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Abstract. We study the practical synchronization of the Kuramoto dynamics

of units distributed over networks. The unit dynamics on the nodes of the

network are governed by the interplay between their own intrinsic dynamics
and Kuramoto coupling dynamics. We present two sufficient conditions for

practical synchronization under homogeneous and heterogeneous forcing. For
practical synchronization estimates, we employ the configuration diameter as

a Lyapunov functional, and derive a Gronwall-type differential inequality for

this value.

1. Introduction. Collective synchronized behavior in coupled oscillators often ap-
pears in many complex biological systems, such as groups of fireflies, neurons, and
cardiac pacemaker cells [1, 5, 31, 32]. The synchronization phenomenon arising
from a pair of pendulum clocks hanging on the same bar was first reported in the
literature by Huygens in 1665. However, its mathematical treatment was first in-
vestigated by two pioneers, Winfree [31] and Kuramoto [19], about forty years ago.
Since then, Kuramoto’s first-order model and its extension have been extensively
studied in various disciplines [1, 8, 13, 23, 24, 27]. The Kuramoto model has simple
intrinsic dynamics governed by the natural frequency, so that the uncoupled Ku-
ramoto oscillator’s phase has linear dynamics on the unit circle. A natural questions
is

“If the intrinsic dynamics are heterogeneous and rather complicated, can
we still expect some kind of synchrony among oscillators?”

2010 Mathematics Subject Classification. Primary: 70F99; Secondary: 92B25.
Key words and phrases. Kuramoto model, intrinsic dynamics, external force, practical

synchronization.
The work of S.Y. Ha is partially supported by NRF grant (2014R1A2A205002096). The work

of J. Park was supported by NRF(National Research Foundation of Korea) Grant funded by the
Korean Government(NRF-2014-Fostering Core Leaders of the Future Basic Science Program).

787

http://dx.doi.org/10.3934/nhm.2015.10.787


788 SEUNG-YEAL HA, SE EUN NOH AND JINYEONG PARK

Such situations can be easily found in several examples, e.g., the daily cycling of
light and darkness affecting human sleep rhythms [30]. External fields can also
model the external current applied to a neuron, so as to describe the collective
properties of excitable systems with planar symmetry. For other physical devices,
such as Josephson junctions, a periodic external force can model an oscillating
current across the junctions.

The main purpose of this paper is to study the dynamics of Kuramoto units with
heterogeneous intrinsic dynamics located on a symmetric and connected network
G = (V,E,Ψ) where V = {u1, · · · , uN} and E ⊂ V × V are vertex and edge sets,
respectively and Ψ = (ψij) is an N × N matrix whose element ψij the capacities
of the edge connecting from uj to ui. For a given network or graph G, we assume
that Kuramoto oscillators are located at the nodes of the network V , and that they
interact symmetrically through the interacting channels registered by the connection
topology E and Ψ. Let ζi = ζi(t) be a quantifiable description of the state of unit
at node i. In the absence of coupling, we assume that ζi ∈ R is governed by its own
dynamics:

ζ̇i = Fi(ζi, t), (1)

where we assume that the forcing function Fi : R× R+ → R is a C1-function. We
now consider the case where the above decoupled dynamics (1) interact with each
other through the connecting edges of the network. In this case, we assume that
the dynamics of ζi are governed by the following coupled non-autonomous system: ζ̇i = Fi(ζi, t) +K

N∑
j=1

ψij sin(ζj − ζi), t > 0;

ζi(0) = ζi0 t = 0,

(2)

where K is a positive coupling strength. The static interaction matrix Ψ = (ψij) is
assumed to be symmetric and connected in the sense that

(i) ψij = ψji ≥ 0, 1 ≤ i, j ≤ N,
(ii) For any (i, j) ∈ V × V , there is a shortest path from i to j, say

i = k0 → k1 → · · · → kdij = j, (kl, kl+1) ∈ E, l = 0, 1, . . . , dij − 1.

(3)

Here, dij denotes the distance between nodes i and j, i.e., the length of the shortest
path from node i to node j. Note that for all-to-all coupling with ψij = 1

N and
Fi = Ωi, system (2) reduces to the Kuramoto model:

ζ̇i = Ωi +
K

N

N∑
j=1

sin(ζj − ζi).

Thus, we can view system (2) as a generalized Kuramoto model. Kuramoto-type
models with external forcing terms has been addressed in the literature, e.g., [2,
26, 28], and can be used to model the sleep–wake cycle. The sleep–wake cycle
and circadian rhythms are phase-locked to each other in the 24-hour period of
outside world. Many biological experiments have shown that, in isolation from a
24-hour periodic environment such as the light–dark cycle, the various circadian
rhythms, e.g., feeding, body temperature, and neuroendocrine variables, as well as
the pattern of sleep and wakefulness, were maintained. However, a certain internal
desynchronization phenomenon occurs, i.e., separate rhythmic variables oscillating
with different periods. Many mathematical models have been deveploped to explain
these phenomena, notably the Kuramoto model with an external periodic force
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Fi(ζi, t) = F sin(σt − ζi). In particular, Sakaguchi [28] showed numerically that
the forced entrainment is not always achieved, and analytic studies of this feature
have also been reported [2, 9, 26]. Our main interest is not restricted to periodic
forcing terms. Instead, we consider general forcing terms without assuming the
periodicity of Fi in the first argument. In the presence of heterogeneous forcing
terms in (2), in general the difference ζi−ζj and ζ̇i−ζ̇j do not converge to a constant
value asymptotically. Thus, we cannot use the concept of complete synchronization
of employed in [11, 13]. For this reason, we need to adopt a different notion of
synchrony, namely “practical synchronization” roughly saying that ζ-differences as
values in R can be made as small by taking large coupling strength K (See Definition
2.1). This clearly generalizes the concept of the complete synchronization in [11, 13].
For a motivation of practical synchronization and its relevance to biological and
engineering applications, we refer to Remark 1.

The main novelty of this paper is to provide two frameworks to ensure the prac-
tical synchronization of system (2) in terms of the forcing Fi, coupling strength K,
and initial configurations ζ0 under homogeneous and heterogeneous forcing. (See
Section 2.1)

The rest of this paper is organized as follows. In Section 2, we present several a
priori estimates for later sections and greenprovides the summary of framework and
main results. In Section 3, we provide a complete synchronization for homogeneous
forcing, and in Section 4, we study the practical synchronization of heterogeneous
forcing. Finally, Section 5 summarizes our main results.

2. Preliminaries. In this section, we study the concept of practical synchroniza-
tion, and provide several basic estimates to be used in later sections. We first set the
phase-diameter and energy as follows. For a configuration ζ = (ζ1, · · · , ζN ) ∈ RN ,
we set

ζc :=
1

N

N∑
i=1

ζi, ζ̂i := ζi − ζc, D(ζ(t)) := max
1≤i,j≤N

|ζi − ζj |,

E(ζ) :=
1

N

N∑
i=1

|ζi|2, V(ζ) :=
1

N

N∑
i=1

|ζ̂i|2.

We define the concept of complete synchronization and practical synchronization
for Kuramoto oscillators as follows.

Definition 2.1. Let ζ = (ζ1, . . . , ζN ) be a dynamical solution to system (2)-(3).

1. The dynamical solution ζ = ζ(t) shows asymptotic complete synchronization
if and only if the following condition holds:

lim
t→∞

(D(ζ(t)) +D(ζ̇(t))) = 0.

2. The dynamical solution ζ = ζ(t) shows asymptotic practical synchronization
if and only if the following condition holds:

lim
K→∞

lim sup
t→∞

D(ζ(t)) = 0.

Remark 1. 1. In previous literature, the practical synchronization appeared in
chaotic systems [4, 10, 12, 20, 21, 22] and in the first-order linear consensus model
[17]. In Definition 2.1, we closely follows the stronger notion of practical syn-
chronization from [17] saying that ζ-differences can be made arbitrary small by
suitable controls. Note that in our system (2), the magnitude of control terms
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which are the sinusoidal couplings is dominated by the coupling strength K. In
[4, 10, 12, 20, 21, 22, 29], the weaker concepts of practical synchronization com-
paring the Definition 2.1 were used to denote the uniform boundedness of phase
differences in time but no restriction on the bound of the phase differences accord-
ing to the coupling K. The numerical experiment of [29] shows that large coupling
strength is necessary to obtain sufficiently small bound of phase diameter.

2. For the study of synchronization phenomena of Kuramoto oscillators with
intrinsic dynamics, complete synchronization cannot occur in general. To see this
we consider the following two-oscillator system:

dζ1
dt

= sin(t− ζ1) +
K

2
sin(ζ2 − ζ1),

dζ2
dt

= sin(2t− ζ2) +
K

2
sin(ζ1 − ζ2).

(4)

Numerical simulation result in Figure 1 clearly shows that the differences ζ1 − ζ2
and ζ̇1 − ζ̇2 do not converges to zero so we cannot obtain complete synchronization
in phase and frequency [9, 11, 13]. However, we can observe that the differences
become smaller as coupling strength K is increased, in other words, this system is
practically synchronized in the sense of Definition 2.1

Lemma 2.2. [14] Suppose that the network (V (G), E(G)) is connected and the set
{ζi} has zero mean:

N∑
i=1

ζi = 0.

Then, we have

4L∗N
2E(ζ) ≤

∑
i,j∈E(G)

|ζi − ζj |2 ≤ 4N2E(ζ), t ≥ 0,

where the constant L∗ is given by

L∗ :=
1

1 + diam(G)|Ec(G)|
.

Here, Ec denotes the complement of the edge set E in V × V and |Ec| denotes its
cardinality.

Lemma 2.3. Suppose that the phase configuration ζ = (ζ1, · · · , ζN ) ∈ RN satisfies

D(ζ(t)) ≤ D0 < π.

Then, we have∑
(i,j)∈E

ψij(ζj − ζi) sin(ζj − ζi) ≥
C∞

D0

∑
1≤i,j≤N

|ζ̂j − ζ̂i|2 =
2N2C∞

D0
V(ζ).

In particular, if we have the additional zero sum condition

N∑
i=1

ζi = 0, then

∑
(i,j)∈E

ψij(ζj − ζi) sin(ζj − ζi) ≥
2N2C∞

D0
E(ζ),

where the constant C∞ is defined by relation (5).

C∞ := L∗ψm sinD0, ψm := min
1≤i,j≤N

ψij . (5)
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(a) difference in state for K = 5
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(b) difference in rate of change for K = 5
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(c) difference in state for K = 10
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(d) difference in rate of change for K = 10
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(e) difference in state for K = 15
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(f) difference in rate of change for K = 15

Figure 1. ζ1 − ζ2 and ζ̇1 − ζ̇2 for K = 5, 10, 15

Proof. We use the following elementary inequality

x sinx ≥ sinD0

D0
x2 on [−D0, D0] and

N∑
i=1

ζ̂i = 0,
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to obtain∑
(i,j)∈E

ψji(ζj − ζi) sin(ζj − ζi) ≥
sinD0

D0

∑
(i,j)∈E

ψji|ζ̂j − ζ̂i|2

≥ sinD0

D0
ψm

∑
(i,j)∈E

|ζ̂j − ζ̂i|2

≥ sinD0

D0
ψmL∗

∑
1≤i,j≤N

|ζ̂j − ζ̂i|2

=
sinD0

D0
ψmL∗

[ N∑
i,j=1

|ζ̂j |2 − 2
( N∑
i=1

ζ̂i

)( N∑
j=1

ζ̂j

)
+

N∑
i,j=1

|ζ̂i|2
]

=
2 sinD0

D0
ψmL∗N

N∑
j=1

|ζ̂j |2.

Here, the third inequality uses Lemma 2.2.

Lemma 2.4. For T ∈ (0,∞], let ζ = ζ(t) be the solution to system (2) satisfying
the a priori condition on the time-interval [0, T ):

sup
t∈[0,T )

D(ζ(t)) ≤ D0 < π, sup
i,ζ,t

(∂Fi
∂ζ

(ζ, t)
)
<∞.

Then, the variance V(ζ) satisfies

dV(ζ)

dt
≤ D(F)

√
2
√
V(ζ)− 2

[KNC∞
D0

− sup
i,ζ,t

(∂Fi
∂ζ

(ζ, t)
)]
V(ζ), t ∈ [0, T ),

where D(F) is the diameter of the family of forcing terms {Fi}Ni=1:

D(F) := max
1≤i,j≤N

‖Fi − Fj‖L∞(R×R+).

Proof. We first note that the average ζc and its perturbation ζ̂i := ζi − ζc satisfy

ζ̇c =
1

N

N∑
i=1

Fi(ζi, t),

˙̂
ζi =

1

N

N∑
j=1

(
Fi(t, ζi)− Fj(t, ζj)

)
+K

N∑
j=1

ψji sin(ζ̂j − ζ̂i).

(6)

We multiply the second equation of (6) by 2ζ̂i, sum with respect to i, and divide
by N to find

dV(ζ)

dt
=

2

N2

N∑
i,j=1

ζ̂i(Fi(ζi, t)− Fj(ζj , t)) +
2K

N

N∑
i,j=1

ψjiζ̂i sin(ζ̂j − ζ̂i)

=
1

N2

N∑
i,j=1

(ζ̂i − ζ̂j)(Fi(ζi, t)− Fj(ζj , t))−
K

N

N∑
i,j=1

ψji(ζ̂j − ζ̂i) sin(ζ̂j − ζ̂i)

=: I11 + I12.
(7)

Here, we used the symmetry of the network, ψij = ψji, and the trick i ↔ j. We
now consider the two terms separately.
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• (Estimate of I11): There exists ζ∗ij on the segment between ζi and ζj such that

Fi(ζi, t)− Fj(ζj , t) = Fi(ζi, t)− Fj(ζi, t) + Fj(ζi, t)− Fj(ζj , t)

= Fi(ζi, t)− Fj(ζi, t) +
∂Fj
∂ζ

(ζ∗ij)(ζ̂i − ζ̂j),
(8)

where we used the fact that ζi − ζj = ζ̂i − ζ̂j .
Note that

I11 =
1

N2

N∑
i,j=1

(ζ̂i − ζ̂j)(Fi(ζi, t)− Fj(ζj , t))

=
1

N2

N∑
i,j=1

(ζ̂i − ζ̂j)(Fi(ζi, t)− Fj(ζi, t)) +
1

N2

N∑
i,j=1

∂Fj
∂ζ

(ζ∗ij)(ζ̂i − ζ̂j)2

≤ 1

N2
D(F)

N∑
i,j=1

|ζ̂i − ζ̂j |+
1

N2
sup
j,ζ,t

(∂Fj
∂ζ

(ζ, t)
) N∑
i,j=1

|ζ̂i − ζ̂j |2

≤ D(F)
√

2V(ζ) + 2 sup
j,ζ,t

(∂Fj
∂ζ

(ζ, t)
)
V(ζ),

where we used (8) and

N∑
i,j=1

|ζ̂i − ζ̂j |2 = 2N2V(ζ),

N∑
i,j=1

|ζ̂i − ζ̂j | ≤ N
( N∑
i,j=1

|ζ̂i − ζ̂j |2
) 1

2 ≤ N2
√

2V(ζ).

• (Estimate of I12): It follows from Lemma 2.3 that we have

I12 ≤ −
2KNC∞

D0
V(ζ). (9)

We combine (8)-(9) together with (7) to obtain the desired estimate.

Remark 2. Note that for an all-to-all coupling with ψij = 1
N , we have

NC∞ = sinD0.

Lemma 2.5. For T ∈ (0,∞], let η = η(t) and ζ = ζ(t) be the corresponding
solutions to systems (1) and (2) with the same initial data ζ0 and satisfying the
following a priori conditions:

1. The total energy for the decoupled system is bounded:

sup
0≤t<T

E(η) = E∞(η, T ) <∞. (10)

2. The phase-diameter is confined to the half-circle region: there exists D0 ∈
(0, π) such that

sup
t∈[0,T )

D(ζ(t)) ≤ D0.

Then, the coupled solution ζ = ζ(t) is bounded in the interval [0, T ), i.e., there
exists ζ∞(N,T ) ∈ [0,∞) such that

sup
0≤t<T

max
1≤i≤N

|ζi(t)| ≤ ζ∞(N,T ).
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Proof. We will show that the energy of the coupled system is smaller than that of
the decoupled system. Then, by the framework of (10), the energy for the decoupled
system is bounded, and we can derive the desired result. For the boundedness of
E(ζ), we multiply (2) by 2ζi and sum with respect to i to obtain

d

dt

N∑
i=1

ζ2i = 2

N∑
i=1

ζiFi(ζi, t) + 2K
∑
i,j

ψjiζi sin(ζj − ζi)

= 2

N∑
i=1

ζiFi(ζi, t)−K
N∑

i,j=1

ψji(ζj − ζi) sin(ζj − ζi)

≤ 2

N∑
i=1

ζiFi(ζi, t),

where we used Lemma 2.3 to find
N∑

i,j=1

ψji(ζj − ζi) sin(ζj − ζi) ≥ 0.

We now consider the solution to the decoupled system ηi with the same initial data:

η̇i = Fi(ηi, t), t > 0, ηi(0) = ζi0.

To obtain the time derivative of the energy functional of decoupled system E(η), we
estimate

d

dt

N∑
i=1

η2i = 2

N∑
i=1

ηiFi(ηi, t)

Then, by the comparison principle of ODEs, we have

E(ζ) :=
1

N

N∑
i=1

ζ2i (t) ≤ 1

N

N∑
i=1

η2i (t) = E(η), t ∈ [0, T ).

Then, the a priori condition (10) yields

|ζi(t)| ≤
√
NE(ζ) ≤

√
NE(η) ≤

√
NE∞(η, T ) <∞.

2.1. The descriptions of main results. In this subsection, we summarize our
two main results on synchronization phenomena for homogeneous and heterogeneous
forcing. We first consider the the case where all forcing functions are the same, i.e.,
Fi = F for all 1 ≤ i ≤ N . Therefore, the system (2) becomes ζ̇i = F (ζi, t) +K

N∑
j=1

ψij sin(ζj − ζi), t > 0;

ζi(0) = ζi0 t = 0,

(11)

For this homogeneous forcing, we have the following complete synchronization.

Theorem 2.6. Suppose that the forcing function F and the coupling strength K
satisfy

(i) D(ζ0) ≤ D0 < π.

(ii) K > D0 max
{

0, sup
ζ,t

(∂F
∂ζ

(ζ, t)
)/

NC∞
}
.

(12)
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Then for any solution ζ = ζ(t) to the system (11), we have

V(ζ) ≤ V(ζ0)e−C0t, t > 0.

where C0 is a positive constant defined by

C0 :=
2NKC∞

D0
− 2 sup

ζ,t

(∂F
∂ζ

(ζ, t)
)
> 0.

On the other hand, we consider heterogeneous forcing terms:

There exists a pair i 6= j such that Fi 6= Fj .

We adopt the following framework A on the family F = {F1, · · · , FN} of forcing
and network structure Ψ and the coupling strength K.

• (A1) max
i,j
‖Fi − Fj‖L∞(R×R+) <∞, sup

i,ζ,t

(∂Fi
∂ζ

(ζ, t)
)
<∞,

• (A2) K >

D(F) +
D0√
N

sup
i,ζ,t

(∂Fi
∂ζ

(ζ, t)
)

√
NC∞

.

• (A3) The initial configuration satisfies the following boundedness condition:

D(ζ0) < D0 < π, V(ζ0) <
D2

0

2N
.

Theorem 2.7. Suppose that the frameworks A holds, then practical synchronization
is achieved:

lim
K→∞

lim sup
t→∞

D(ζ(t)) = 0.

3. Complete synchronization: Homogeneous forcing. In this section, we
consider the special case where all forcing terms are equal, so that each member of
some given uncoupled system has identical dynamics:

Fi(ζ, t) = F (ζ, t), i = 1, · · · , N.
In this case, We recall that system (2) becomes ζ̇i = F (ζi, t) +K

N∑
j=1

ψij sin(ζj − ζi), t > 0;

ζi(0) = ζi0 t = 0.

(13)

The average phase ζc and fluctuations ζ̂i = ζi − ζc satisfy

ζ̇c =
1

N

N∑
j=1

F (ζj , t),

˙̂
ζi =

1

N

N∑
j=1

(F (ζi, t)− F (ζj , t)) +K

N∑
j=1

ψij sin(ζ̂j − ζ̂i).

(14)

Lemma 3.1. Suppose that the forcing function F and the coupling strength K
satisfy

D(ζ0) ≤ D0 < π, V(ζ0) <
D2

0

2N
,

K > D0 max
{

0, sup
ζ,t

(∂F
∂ζ

(ζ, t)
)/

NC∞
}
.

(15)
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Then, the phase-diameter D(ζ(t)) is uniformly bounded by D0, i.e.,

sup
0≤t<∞

D(ζ(t)) ≤ D0.

Proof. We define

T := {T : D(ζ(t)) < D0, ∀t ∈ [0, T )} and T∗ := sup T ,
and claim that

T∗ =∞.

Proof of claim. We split the proof into two parts. In Step A, we show that the set T
is nonempty, and in Step B, we show that T∗ =∞ using the differential inequality
obtained in Lemma 2.4.

• (Step A). By the continuity of D(ζ(t)), there exists a δ > 0 such that

D(ζ(t)) < D0, t ∈ [0, δ).

Therefore, δ ∈ T and T 6= ∅.
• (Step B). Suppose not, i.e., T∗ <∞. Then, we should have

D(ζ(t)) < D0, t ∈ [0, T∗), lim
t→T∗−

D(ζ(t)) = D0. (16)

We now use Gronwall’s inequality in Lemma 2.4 with D(F) = 0:

dV(ζ)

dt
≤ −2

[KNC∞
D0

− sup
ζ,t

(∂F
∂ζ

(ζ, t)
)]

︸ ︷︷ ︸
>0 by (15)

V(ζ), on [0, T ).

This again yields

V(ζ) < V(ζ0).

On the other hand, note that for t ∈ [0, T∗).

|ζ̂i(t)− ζ̂j(t)| ≤
√

2(|ζ̂i(t)|2 + |ζ̂j(t)|2) ≤
√

2NV(ζ) <
√

2NV(ζ0) < D0.

Hence, we have

lim
t→T∗−

D(ζ(t)) < D0,

which contradicts (16). Therefore, T∗ = ∞, and we obtain the desired uniform
bound for D(ζ(t)).

We are now ready to prove the theorem 2.6.

The proof of Theorem 2.6. We multiply the second equation in (14) by 2ζ̂i, sum
with respect to i, and divide by N to obtain

d

dt
V(ζ) =

2

N2

∑
i,j

ζ̂i(F (ζi, t)− F (ζj , t)) +
2K

N

∑
i,j

ψij ζ̂i sin(ζ̂j − ζ̂i)

= − 2

N2

∑
i,j

ζ̂j(F (ζi, t)− F (ζj , t))−
2K

N

∑
i,j

ψij ζ̂j sin(ζ̂j − ζ̂i)

= − 1

N2

∑
i,j

(ζ̂j − ζ̂i)(F (ζi, t)− F (ζj , t))−
K

N

∑
i,j

ψij(ζ̂j − ζ̂i) sin(ζ̂j − ζ̂i)

=
1

N2

∑
i,j

∂F

∂ζ
(ζ∗ij(t), t)|ζ̂j − ζ̂i|2 −

K

N

∑
i,j

ψij(ζ̂j − ζ̂i) sin(ζ̂j − ζ̂i)
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≤ 1

N2

∑
i,j

∂F

∂ζ
(ζ∗ij(t), t)|ζ̂j − ζ̂i|2 −

KC∞

ND0

∑
i,j

|ζ̂j − ζ̂i|2

≤
[ 1

N2
sup
ζ,t

∂F

∂ζ
(ζ, t)− KC∞

ND0

]∑
i,j

|ζ̂j − ζ̂i|2

= −2
[NKC∞

D0
− sup

ζ,t

∂F

∂ζ
(ζ, t)

]
V(ζ)

= −C0V(ζ),

where ζ∗ij(t) is a point in the interval connecting ζi(t) and ζj(t).

Remark 3. Note that for the homogeneous forcing case if the identical forcing
function F is non-increasing, i.e., ∂F∂ζ ≤ 0, we may allow K to be negative, as long as

C0 is positive. Although the negative coupling strength reduce the synchronization,
the effect of non-increasing forcing function F accelerate the synchronization.

4. Practical synchronization: Heterogeneous forcing. In this section, we
present several sufficient conditions for practical synchronization in terms of initial
configurations, parameters and forcing terms.

4.1. Bounded forcing. We first consider the forcings F = {F1, · · · , FN} satisfying
the following boundedness conditions:

D(F) = max
i,j
‖Fi − Fj‖L∞(R×R+) <∞, sup

i,ζ,t

∂Fi
∂ζ

(ζ, t) <∞. (17)

Note that the following forcings satisfy the boundedness condition (17):

Fi(ζi, t) = Ωi, Fi(ζi, t) = Ai sin(σt− ζi).

Lemma 4.1. Suppose that the framework A holds. Then, the phase-diameter
D(ζ(t)) is uniformly bounded by D0, i.e.,

sup
0≤t<∞

D(ζ(t)) ≤ D0.

Proof. We define

T := {T : D(ζ(t)) < D0, ∀t ∈ [0, T )} and T∗ := sup T ,
and claim that

T∗ =∞.

Proof of claim. We split the proof into two parts. In Step A, we show that the set T
is nonempty, and in Step B, we show that T∗ =∞ using the differential inequality
obtained in Lemma 2.4.

• (Step A). By the continuity of D(ζ(t)), there exists a δ > 0 such that

D(ζ(t)) < D0, t ∈ [0, δ), i, j = 1, 2, . . . , N.

Therefore, δ ∈ T and T 6= ∅.
• (Step B). Suppose not, i.e., T∗ <∞. Then, we should have

D(ζ(t)) < D0, t ∈ [0, T∗), lim
t→T∗−

D(ζ(t)) = D0. (18)

We again use Gronwall’s inequality in Lemma 2.4:

dV(ζ)

dt
≤ D(F)

√
2
√
V(ζ)− 2

[KNC∞
D0

− sup
i,ζ,t

(∂Fi
∂ζ

(ζ, t)
)]
V(ζ), on [0, T ). (19)
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Note that the condition on K guarantees that the coefficient of the second term on
the r.h.s. of (19) is positive.

Y :=
√
V(ζ), t ≥ 0.

Then, it follows from (19) that Y (t) satisfies

dY

dt
≤ D(F)√

2
−
[KNC∞

D0
− sup
i,ζ,t

(∂Fi
∂ζ

(ζ, t)
)]
Y, t ∈ [0, T∗]. (20)

By Gronwall’s lemma, we then have

Y (t) ≤ D(F)/
√

2

KNC∞

D0
− supi,ζ,t

(
∂Fi

∂ζ (ζ, t)
)

+
[
Y (0)− D(F)/

√
2

KNC∞

D0
− supi,ζ,t

(
∂Fi

∂ζ (ζ, t)
)]

× exp
[
−
(KNC∞

D0
− sup
i,ζ,t

(∂Fi
∂ζ

(ζ, t)
))
t
]
.

(21)

This implies

Y (t) ≤ max
{
Y (0),

D(F)/
√

2

KNC∞

D0
− supi,ζ,t

(
∂Fi

∂ζ (ζ, t)
)}. (22)

On the other hand, note that the condition on K and the initial configuration are
equivalent to saying that the r.h.s. of the above relation is less than or equal to D0√

2
.

Y (0) =

√
V(ζ̂0) <

D0√
2N

, and

D(F)/
√

2

KNC∞

D0
− supi,ζ,t

(
∂Fi

∂ζ (ζ, t)
) < D0√

2N
⇐⇒ K >

D(F) + D0√
N

supi,ζ,t

(
∂Fj

∂ζ (ζ, t)
)

√
NC∞

.

(23)

Thus, we combine (22) and (23) to obtain

Y (t) <
D0√
2N

, i.e., V(ζ) <
D2

0

2N
, t ∈ [0, T∗).

This again yields for t ∈ [0, T∗)

|ζi(t)− ζj(t)| = |ζ̂i(t)− ζ̂j(t)| ≤
√

2(|ζ̂i(t)|2 + |ζ̂j(t)|2) ≤
√

2NV(ζ) < D0. (24)

Hence, we have

lim
t→T∗−

D(ζ(t)) < D0,

which contradicts (18). Therefore T∗ =∞ and we obtain the desired uniform bound
for D(ζ(t)).
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We are now ready to provide our second main theorem by combining the results
of Lemmas 2.4 and 4.1.

The proof of Theorem 2.7. We repeat the argument presented in Lemma 4.1 to
derive the estimate

Y (t) =
√
V(ζ) ≤ D(F)/

√
2

KNC∞

D0
− supj,ζ,t

(
∂Fj

∂ζ (ζ, t)
)

+
[
Y (0)− D(F)/

√
2

KNC∞

D0
− supj,ζ,t

(
∂Fj

∂ζ (ζ, t)
)]

× exp
[
−
(KNC∞

D0
− sup
j,ζ,t

(∂Fj
∂ζ

(ζ, t)
))
t
]
.

By letting t→∞, we obtain

lim sup
t→∞

√
V(ζ) ≤ D(F)/

√
2

KNC∞

D0
− supj,ζ,t

(
∂Fj

∂ζ (ζ, t)
) .

On the other hand, from (24), note that

|ζi(t)− ζj(t)| ≤
√

2NV(ζ).

This implies

lim sup
t→∞

|ζi(t)− ζj(t)| ≤ lim sup
t→∞

√
2NV(ζ) ≤ D(F)

√
N

KNC∞

D0
− supj,ζ,t

(
∂Fj

∂ζ (ζ, t)
)

which leads to the desired result.

Remark 4. 1. Complete synchronization estimates for the Kuramoto model have
been investigated in [7, 8, 11, 15, 16, 25].

2. For the Kuramoto model with Fi = Ωi and ψij = 1
N , we have

D(F) = D(Ω), sup
i,ζ,t

(∂Fj
∂ζ

(ζ, t)
)

= 0, C∞ =
sinD0

N
.

Thus, the conditions on Ωi,K and the initial configuration ζ0 in Lemma 4.1 reduce
to

D(Ω) <∞, K >
D(Ω)

√
N

sinD0
, D(ζ0) < D0 < π, V(ζ0) <

D2
0

2N
,

which are weaker than in [7].
3. Note that for the linear stable dynamics

Fi(ζi, t) = aiζi, ai ≤ 0, (25)

we have

D(F) =∞, sup
i,ζ,t

(∂Fi
∂ζ

(ζ, t)
)

= max
i
ai <∞.

Thus, Theorem 2.7 cannot be applied to this simple case where the decoupled
system has bounded solutions only. However, if we check the proof of Lemma 4.1
more carefully, what we need is boundedness over the bounded phase space, not
over the whole space R for ζi, i.e., once the coupled system (2) has only bounded
solutions that are confined to the compact state space N , then we can replace
D(F) = max

i,j
‖Fi−Fj‖L∞(R×R+) with a more relaxed diameter D̄(F) := maxi,j ‖Fi−
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Fj‖L∞(N×R+). With this relaxed definition for the diameter of F , we can still use
the result of Theorem 2.7 for (25).

4. For a linear-time varying multi-agent systems, the practical synchronization
has been studied in [17].

Below, we will show that if the uncoupled system (1) has a bounded solution for
a given initial configuration, then the solution to the coupled system (2) exhibits
practical synchronization.

Corollary 1. Assume that the following conditions hold.

1. The initial configuration satisfies the following boundedness condition:

D(ζ0) < D0 < π, V(ζ0) <
D2

0

2N
.

2. For a given family of forcing F = {F1, · · · , FN}, the decoupled system

ζ̇i = Fi(ζi, t), t > 0, ζi(0) = ζi0, t = 0

has the globally bounded solution:

ζ ∈ N : compact subset of RN .

3. The family of forcing F , network structure, and coupling strength satisfy the
conditions:

D̄(F) <∞, sup
i,ζ,t

(∂Fj
∂ζ

(ζ, t)
)
<∞, K >

D̄(F)
√
N +D0

NC∞
.

Then, the practical synchronization holds:

lim
K→∞

lim
t→∞

D(ζ(t)) = 0.

Proof. It follows from Lemma 2.5 that the state space for ζ is bounded, so we can
use the modified diameter D̄(F):

D̄(F) := max
1≤i,j≤N

‖Fi − Fj‖L∞(N×R+).

to apply the same argument as in Theorem 2.7. This completes the proof.

Remark 5. Corollary 1 covers the case where Fi is given by the gradient field of
the double well potential, i.e.,

Fi(ζ) = −∂ζϕi, ϕi(ζ) = ai

(ζ2
2
− ζ4

4

)
, ai < 0.

In this case, the solution to the decoupled system is bounded.

4.2. Unbounded forcing. In this subsection, we consider the case where the de-
coupled system has bounded and unbounded solutions at the same time, and see
that the unbounded solutions can be turned into bounded solutions by coupling
with bounded solutions.

Consider a nonlinear system with linear intrinsic dynamics Fi(ζ, t) = piζ. Then
the system (2) with all-to-all coupling ψij = 1

N becomes ζ̇i = piζi +
K

N

N∑
j=1

sin(ζj − ζi), t > 0;

ζi(0) = ζi0 t = 0,

(26)
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where pi is a constant satisfying the negative sum condition:

N∑
i=1

pi < 0. (27)

Note that system (26) has a trivial equilibrium solution ζe:

ζe := (0, · · · , 0).

When the coupling is turned off, i.e., K = 0, the state ζi can go to infinity or
zero exponentially fast, depending on the sign of pi. If all pi are negative, then
the uncoupled dynamics have a bounded solution, and this case can be covered by
Corollary 1. Thus without loss of generality, we may assume that at least one of
the pi is positive. In a near-equilibrium regime ζ ≈ ζe = 0, the dynamics of the
nonlinear system (26) can be studied via the linear system near ζe:

ζ̇i = piζi +
K

N

N∑
j=1

(ζj − ζi), t > 0. (28)

Before we present a uniform boundedness of ζ to the linear system (28) for suffi-
ciently large K, we consider the following dynamics for two oscillators:

ζ̇1 = p1ζ1 +
K

2
(ζ2 − ζ1), t > 0,

ζ̇2 = p2ζ2 +
K

2
(ζ1 − ζ2).

(29)

The linear system (29) can be rewritten in matrix form as

d

dt

[
ζ1
ζ2

]
= M2

[
ζ1
ζ2

]
, M2 :=

[
p1 − K

2
K
2

K
2 p2 − K

2

]
.

By direct calculation, the matrix M2 has two real eigenvalues:

λ+ =
p1 + p2 −K +

√
(p1 − p2)2 +K2

2
, λ− =

p1 + p2 −K −
√

(p1 − p2)2 +K2

2
.

It is easy to see that λ− < 0 for sufficiently large K. On the other hand, note that

λ+ < 0 ⇐⇒ p1 + p2 < 0, K >
2p1p2
p1 + p2

> 0.

Thus, if p1 + p2 < 0, K > 2p1p2
p1+p2

, then both ζ1 and ζ2 decay to zero so that we

have practical synchronization. Before we proceed to the general case, we consider
the two explicit examples corresponding to the case p1 + p2 > 0. In this case, we
will not have practical synchronization.

• Example 1 (p1, p2) = (1, 2). In this case, system (29) becomes

ζ̇1 = ζ1 +
K

2
(ζ2 − ζ1), t > 0,

ζ̇2 = 2ζ2 +
K

2
(ζ1 − ζ2).

(30)

By direct calculation, the solution (ζ1, ζ2) satisfies

|ζ2(t)− ζ1(t)| = Ceλ+(K)t →∞, t→∞.
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Thus, we do not have practical synchronization.

• Example 2 (p1, p2) = (−1, 2).

ζ̇1 = −ζ1 +
K

2
(ζ2 − ζ1), t > 0,

ζ̇2 = 2ζ2 +
K

2
(ζ1 − ζ2).

(31)

Again, by direct calculation, we have

|ζ2(t)− ζ1(t)| = Ceλ+(K)t →∞, t→∞.

Thus, we can conclude that with p1 + p2 > 0, system (29) cannot have a practical
synchronization.

We now return to the linear system (28) associated with (26) rewritten in matrix
form:

ζ̇ = MNζ, t > 0, ζ = (ζ1, · · · , ζN ), (32)

where

MN :=


p1 − N−1

N K K
N . . . K

N
K
N p2 − N−1

N K . . . K
N

...
...

. . .
...

K
N

K
N . . . pN − N−1

N K

 (33)

Note that the coefficient matrix MN is symmetric, so that all eigenvalues of MN are
real. Below, we will show that, under the condition (27), if the coupling strength K
is sufficiently large, then all eigenvalues of MN become negative so that the trivial
equilibrium solution to (32) is exponentially stable. For this, we recall several
lemmas in relation to eigenvalues of this linearized system.

Lemma 4.2 (Weyl’s inequality [33]). Let M,H, and P be Hermitian matrices
satisfying M = H + P , and suppose {µ1, . . . , µN}, {ν1, . . . , νN} and {ρ1, . . . , ρN}
are (as known) real eigenvalues of M,H, and P , respectively, such that

µ1 ≥ · · · ≥ µN , ν1 ≥ · · · ≥ νN , ρ1 ≥ · · · ≥ ρN .

Then, the following inequalities hold:

µj ≤ νi + ρj−i+1, 1 ≤ i, j ≤ N and i ≤ j.

Proof. For a proof, we refer to Theorem III.2.1 in [3].

Lemma 4.3. The matrix (33) has a determinant of the form

detMN =
(−1)N−1

N

( N∑
i=1

pi

)
KN−1 +O(KN−2) as a polynomial in K.

Proof. The proof is given in Appendix A.

Now, we are ready to prove the negativity of eigenvalues of MN . For a matrix
A, let σ(A) denote the set of eigenvalues of A, i.e., the spectrum of A.

Proposition 1. Let ζ = (ζ1, · · · , ζN ) be a global solution to system (28) with neg-
ative sum condition (27). Then, for a sufficiently large K, the solution ζ converges
to zero exponentially fast, independent of the initial configuration ζ0.
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Proof. For the desired estimate, it suffices to show that the eigenvalues for the
coefficient matrix MN are negative:

0 > µ1 > µ2 > · · · > µN .

Without loss of generality, we may assume that p1 ≥ p2 ≥ . . . ≥ pN . Suppose that
σ(MN ) = {µ1, . . . , µN} is arranged in descending order, and set HN and PN as

HN :=


K
N

K
N . . . K

N
K
N

K
N . . . K

N
...

...
. . .

...
K
N

K
N . . . K

N

 , PN :=


p1 −K 0 . . . 0

0 p2 −K . . . 0
...

...
. . .

...
0 0 . . . pN −K


so that

MN = HN + PN .

Then, it is easy to see that the spectra of the matrices HN and PN are given in
descending order:

σ(HN ) = {K, 0, . . . , 0}, σ(PN ) = {p1 −K, p2 −K, . . . , pN −K}.

It follows from Lemma 4.2 that we have

µ2 ≤ K + (p2 −K) = p2 and µ2 ≤ 0 + (p1 −K) = p1 −K.

We now set K to be sufficiently large satisfying

K > p1. (34)

Therefore, under the condition (34), µ2 is negative, and hence µi, i = 3, · · · , N are
also negative:

0 > µ2 ≥ µ3 ≥ · · · ≥ µN . (35)

Now, we need to show that µ1 is negative. Since the determinant of a matrix is the
product of all eigenvalues, it is enough to show that

µ1 < 0 if and only if detMN

{
< 0, if N is odd,
> 0, if N is even.

In Lemma 4.3, for sufficiently large K,

detMN = µ1µ2 · · ·µN
= µ1(−1)N−1|µ2| · · · |µN |

≈ (−1)N−1

N

( N∑
i=1

pi

)
KN−1 =

(−1)N

N

∣∣∣ N∑
i=1

pi

∣∣∣KN−1.

This yields that, for sufficiently large K,

µ1 < 0. (36)

It follows from (35)-(36) that all eigenvalues of MN are negative for sufficiently
large K. This implies that the solution to the linear system (28) decays to zero
exponentially fast.
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5. Conclusion. The dynamics of an oscillatory system over a network are often
influenced by internal and external forces, e.g., the daily cycling of light and dark-
ness affecting human sleep rhythms. In this case, due to forcing effects, all relative
distances and relative rate of changes between the states of units do not asymp-
totically approach a constant. Thus, we can at least expect that all states are
confined to some bounded region. The question is whether we can control this
bounded region by the strength of the coupling strength K. Indeed, we have shown
that the diameter of the state set is of order O(K−1) for sufficiently large K ′s,
i.e., “practical synchronization” occurs asymptotically for sufficiently large K. In
particular, Theorem 2.7 implies that, if the forcing functions are C1 and the state
space is bounded, then practical synchronization can be achieved for a sufficiently
large coupling strength and some restricted class of initial configurations.

Appendix A. Proof of Lemma 4.3. In this section, we provide the proof of
Lemma 4.3 using elementary row operations and the Laplace expansion.

detMN = det


p1 − N−1

N K K
N

K
N . . . K

N
K
N p2 − N−1

N K K
N . . . K

N
K
N

K
N p3 − N−1

N K . . . K
N

...
...

...
. . .

...
K
N

K
N

K
N . . . pN − N−1

N K



= det


p1 − N−1

N K K
N

K
N . . . K

N
−(p1 −K) p2 −K 0 . . . 0
−(p1 −K) 0 p3 −K . . . 0

...
...

...
. . .

...
−(p1 −K) 0 0 . . . pN −K



=(p1 −
N − 1

N
K) det


p2 −K 0 . . . 0

0 p3 −K . . . 0
...

...
. . .

...
0 0 . . . pN −K



−(−1)(p1 −K) det


K
N

K
N

K
N . . . K

N
0 p3 −K 0 . . . 0
0 0 p4 −K . . . 0
...

...
...

. . .
...

0 0 0 . . . pN −K



+(−1)(p1 −K) det


K
N

K
N

K
N . . . K

N
p2 −K 0 0 . . . 0

0 0 p4 −K . . . 0
...

...
...

. . .
...

0 0 0 . . . pN −K

+ · · ·

+(−1)N−1(−1)(p1 −K) det


K
N

K
N . . . K

N
K
N

p2 −K 0 . . . 0 0
0 p3 −K . . . 0 0
...

...
. . .

...
...

0 0 . . . pN−1 −K 0
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=:M1 + · · ·+MN .

We next estimate the Mi separately.
• (Estimate of M1):

M1 =
(
p1 −

N − 1

N
K
) N∏
i=2

(pi −K)

= (−1)N
N − 1

N
KN

+ {(−1)N−1p1 + (−1)N−1
N − 1

N
(

N∑
i=2

pi)}KN−1 +O(KN−2).

• (Estimate of M2):

M2 = (p1 −K)
K

N
(p3 −K)(p4 −K) · · · (pN −K)

=
1

N
(−1)N−1KN + (−1)N−2(p1 + p3 + p4 + · · ·+ pN )KN−1 +O(KN−2).

• (Estimate of M3):

M3 = (p1 −K)
K

N
(p2 −K)(p4 −K) · · · (pN −K)

=
1

N
(−1)N−1KN + (−1)N−2(p1 + p2 + p4 + · · ·+ pN )KN−1 +O(KN−2).

...

• (Estimate of MN ):

MN = (p1 −K)
K

N
(p2 −K)(p3 −K) · · · (pN−1 −K)

=
1

N
(−1)N−1KN

+ (−1)N−2(p1 + p2 + p3 + · · ·+ pN−1)KN−1 +O(KN−2).

Hence, we have

detMN =
N∑
i=1

Mi =
(−1)N−1

N
(p1 + · · ·+ pN )KN−1 +O(KN−2).
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