Citation: Seung-Yeal Ha, Yongduck Kim, Zhuchun Li. Asymptotic synchronous behavior of Kuramoto type models with frustrations[J]. Networks and Heterogeneous Media, 2014, 9(1): 33-64. doi: 10.3934/nhm.2014.9.33
[1] | J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185. doi: 10.1103/RevModPhys.77.137 |
[2] | D. Aeyels and J. A. Rogge, Stability of phase locking and existence of entrainment in networks of globally coupled oscillators, in Proc. 6th IFAC Symposium on Nonlinear Control Systems, 3 (2004), 1031-1036. |
[3] | P. Ashwin and J. W. Swift, The dynamics of $n$ weakly coupled identical oscillators, J. Nonlinear Sci., 2 (1992), 69-108. doi: 10.1007/BF02429852 |
[4] | L. L. Bonilla, J. C. Neu and R. Spigler, Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators, J. Stat. Phys., 67 (1992), 313-330. doi: 10.1007/BF01049037 |
[5] | preprint, arXiv:1008.0249. |
[6] | Y. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D, 240 (2010), 32-44. doi: 10.1016/j.physd.2010.08.004 |
[7] | Y. Choi, S.-Y. Ha, S.-E. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754. doi: 10.1016/j.physd.2011.11.011 |
[8] | N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Autom. Control, 54 (2009), 353-357. doi: 10.1109/TAC.2008.2007884 |
[9] | H. Daido, Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68 (1992), 1073-1076. doi: 10.1103/PhysRevLett.68.1073 |
[10] | F. De Smet and D. Aeyels, Partial entrainment in the finite Kuramoto-Sakaguchi model, Physica D, 234 (2007), 81-89. doi: 10.1016/j.physd.2007.06.025 |
[11] | J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480. doi: 10.4310/CMS.2013.v11.n2.a7 |
[12] | F. Dörfler and F. Bullo, Synchronization in complex oscillator networks: A survey, submitted, (2013). |
[13] | F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099. doi: 10.1137/10081530X |
[14] | F. Dörfler, M. Chertkov and F. Bullo, Synchronization in complex oscillator networks and smart grids, Proceedings of the National Academy of Sciences, 110 (2013), 2005-2010. doi: 10.1073/pnas.1212134110 |
[15] | G. B. Ermentrout, Synchronization in a pool of mutually coupled oscillators with random frequencies, J. Math. Biol., 22 (1985), 1-9. doi: 10.1007/BF00276542 |
[16] | S.-Y. Ha and M.-J. Kang, Fast and slow relaxations to bi-cluster configurations for the ensemble of Kuramoto oscillators, Quart. Appl. Math., 71 (2013), 707-728. doi: 10.1090/S0033-569X-2013-01302-0 |
[17] | S.-Y. Ha, T. Ha and J. H. Kim, On the complete synchronization for the globally coupled Kuramoto model, Physica D, 239 (2010), 1692-1700. doi: 10.1016/j.physd.2010.05.003 |
[18] | S.-Y. Ha, C. Lattanzio, B. Rubino and M. Slemrod, Flocking and synchronization of particle models, Quart. Appl. Math., 69 (2011), 91-103. |
[19] | S.-Y. Ha, and Z. Li, Complete synchronization of Kuramoto oscillators with hierarchical leadership, Commun. Math. Sci., 12 (2014), 485-508. doi: 10.4310/CMS.2014.v12.n3.a5 |
[20] | S.-Y. Ha, Z. Li and X. Xue, Formation of phase-locked states in a population of locally interacting Kuramoto oscillators, J. Differential Equations, 255 (2013), 3053-3070. doi: 10.1016/j.jde.2013.07.013 |
[21] | S.-Y. Ha and M. Slemrod, A fast-slow dynamical systems theory for the Kuramoto phase model, J. Differential Equations, 251 (2011), 2685-2695. doi: 10.1016/j.jde.2011.04.004 |
[22] | A. Jadbabaie, N. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proc. American Control Conf., 5 (2004), 4296-4301. |
[23] | Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3 |
[24] | Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Theoretical Physics, 39 (1975), 420-422. |
[25] | C. R. Laing, Chimera states in heterogeneous networks, Chaos, 19 (2009), 013113. doi: 10.1063/1.3068353 |
[26] | Z. Levnajić, Emergent multistability and frustration in phase-repulsive networks of oscillators, Phys. Rev. E, 84 (2011), 016231. |
[27] | S. Lück and A. Pikovsky, Dynamics of multi-frequency oscillator ensembles with resonant coupling, Phys. Lett. A, 375 (2011), 2714-2719. |
[28] | R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci., 17 (2007), 309-347. doi: 10.1007/s00332-006-0806-x |
[29] | R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillator, Physica D, 205 (2005), 249-266. doi: 10.1016/j.physd.2005.01.017 |
[30] | R. E. Mirollo and S. H. Strogatz, Stability of incoherence in a population of coupled oscillators, J. Stat. Phys., 63 (1991), 613-635. doi: 10.1007/BF01029202 |
[31] | E. Oh, C. Choi, B. Kahng and D. Kim, Modular synchronization in complex networks with a gauge Kuramoto model, EPL, 83 (2008), 68003. doi: 10.1209/0295-5075/83/68003 |
[32] | K. Park, S. W. Rhee and M. Y. Choi, Glass synchronization in the network of oscillators with random phase shift, Phys. Rev. E, 57 (1998), 5030-5035. doi: 10.1103/PhysRevE.57.5030 |
[33] | A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743 |
[34] | H. Sakaguchi and Y. Kuramoto, A soluble active rotator model showing phase transitions via mutual entrainment, Prog. Theor. Phys., 76 (1986), 576-581. doi: 10.1143/PTP.76.576 |
[35] | S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20. doi: 10.1016/S0167-2789(00)00094-4 |
[36] | T. Tanaka, T. Aoki and T. Aoyagi, Dynamics in co-evolving networks of active elements, Forma, 24 (2009), 17-22. |
[37] | J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators, J. Stat. Phys., 72 (1993), 145-166. doi: 10.1007/BF01048044 |
[38] | A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42. doi: 10.1016/0022-5193(67)90051-3 |
[39] | Z. G. Zheng, Frustration effect on synchronization and chaos in coupled oscillators, Chin. Phys. Soc., 10 (2011), 703-707. |