertices V as
defined in Definition 3.1 be given. For e ∈ Es let furthermore ae ∈ Lp((0, T );RN≥0),

for e ∈ E the initial values ρe0 ∈ Lp((0, 1);RN≥0) and σ ∈ Σ as defined in Defini-

tion 3.2 be given. Then there exists a unique nonnegative solution ρ = (ρe)e∈E on
the network with regularity

ρe ∈ C([0, T ];Lp((0, 1);RN )) ∩ C([0, 1];Lp((0, T );RN )) ∀e ∈ E.

Proof. This result can easily be established by induction over the set of edges.
Therefore, since ae ∈ Lp((0, T );RN≥0) and ρe0 ∈ Lp((0, 1);RN≥0), we have for e ∈ Es

by Theorem 2.7

ρe ∈ C([0, T ];Lp((0, 1);RN )) ∩ C([0, 1];Lp((0, T );RN )).

Furthermore, we have ρe(·, 1) ∈ Lp((0, T );RN≥0) and thanks to the boundedness

of Λe also Λe(W (·,ρe))ρe(·, 1) ∈ Lp((0, T );RN≥0). These values are the boundary
values for the following edges possibly weighted by the distribution functions σe,v.

Since for v ∈ {v ∈ V : |Ei(v)| > 1} the l.h.s. boundary data for e ∈ Eo(v) consists
of the sum ∑

ē∈Ei(v)

Λē(W (·,ρē))ρē(·, 1) ∈ Lp((0, T );RN )

– depending on the vertex – multiplied by σe,v ∈ L∞((0, T );RN≥0), we can conclude

that the boundary values of the following edges are also in Lp((0, T );RN≥0). By

induction (recall the Definition 3.1 of the network structure under consideration)
this can be extended to the whole network. The solution is unique since the solution
of every single edge is unique, again as a result of Theorem 2.7.

Theorem 3.5 (Well-posedness for BV -data). Let N ∈ N be the number of com-
modities, T ∈ R>0, and let a network with edges E and vertices V as defined in
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Definition 3.1 be given. For e ∈ Es let furthermore ae ∈ BV ((0, T );RN≥0), for e ∈ E

the initial values ρe0 ∈ BV ((0, 1);RN≥0) and σ ∈ ΣBV as defined in Definition 3.2 be

given. Then there exists a unique nonnegative solution ρ = (ρe)e∈E on the network
with additional regularity

ρe ∈ L∞((0, T );BV ((0, 1);RN )) ∩ L∞((0, 1);BV ((0, T );RN )) ∀e ∈ E.

Proof. For the BV regularity the proof can be carried out almost as in the Lp case
in the proof of Theorem 3.4 using Remark 5. The only crucial question is when we
have distributing edges. Thus, let v ∈ Vd be given and e ∈ Eo(v). We then have
for the left hand side boundary data on the edge e the equation

Λe(W (t,ρe))ρe(t, 0) = σe,v(t)�
∑

ē∈Ei(v)

Λē(W (t,ρē))ρē(t, 1) for t ∈ [0, T ] a.e..

By induction and Remark 5, for ē ∈ Ei(v) every summand Λē(W (·,ρē))ρē(·, 1)
is BV regular and therefore also the sum. Furthermore, by assumption we have
σ ∈ ΣBV , such that for every v ∈ Vd, e ∈ Eo(v) the functions σe,v are BV regular.
Now, the product of two BV functions defined on the same domain is again in BV ,
which can easily been established by [21, Theorem 13.48 (2)]. Therein it is stated
that for I ⊂ R open we have

u ∈ BV (I)⇐⇒ u ∈ L1(I) and lim inf
h↘0

∫
{x∈I:x+h∈I}

|u(x+h)−u(x)|
h dx <∞. (36)

So let u, v ∈ BV (I) be given. Then we know by the embedding BV (I) ↪→ L∞(I)
in [3, Corollary 3.49] that u · v ∈ L1(I). Therefore, let us consider the second
condition, fix h sufficiently small and estimate by adding a zero and by using the
triangle inequality∫

{x∈I:x+h∈I}

|u(x+h)·v(x+h)−u(x)v(x)|
h dx ≤ ‖u‖L∞(I)

∫
{x∈I:x+h∈I}

|v(x+h)−v(x)|
h dx

+ ‖v‖L∞(I)

∫
{x∈I:x+h∈I}

|u(x)−u(x+h)|
h dx.

Applying the operation lim infh↘0 on both sides gives the claimed result since the
right hand side is bounded thanks to the characterization of BV functions in (36)
(recall that we assumed u, v ∈ BV (I)). Moreover, by [21, Theorem 13.48 (1)] we
also obtain the estimate for the variation of the product of two BV functions

|u · v|V (I) ≤ ‖u‖L∞(I) · |v|V (I) + ‖v‖L∞(I) · |u|V (I).

Altogether, the product of two BV functions is again BV regular, such that we
have

σe,v(·)�
∑

ē∈Ei(v)

Λē(W (·,ρē))ρē(·, 1) ∈ BV ((0, T );RN )

and, thus,

Λe(W (·,ρe))ρe(·, 0) ∈ BV ((0, T );RN ) for e ∈ Eo(v), v ∈ Vd.

By mathematical induction, we can extend the BV -regularity to the entire network.
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Remark 7 (Problems withW 1,p-data). A similar result cannot be deduced so easily
for W 1,p-data, even if we assume σ ∈ ΣW 1,∞ , since in general the Compatibility
Condition (35) in the interior of the network will not be satisfied.

However, assuming for every e ∈ E that ρe0 ≡ 0 guarantees this condition on
every edge except the starting ones, where we would have to impose additionally
for every e ∈ Es the condition ae(0) = 0.

But these assumptions on the initial values would restrict the model significantly,
such that we will not study them furthermore. Of course, we could also give even
more complicated conditions on which that compatibility conditions would be sat-
isfied even for ρe0 6≡ 0. However, this conditions would also involve the velocity
functions on each edge as well as the distributing functions σ and would be even
harder to be realized.

3.4. Existence of a minimizer for a typical L2-tracking type objective. We
define a typical L2 objective tracking type functional as

Definition 3.6 (Definition of the objective). For N ∈ N and a network as defined
in Definition 3.1 we specify the objective functional as

J : L2((0, T );RN )|Es| ×Σ× L2((0, T );RN )|Ee| → R≥0

(a,σ,y) 7→
∑
e∈Es

αe‖ae − ae
d‖2L2((0,T );RN ) +

∑
e∈Ee

γe‖ye − ye
d‖2L2((0,T );RN )

+
∑
v∈Vd

∑
e∈Eo(v)

sv,e‖σe,v − σe,v
d ‖

2
L2((0,T );RN ).

For e ∈ Es we furthermore assume αe ∈ R>0, a
e
d ∈ L2((0, T );RN ), for e ∈ Ee we

assume γe ∈ R≥0, y
e
d ∈ L2((0, T );RN ) and, eventually, for v ∈ Vd, e ∈ Eo(v) we

assume sv,e ∈ R≥0 and σe,v
d ∈ L2((0, T );RN ). For simplicity, let in the following

αe = γe = sv,e = 1. Eventually, y is a vector, consisting of the outflow of the network
and will be, therefore, uniquely determined by a and σ, where a := (ae)e∈Es

and
σ := (σe,v)v∈Vd,e∈Eo(v).

For the proof of the main Theorem 3.10 in this Section 3.4, we need the following
Lemmata:

Lemma 3.7 (ΣBVM
weakly-∗ closed). For a network as defined in Definition 3.1,

N ∈ N commodities and M ∈ R≥0 let

BVM := {f ∈ BV : ‖f‖BV ≤M}, (37)

i.e. the scaled BV -ball. Then, the set ΣBVM
, defined in Definition 3.2, is weakly-∗

closed, in particular we have

∀(σk)k∈N ∈ ΣBVM
∃(σnk

)k∈N and σ∞ ∈ ΣBVM
: σnk

→ σ∞ in Lp, p ∈ [1,∞).

Proof. The proof follows partially from [3, Theorem 3.23] or [7, Proposition 10.1.1].
Therein it is stated that for every sequence which admits a uniform BV estimation,
we also have a limit in BV and by the lower semi-continuity of the variation, the
variation of the limit is bounded by the same uniform BV bound M . The strong
convergence of a subsequence in Lp can furthermore be deduced by the compact
embedding ([3, Corollary 3.49])

BV (I)
c
↪→ Lp(I) for p ∈ [1,∞) and I ⊂ R a bounded interval.
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We also refer to the Rellich-Kondrachov Theorem in [21, Theorem 13.32] for the
strong convergence of a subsequence in BV with respect to the Lp-norm. It remains
to show that the inequality constraints in ΣBVK

are fulfilled when passing σnk
to the

limit. This can easily been established by contradiction or by using the convexity
of ΣBVM

and will be omitted here.

Lemma 3.8 (Weak convergence of the outflow for weak convergent inflow). As
archetype of a network as illustrated in Figure 5 we only consider one edge. For a

an ⇀ a∞ yn ⇀ y∞
ρn,ρ∞

Figure 5. Archetype of a network – weak convergence of an im-
plies weak convergence of yn

sequence of inflows (an)n∈N ∈ L2((0, T );RN ), weakly converging in L2((0, T );RN )
to a∞ ∈ L2((0, T );RN ), the outflow yn, defined by

yn := Λ(W (·,ρn))ρn(·, 1),

will also weakly converge to y∞, i.e.

yn ⇀ y∞ in L2((0, T );RN ).

Thereby, ρn and ρ∞, respectively, are defined as the solution of the initial boundary
value problems

ρ̇(t, x) + Λ(W (t,ρ))ρx(t, x) = 0

ρ(0, x) = ρ0(x)

and left hand side boundary data

Λ(W (t,ρ))ρ(t, 0) = an(t),

Λ(W (t,ρ))ρ(t, 0) = a∞(t),

respectively. ρ0 ∈ L2((0, 1);RN ) is given data and

y∞ ≡ Λ(W (·,ρ∞))ρ∞(·, 1).

Proof. We refer to [11, Theorem 3.1] and consider the characteristic ξn defined by

ξn(t) :=

t∫
0

λ(W (s,ρn)) ds (38)

and the generalized WIP as defined in Remark 3

W (t,ρn) :=

N∑
i=1

1∫
0

ρi,n(t, s) ds.

Inserting the solution of ρi,n for i ∈ N with the help of the characteristics stated in
Equation (24)

ρi,n(t, x) =

ρ0,i(x− ξi,n(t)) for 0 ≤ ξi,n(t) ≤ x
ai,n(ξ−1

i,n(ξi,n(t)−x))

ξ′i,n(ξ−1
i,n(ξi,n(t)−x))

for 0 ≤ x ≤ ξi,n(t),
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we obtain for t ≤ min
i∈N

min{ξ−1
i,n(1), T} – using Equation (20) for W (·, ∗) –

ξn(t) =

t∫
0

λ

 N∑
i=1

 s∫
0

ai,n(t) dt +

1−ξi,n(s)∫
0

ρ0,i(s) ds


 ds. (39)

Since by assumption an is weakly convergent in L2((0, T );RN ), it is uniformly
bounded. Furthermore, we know from Theorem 2.7 and Remark 3 that W (t,ρn) is
continuous with respect to t. A Hölder estimate and Equation (20) yields

|W (t,ρn)| ≤
N∑
i=1

 t∫
0

|ai,n(t)|dt +

1−ξi,n(t)∫
0

|ρ0,i(s)|ds


≤

N∑
i=1

(√
t‖ai,n‖L2((0,t);R)) +

√
1− ξi,n(t)‖ρ0,i‖L2((0,1−ξi,n(t));R)

)
≤
√
T‖an‖L2((0,T );RN ) + ‖ρ0‖L2((0,1);RN ).

The L2 function ρ0 is given data, therefore, ‖ρ0‖L2((0,1);RN ) is bounded and – taking

into account the uniform boundedness of an in L2 – we altogether obtain

max
t∈[0,T ]

|W (t,ρn)| ≤ C

with a given constant C independent of n. By C ∈ R we denote several, possibly
different, constants. Furthermore, we have for i ∈ N

‖ξi,n‖C1([0,T ];R) ≤ C

by the uniform boundedness of W (t,ρn) and the boundedness of the continuous
function λ(·) on a bounded set such that also

‖ξn‖C1([0,T ];RN ) ≤ C (40)

is uniformly bounded with respect to the C1-norm. Now define the set

Ξ := {ξn : n ∈ N and ξn defined by Equation (38)} (41)

and observe that Ξ is bounded with respect to the uniform topology (i.e. the C0-
topology) and equicontinuous. Thereby, the equicontinuity is a direct consequence
of the uniform estimate in the C1-norm as stated in Equation (40) and thus of the
uniform (with respect to n) boundedness of the first derivative of ξn,

|ξ′n(t)| = |λ(W (t,ρn))| ≤ λ(M) with M :=

N∑
i=1

(
‖ai‖L1(0,T ) + ‖ρ0,i‖L1(0,1)

)
.

Thus, the sequence (ξn)n∈N is Lipschitz continuous and hence equicontinuous.
So we can apply Arzelà-Ascoli’s Theorem (for instance see [9, Theorem 4.25])

which then states that Ξ in (41) is relatively compact in C([0, T ];RN ). Thus,

∃ξ̄∞ ∈ C([0, T ];RN ) ∃{ξnl
}l∈N : ξnl

→ ξ̄∞ in C([0, T ];RN ), (42)

i.e. there exists a subsequence of ξn and ξ̄∞ ∈ C([0, T ];RN ) such that the subse-
quence converges to ξ̄∞ in the C0-topology.
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Note that up to now we do not have that Ξ in (41) is closed so it is unclear if
ξ̄∞ is the corresponding characteristic to the inflow a∞. Let

C̄ := sup
n∈N
‖an‖L1((0,T );RN ) + ‖ρ0‖L1((0,1);RN )

≤
√
T sup
n∈N
‖an‖L2((0,T );RN ) + ‖ρ0‖L2((0,1);RN ) <∞,

since L2(Ω) ↪→ L1(Ω) for Ω ⊆ Rd open and bounded, d ∈ N, by a simple Hölder
estimate. Then we have for all i ∈ N – recalling Definition 2.4 –

0 < λi(C̄) ≤ ξ′n,i(t) = λi(W (t,ρn)) ≤ λi(C̄) ∀t ∈ [0, T ], n ∈ N (43)

as well as for i ∈ N – in the following denoting an appropriate subsequence again
as sequence –

λi(C̄)|ξ̄−1
i,∞(x)− ξ−1

i,n(x)| ≤
∣∣∣ξn,i (ξ̄−1

i,∞(x)
)
− ξn,i

(
ξ−1
i,n(x)

)∣∣∣
=
∣∣∣ξn,i (ξ̄−1

i,∞(x)
)
− ξ̄∞,i

(
ξ̄
−1
i,∞(x)

)∣∣∣
−→ 0 for n→∞

uniformly for x ∈ [0, ξ̄
−1
i,∞(T )] thanks to Equation (42). Therefore, we get the

convergence – at least for a subsequence –

ξ−1
i,n → ξ̄

−1
i,∞ in C([0, x0]). (44)

Now, for t ∈ [0,min
i∈N

min{ξ−1
n,i(1), T}] in Equation (39) we pass n → ∞ and obtain

by the weak convergence of an and the uniform convergence of ξn

ξ̄∞(t) =

t∫
0

λ
( N∑
i=1

( s∫
0

ai,∞(t) dt +

1−ξ̄i,∞(s)∫
0

ρ0,i(s) ds
))

ds, t ∈ [0,min
i∈N

min{ξ̄−1
∞,i(1), T}].

Of course by definition we also have for ξ∞, i.e. the characteristic to ρ∞, in the
assumption (Lemma 3.8),

ξ∞(t) =

t∫
0

λ
( N∑
i=1

( s∫
0

ai,∞(t) dt +

1−ξi,∞(s)∫
0

ρ0,i(s) ds
))

ds, t ∈ [0,min
i∈N

min{ξ−1
∞,i(1), T}].

Now it is evident that ρ∞ ≡ ρ̄∞ for small t (for this see the proof of Theorem 2.7)
and by the extension procedure in the proof of Theorem 2.7 this is also true for
larger t. Thus, we have

ρ∞ ≡ ρ̄∞ for (t, x) ∈ (0, T )× (0, 1),

ξ′n → ξ′∞ in C([0, T ];RN ),

ξn → ξ∞ in C1([0, T ];RN ).

Finally, we show the postulated weak convergence

yn ⇀ y∞ in L2((0, T );RN ).

By definition, this means we must prove

lim
n→∞

T∫
0

(yn(t)− y∞(t)) g(t) dt = 0 ∀g ∈ L2((0, T );RN ).



NONLOCAL CONSERVATION LAWS ON NETWORKS 777

We divide the remaining proof into different cases and show without loss of gen-
erality the claimed result only for one commodity i ∈ N. Let i ∈ N be given and
ξi,∞(T ) < 1. By uniform convergence there is n sufficiently large such that we have

also ξi,n(T ) < 1 and obtain by Equation (24) for arbitrary g ∈ L2((0, T );RN )∣∣∣∣∣∣
T∫

0

(
yi,n(t)− yi,∞(t)

)
gi(t) dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
T∫

0

(
λi(W (t,ρn))ρ0,i(1− ξi,n(t))− λi(W (t,ρ∞))ρ0,i(1− ξi,∞(t))

)
gi(t) dt

∣∣∣∣∣∣
i.e. the outflow only depends on the initial data (and through W (t,ρ) also on the
initial data of the remaining commodities as well as possibly on the inflow of these).

By integration by substitution and the assumption ξi,n(T ) ≥ ξi,∞(T ) we have∣∣∣∣∣∣
T∫

0

(
λi(W (t,ρn))ρ0,i(1− ξi,n(t))− λi(W (t,ρ∞))ρ0,i(1− ξi,∞(t))

)
gi(t) dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1∫

1−ξi,n(T )

ρ0,i(y)gi(ξ
−1
i,n(1− y)) dy −

1∫
1−ξi,∞(T )

ρ0,i(y)gi(ξ
−1
i,∞(1− y)) dy

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
1∫

1−ξi,∞(T )

ρ0,i(y)
(
gi(ξ

−1
i,n(1− y))− gi(ξ

−1
i,∞(1− y))

)
dy

∣∣∣∣∣∣∣ (45)

+

∣∣∣∣∣∣∣
1−ξi,∞(T )∫

1−ξi,n(T )

ρ0,i(y)gi(ξ
−1
i,n(1− y)) dy

∣∣∣∣∣∣∣ . (46)

Now by Hölder’s inequality we estimate Expression (45)∣∣∣∣∣∣∣
1∫

1−ξi,∞(T )

ρ0,i(y)
(
gi(ξ

−1
i,n(1− y))− gi(ξ

−1
i,∞(1− y))

)
dy

∣∣∣∣∣∣∣
≤ ‖ρ0,i‖L2(0,1)‖gi(ξ

−1
i,n(1− ·))− gi(ξ

−1
i,∞(1− ·))‖L2(1−ξi,∞(T ),1),

which converges for n → ∞ to zero by the uniform convergence of ξn to ξ∞, the
result in (44) and Lemma 2.6. The Expression (46) can also be estimated by Hölder’s
inequality to (assuming that ξi,n(T ) ≥ ξi,∞(T ), otherwise we have to change the
boundary of the integral)∣∣∣∣∣∣∣

1−ξi,∞(T )∫
1−ξi,n(T )

ρ0,i(y)gi(ξ
−1
i,n(1− y)) dy

∣∣∣∣∣∣∣
≤ ‖ρ0,i‖L2(1−ξi,n(T ),1−ξi,∞(T ))‖λi(W (·,ρn))‖L∞(0,T )‖gi‖L2(0,T ).

For n → ∞ the integration measure tends to zero in ‖ρ0,i‖L2(1−ξi,n(T ),1−ξi,∞(T ))

due to the uniform convergence of ξn → ξ∞, while the remaining terms are bounded
with respect to n (see Inequality (43)).
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Now let for i ∈ N fixed, ξi,∞(T ) ≥ 1. Then we also have for sufficiently large
n ∈ N ξi,n(T ) ≥ 1 and we can write by Equation (24) for sufficiently large t

yi,∞ ≡ λi(W (·,ρ∞))
ai,∞(ξ−1

i,∞(ξi,∞(·)−1))

ξ′i,∞(ξ−1
i,∞(ξi,∞(·)−1))

, yi,n ≡ λi(W (·,ρn))
ai,n(ξ−1

i,n(ξi,n(·)−1))

ξ′i,n(ξ−1
i,n(ξi,n(·)−1))

,

i.e. the outflow depends explicitly on the inflow (since the initial conditions have
already passed the boundary) and implicitly on the remaining commodities. Similar
estimations as already performed will thus show the weak convergence of the outflow
yn to y∞ in L2((0, T );RN ). We will not carry out these straightforward estimations.

Lemma 3.9 (Weak and strong convergence and its product). As archetype of a
network with distributing vertices we consider one vertex v with one incoming edge
0 and m ∈ N≥2 outgoing edges {1, . . . ,m} as illustrated in Figure 6. Therefore, let

v
0

1

m

y0(·) Λm(W (·,ρm))ρm(·, 0) ≡ σm(·)� y0(·)

Λ1(W (·,ρ1))ρ1(·, 0) ≡ σ1(·)� y0(·)

...

Figure 6. A diverging vertex, v ∈ Vd, with edges {0, 1, . . . ,m}

M ∈ R≥0, N ∈ N, T ∈ R>0 be given and – for simplicity –

Σ̃BVM
:=
{
σ ∈ BV ((0, T );RN )m : 0 ≤ σe(t) a.e.,

m∑
e=1

σe(t) = 1 a.e.

‖σe‖BV ((0,T );RN ) ≤M ∀e ∈ {1, . . . ,m}
}

(47)

with σ = (σ1, . . . ,σm). Let (yn)n∈N ⊂ L2((0, T );RN ) be a weakly convergent se-

quence with weak limit y∞ ∈ L2((0, T );RN ) and let (σe
n)n∈N ⊂ Σ̃BVM

be a strongly

convergent sequence in L2((0, T );RN ) with limit σe
∞ ∈ Σ̃BVM

. Then, we have for
every e ∈ {1, . . . ,m}

σe
n � yn ⇀ σe

∞ � y∞ in L2((0, T );RN ),

where � is the component-wise multiplication defined in Definition 3.3.

Proof. We use the definition of weak convergence in L2((0, T );RN ) and compute for
given g ∈ L2((0, T );RN ), noticing that for any Hilbert space H, 〈 · , ∗ 〉H denotes
the inner product, ∣∣∣〈σe

n � yn − σe
∞ � y∞ , g 〉L2((0,T );RN )

∣∣∣
=
∣∣∣〈σe

n � yn − σe
∞ � yn + σe

∞ � yn − σe
∞ � y∞ , g 〉L2((0,T );RN )

∣∣∣
≤
∣∣∣〈 (σe

n − σe
∞)� yn , g 〉L2((0,T );RN )

∣∣∣+
∣∣∣〈σe

∞ � (yn − y∞) , g 〉L2((0,T );RN )

∣∣∣ .
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First, let us consider the second term, which can be transformed into∣∣∣〈σe
∞ � (yn − y∞) , g 〉L2((0,T );RN )

∣∣∣ =
∣∣∣〈yn − y∞ , σe

∞ � g 〉L2((0,T );RN )

∣∣∣ .
Since σe

∞ ∈ L∞((0, T );RN ) by the embedding [7, Theorem 10.1.3] and Defini-
tion 47, and g ∈ L2((0, T );RN ), the product σe

∞�g is again in L2((0, T );RN ) such
that we can use the weak convergence of yn to y∞ to conclude that

lim
n→∞

∣∣∣〈yn − y∞ , σe
∞ � g 〉L2((0,T );RN )

∣∣∣ = 0.

Second, let us consider the first term∣∣∣〈 (σe
n − σe

∞)� yn , g 〉L2((0,T );RN )

∣∣∣ . (48)

Since we have the convergence of σe
n → σe

∞ only in Lp((0, T );RN ) for p < ∞ and
yn ∈ L2((0, T );RN ) as well as g ∈ L2((0, T );RN ), we cannot conclude directly that
this term will also converge to zero. Thus, we use a smoothing argument as follows.

By [25, Theorem 17.12] we have for T ∈ R>0 the very famous result that

for every p ∈ [1,∞) : C([0, T ])
‖·‖Lp(0,T )

= Lp(0, T ),

i.e. the continuous functions on a bounded interval are dense in Lp and so also
C([0, T ];RN ) is dense in Lp((0, T );RN ). Therefore, we can find for every g ∈
L2((0, T );RN ) a sequence (gm)m∈N ⊂ C([0, T ];RN ) such that

lim
m→∞

‖g − gm‖L2((0,T );RN ) = 0.

We can use this result in Expression (48) and obtain by applying Hölder’s inequality∣∣∣〈 (σe
n − σe

∞)� yn , g 〉L2((0,T );RN )

∣∣∣
=
∣∣∣〈 (σe

n − σe
∞)� yn , g − gm + gm 〉L2((0,T );RN )

∣∣∣
≤
∣∣∣〈 (σe

n − σe
∞)� yn , g − gm 〉L2((0,T );RN )

∣∣∣+
∣∣∣〈 (σe

n − σe
∞)� yn , gm 〉L2((0,T );RN )

∣∣∣
≤ ‖σe

n − σe
∞‖L∞((0,T );RN )‖yn‖L2((0,T );RN )‖g − gm‖L2((0,T );RN )

+‖σe
n − σe

∞‖L2((0,T );RN )‖yn � gm‖L2((0,T );RN )

≤ 2C‖g − gm‖L2((0,T );RN ) + C‖σe
n − σe

∞‖L2((0,T );RN )‖gm‖L∞((0,T );RN ),

where C = sup
n∈N
‖yn‖L2((0,T );RN ). C is bounded since (yn)n∈N is a weakly convergent

sequence in L2((0, T );RN ) and ‖σe
n − σe

∞‖L∞((0,T );RN ) has been estimated by 2,

since σe
n and σe

∞ are by assumption in Σ̃M and therefore essentially bounded by 1.
Then let ε > 0 be given we obtain by the convergence and density results

∃M0(ε) ∈ N : ‖g − gM0
‖L2((0,T );RN ) ≤ ε.

Furthermore, we choose n ∈ N sufficiently large to guarantee

‖σe
n − σe

∞‖L2((0,T );RN )‖gM0
‖L∞((0,T );RN ) ≤ ε

and obtain for n sufficiently large altogether∣∣∣〈 (σe
n − σe

∞)� yn , g 〉L2((0,T );RN )

∣∣∣ ≤ 3Cε.

Since ε > 0 was arbitrary we can conclude that

lim
n→∞

∣∣∣〈 (σe
n − σe

∞)� yn , g 〉L2((0,T );RN )

∣∣∣ = 0,
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the missing link to show the weak convergence of the product of a strongly conver-
gent sequence (σe

n)n∈N ⊂ Σ̃M and a weak convergent sequence (yn)n∈N.

Theorem 3.10 (Existence of a minimizer for a ∈ L2 and σ ∈ ΣBVM
). Let N ∈ N,

M ∈ R≥0, T ∈ R>0 and a network as defined in Definition 3.1 be given. Consider
the optimal control problem with objective as defined in Definition 3.6 subject to
the dynamics on the network as defined in Definition 3.3 and replace the condition
σ ∈ Σ as defined in Definition 3.2 by σ ∈ ΣBVM

with BVM as in (37). Then, there
exists a minimizer

∃a∞ ∈ L2((0, T );RN≥0)|Es|, σ∞ ∈ ΣBVM
, y∞ ∈ L2((0, T );RN≥0)|Ee|

such that

J(a∞,σ∞,y∞) = inf
a∈L2((0,T );RN

≥0)|Es|

σ∈ΣBVM

y∈L2((0,T );RN
≥0)|Ee|

J(a,σ,y),

i.e. (a∞,σ∞,y∞) solves the corresponding optimal control problem.
For e ∈ Ee the outflow ye is defined by

ye ≡ Λe(W (·,ρe))ρe(·, 1),

and is – as already mentioned – completely determined by a and σ.

Proof. Since we have by Definition

J(a,σ,y) ≥ 0 for every (a,σ,y) ∈ L2((0, T );RN≥0)|Es|×ΣBVM
×L2((0, T );RN )|Ee|,

we can find a minimizing sequence

(an,σn,yn)n∈N ⊂ L2((0, T );RN≥0)|Es| ×ΣBVM
× L2((0, T );RN )|Ee|

of J such that

lim
n→∞

J(an,σn,yn) = inf
a∈L2((0,T );RN

≥0)|Es|

σ∈ΣBVM

y∈L2((0,T );RN )|Ee|

J(a,σ,y).

Therefore, there exists C > 0 so that

J(an,σn,yn) ≤ C ∀n ∈ N.

Recalling Definition 3.6 of J , we conclude in particular that for every e ∈ Es

‖ae
n‖L2((0,T );RN ) ≤ C ∀n ∈ N

uniformly in n.
Since every uniformly bounded sequence in L2 admits a weakly convergent sub-

sequence there is a∞ ∈ L2((0, T );RN≥0)|Es| such that

ank
⇀ a∞ in L2((0, T );RN≥0)|Es| for k →∞.

Furthermore by Definition 3.2 of ΣBVM
and the results of Lemma 3.7, for every

v ∈ Vd, e ∈ Eo(v) we can find a subsequence and σe,v
∞ ∈ L2((0, T );RN ) such that

σe,v
nl
→ σe,v

∞ in L2((0, T );RN ) for l→∞.

As we will see, the strong convergence is crucial at this point. For simplicity we
denote the subsequences again as sequences.
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For e ∈ E let ρen be the weak solution of the initial boundary value problem
stated in Definition 2.3 for (t, x) ∈ (0, T )× (0, 1)

ρ̇e(t, x) + Λe(W (t,ρe))ρe
x(t, x) = 0

ρe(0, x) = ρe
0(x)

complemented by the boundary value depending on the edges in the network

Λe(W (t,ρe))ρe(t, 0) = ae
n(t) e ∈ Es∑

ē∈Ei(v)

Λē(W (t,ρē))ρē(t, 1) = Λe(W (t,ρe))ρe(t, 0) v ∈ Vm \Vd, e ∈ Eo(v)

σe,v
n (t)�

∑
ē∈Ei(v)

Λē(W (t,ρē))ρē(t, 1) = Λe(W (t,ρe))ρe(t, 0) v ∈ Vd, e ∈ Eo(v).

For e ∈ E let W (·,ρen) : [0, T ]→ R be defined as in Remark 3 and ξen : [0, T ]→ RN
as characteristic

W (t,ρen) :=

N∑
i=1

1∫
0

ρei,n(t, s) ds, ξen(t) :=

t∫
0

λe(W (s,ρen)) ds.

In the proof we consider the different types of edges, separately, and use mathemat-
ical induction over the set of edges:
The initial or starting edges: For e ∈ Es we can use Lemma 3.8 and obtain for
ae
n ⇀ ae

∞ also

Λe(W (·,ρn))ρen(·, 1) ⇀ Λe(W (·,ρ∞))ρe∞(·, 1) in L2((0, T );RN ).

The non-distributing edges v ∈ Vm \Vd, e ∈ Eo(v): For those edges in the network
we have as inflow the sum of some weakly convergent outflows, i.e.

Λe(W (·,ρn))ρen(·, 0) ≡
∑

ē∈Ei(v)

Λē(W (·,ρn))ρēn(·, 1).

Assuming inductively that every inflow converges weakly, we obtain by Lemma 3.8∑
e∈Ei(v)

Λe(W (·,ρn))ρen(·, 1) ⇀
∑

e∈Ei(v)

Λe(W (·,ρ∞))ρe∞(·, 1),

and, thus,

Λe(W (·,ρn))ρen(·, 0) ⇀ Λe(W (·,ρ∞))ρe∞(·, 0) in L2((0, T );RN ).

The distribution edges v ∈ Vd, e ∈ Eo(v): Here we have as inflow of a given edge

Λe(W (·,ρn))ρen(·, 0) ≡ σe,v
n (·)�

∑
ē∈Ei(v)

Λē(W (·,ρn))ρēn(·, 1).

By Lemma 3.9 we obtain the weak convergence of

σe,v
n (·)�

∑
ē∈Ei(v)

Λē(W (·,ρn))ρēn(·, 1) ⇀ σe,v
∞ (·)�

∑
ē∈Ei(v)

Λē(W (·,ρ∞))ρē∞(·, 1)

such that by Lemma 3.8

Λe(W (·,ρn))ρen(·, 0) ⇀ Λe(W (·,ρ∞))ρe∞(·, 0) in L2((0, T );RN ).

For the weak convergence of yn to y∞ we just note that yn and y∞ are uniquely
determined by an,σn, a∞,σ∞ respectively. So we have constructed a minimizing
sequence (an,σn,yn)n∈N and have shown its (weak) convergence on the network.



782 M. GUGAT, A. KEIMER, G. LEUGERING AND Z. WANG

As a result we obtain by the special structure of the cost functional J in Defini-
tion 3.6 and the weakly lower semi-continuity of J the inequality

J(a∞,σ∞,y∞) =
∑
e∈Es

‖ae
∞ − ae

d‖2L2((0,T );RN ) +
∑
e∈Ee

‖ye
∞ − ye

d‖2L2((0,T );RN )

+
∑
v∈Vd

∑
e∈Eo(v)

‖σe,v
∞ − σ

e,v
d ‖

2
L2((0,T );RN )

≤ lim inf
n→∞

∑
e∈Es

‖ae
n − ae

d‖2L2((0,T );RN )

+ lim inf
n→∞

∑
e∈Ee

‖ye
n − ye

d‖2L2((0,T );RN )

+ lim inf
n→∞

∑
v∈Vd

∑
e∈Eo(v)

‖σe,v
n − σ

e,v
d ‖

2
L2((0,T );RN )

≤ lim inf
n→∞

J(an,σn,yn) = inf
a∈L2((0,T );RN

≥0)|Es|

σ∈ΣBVM

y∈L2((0,T );RN )|Ee|

J(a,σ,y).

Hence (a∞,σ∞,y∞) is indeed a minimizer of the cost functional and we also have

lim inf
n→∞

J(an,σn,yn) = lim
n→∞

J(an,σn,yn).

Due to the fact that

an ⇀ a∞ in L2((0, T );RN≥0)|Es|

and also

‖an‖L2((0,T );RN
≥0

)|Es| → ‖a∞‖L2((0,T );RN
≥0

)|Es| ,

we additionally have strong convergence of the chosen subsequence, i.e.

an → a∞ in L2((0, T );RN≥0)|Es|,

since convergence in the norm and weak convergence imply strong convergence in
Hilbert spaces. The same argumentation is also valid for yn, such that we can also
deduce for a chosen subsequence

yn → y∞ in L2((0, T );RN≥0)|Es|.

Remark 8 (A modification of ΣBVM
). One may ask why we do not optimize over

the set Σ as the set of distribution functions in Theorem 3.10. In the proof of
that theorem we needed for v ∈ Vd and e ∈ Eo(v) the compactness of {σe,v : v ∈
Vd, e ∈ Eo(v),

∑n
i=1 σ

e,v
i (t) = 1, σ(t) ≥ 0 a.e.} in L2((0, T );RN ) to make a weak

convergent sequence in ΣM (i.e. in the BV ball) strong convergent in L2((0, T );RN )
(see also Lemma 3.7 and Lemma 3.9).

This compact embedding is not true for Σ as defined in Definition 3.2 as the
following theorem of Jacques Simon [22, Theorem 1] illustrates. Therein it is stated
for a Banach space B that a subset M of Lp((0, T );B) for p ∈ [1,∞) is relatively

compact (i.e. M
‖·‖Lp((0,T );B)

is compact) if and only if

• the set

{
t2∫
t1

f(t) dt : f ∈M

}
is relatively compact in B for every 0 < t1 <

t2 < T
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• sup
f∈M

‖f(·+ h)− f(·)‖Lp((0,T );B) → 0 for h→ 0.

In our case we have B = RN , p = 2 and M = Σ.
The first statement can easily be proved to be true since the functions belonging

to Σ are essentially bounded and therefore the set

{
t2∫
t1

f(t) dt : f ∈M

}
is bounded

in B and by the Heine-Borel’s Theorem the closure is compact.
Nevertheless the second statement is not true and in [24] one can find a coun-

terexample.

Remark 9 (A change of the objective functional). As one can easily see in the
proof of the existence Theorem 3.10, we have for the distributing edges a product
of distribution functions and weak convergent boundary values. To guarantee the
weak convergence of the product it is crucial that we have the essential boundedness
of the distribution functions σ and also the strong convergence in Lp, in particular
in L2 (see Lemma 3.7 and Lemma 3.9). This strong convergence is underwritten
by the compactness of BVM in Lp, i.e. by assuming σ ∈ ΣBVM

as defined in
Definition 3.2. Therefore, we could also change the objective in Definition 3.6 to

J̃(a,y) :=
∑
e∈Es

αe‖ae − ae
d‖2L2((0,T );RN ) +

∑
e∈Ee

γe‖ye − ye
d‖2L2((0,T );RN ),

even with the choice γe = 0 for all e ∈ Ee. In either case Theorem 3.10 would still
hold.

We have already mentioned that the compactness of BV is essential in the proof
of Theorem 3.10. The uniform boundedness of the set ΣBVM

with respect to the
BV -norm could also be achieved by measuring the distribution functions in the
objective with respect to the BV -norm, i.e. by changing the objective – for instance
– to

Ĵ(a,σ,y) := J̃(a,y) +
∑
v∈Vd

∑
e∈Eo(v)

sv,e‖σe,v − σe,v
d ‖

2
BV ((0,T );RN ).

Then, we could drop the assumption σ ∈ ΣBVM
in Theorem 3.10 and could choose

as set to optimize the distribution functions ΣBV (Definition 3.2).

Remark 10 (A change of the objective functional from L2 to Lp with p ∈ [1,∞)).
Lemma 3.8 will still hold, if we replace the objective in Definition 3.6 by the cor-
responding Lp-norms for p ∈ [1,∞) and assume that σ ∈ ΣBVM

as defined in
Definition 3.2, since the key ingredient to prove the result is convergence of the
characteristics in the uniform topology, which is – due to the smoothing of the
generalized WIP – true for every p ∈ [1,∞).

Also Lemma 3.9 holds for p ∈ [1,∞) and, thus, also Theorem 3.10. The only
difference for p 6= 2 is that we cannot prove the strong convergence of an → a∞ in
Lp((0, T );RN≥0)|Es|, since convergence of the norm and weak convergence does not
imply strong convergence in Banach spaces.

4. Conclusions. In this paper we have shown the well-posedness of a PDE model
for multi-commodity flow on networks. Furthermore, we have proven existence of
an optimal control in a suitable analytical framework.
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