Citation: Mattia Bongini, Massimo Fornasier. Sparse stabilization of dynamical systems driven by attraction and avoidance forces[J]. Networks and Heterogeneous Media, 2014, 9(1): 1-31. doi: 10.3934/nhm.2014.9.1
[1] | L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford University Press, New York, 2000. |
[2] | J.-P. Aubin and A. Cellina, Differential Inclusions, Set-valued maps and viability theory, Grundlehren der Mathematischen Wissenschaften, 264, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4 |
[3] | M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse stabilization and control of alignment models, Math. Control Relat. Fields, 3 (2013), 447-466. Available from: http://www-m15.ma.tum.de/foswiki/pub/M15/Allgemeines/PublicationsEN/flocking_V9.pdf. doi: 10.3934/mcrf.2013.3.447 |
[4] | J. A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, in Collective Dynamics from Bacteria to Crowds, CISM International Centre for Mechanical Sciences, 553, Springer, 2014, 1-46. doi: 10.1007/978-3-7091-1785-9_1 |
[5] | J. A. Carrillo, M. R. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinet. Relat. Models, 2 (2009), 363-378. doi: 10.3934/krm.2009.2.363 |
[6] | J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (eds. G. Naldi, L. Pareschi, G. Toscani and N. Bellomo), Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, 2010, 297-336. doi: 10.1007/978-0-8176-4946-3_12 |
[7] | Y. Chuang, M. D'Orsogna, D. Marthaler, A. Bertozzi and L. Chayes, State transition and the continuum limit for the 2D interacting, self-propelled particle system, Physica D, 232 (2007), 33-47. doi: 10.1016/j.physd.2007.05.007 |
[8] | F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124-1129. doi: 10.1109/TAC.2011.2107113 |
[9] | F. Cucker and J.-G. Dong, A conditional, collision-avoiding, model for swarming, Discrete and Continuous Dynamical Systems, 34 (2014), 1009-1020. doi: 10.3934/dcds.2014.34.1009 |
[10] | F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842 |
[11] | F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227. doi: 10.1007/s11537-007-0647-x |
[12] | M. D'Orsogna, Y. Chuang, A. Bertozzi and L. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.104302 |
[13] | A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Translated from the Russian, Mathematics and its Applications (Soviet Series), 18, Kluwer Academic Publishers Group, Dordrecht, 1988. |
[14] | M. Fornasier and F. Solombrino, Mean-field optimal control, preprint, arXiv:1306.5913, (2013). |
[15] | S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control, 55 (2010), 1679-1683. doi: 10.1109/TAC.2010.2046113 |
[16] | J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998. |
[17] | M. Huang, P. Caines and R. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: Centralized and nash equilibrium solutions, in Proceedings of the 42nd IEEE Conference on Decision and Control Maui, Hawaii, USA, December, 2003, 98-103. |
[18] | J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math. (3), 2 (2007), 229-260. doi: 10.1007/s11537-007-0657-8 |
[19] | SIAM Rev., to appear. |
[20] | M. Nuorian, P. Caines and R. Malhamé, Synthesis of Cucker-Smale type flocking via mean field stochastic control theory: Nash equilibria, in Proceedings of the 48th Allerton Conf. on Comm., Cont. and Comp., Monticello, Illinois, 2010, 814-819. doi: 10.1109/ALLERTON.2010.5706992 |
[21] | M. Nuorian, P. Caines and R. Malhamé, Mean field analysis of controlled Cucker-Smale type flocking: Linear analysis and perturbation equations, in Proceedings of 18th IFAC World Congress Milano (Italy) August 28-September 2, 2011, 4471-4476. |
[22] | A. Rahmani, M. Ji, M. Mesbahi and M. Egerstedt, Controllability of multi-agent systems from a graph-theoretic perspective, SIAM J. Control and Optimization, 48 (2009), 162-186. doi: 10.1137/060674909 |
[23] | H. G. Tanner, On the controllability of nearest neighbor interconnections, in Proceedings of the 43rd IEEE Conference on Decision and Control, IEEE Press, Piscataway, NJ, 2004, 2467-2472. doi: 10.1109/CDC.2004.1428782 |
[24] | T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140. doi: 10.1016/j.physrep.2012.03.004 |