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ABSTRACT. Conditional self-organization and pattern-formation are relevant
phenomena arising in biological, social, and economical contexts, and received
a growing attention in recent years in mathematical modeling. An important
issue related to optimal government strategies is how to design external par-
simonious interventions, aiming at enforcing systems to converge to specific
patterns. This is in contrast to other models where the players of the systems
are allowed to interact freely and are supposed autonomously, either by game
rules or by embedded decentralized feedback control rules, to converge to pat-
terns. In this paper we tackle the problem of designing optimal centralized
feedback controls for systems of moving particles, subject to mutual attraction
and repulsion forces, and friction. Under certain conditions on the attraction
and repulsion forces, if the total energy of the system, composed of the sum
of its kinetic and potential parts, is below a certain critical threshold, then
such systems are known to converge autonomously to the stable configuration
of keeping confined and collision avoiding in space, uniformly in time. If the
energy is above such a critical level, then the space coherence can be lost. We
show that in the latter situation of lost self-organization, one can nevertheless
steer the system to return to stable energy levels by feedback controls defined
as the minimizers of a certain functional with £;-norm penalty and constraints.
Additionally we show that the optimal strategy in this class of controls is nec-
essarily sparse, i.e., the control acts on at most one agent at each time. This is
another remarkable example of how homophilious systems, i.e., systems where
agents tend to be strongly more influenced by near agents than far ones, are
naturally prone to sparse stabilization, explaining the effectiveness of parsimo-
nious interventions of governments in societies.
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1. Introduction. Self-organization in social interactions is a fascinating mecha-
nism which inspired the mathematical modeling of multi-agent interactions to lead
to coherent global behaviors, with applications in the study of biological, social,
and economical phenomena. Two main machanisms are considered in such models
to drive the dynamics. The first, which takes inspiration, e.g., from physics laws of
motion, is based on binary forces encoding observed “first principles” of biological,
social, or economical interactions. As it is very hard to be exhaustive in accounting
all the developments of this very fast growing field, we refer to [4, 6, 19, 24] for re-
cent surveys, where both particle and macroscopic models are reviewed. The second
mechanism is based on evolutive games, where the dynamics is driven by the simul-
taneous optimization of costs by the players, perhaps subjected to selection, from
game theoretic models of evolution [16] to mean-field differential games, introduced
by Lasry and Lions [18], and independently in the optimal control community un-
der the name Nash Certainty Equivalence (NCE) within the work [17], later greatly
popularized, e.g., within consensus problems, for instance in [20, 21]. The common
view point of these branches of mathematical modeling of multi-agent systems is
that the dynamics is based on the free interaction of the agents and the wished
phenomenon to be described is their self-organization in terms of the formation of
higher level complex, macroscopic patterns. Perhaps opposite to this enthusiastic
view about self-organization, we wish to modify this paradigm, by allowing possible
external interventions on the system. Let us motivate our point of view by focusing
our attention on consensus emergence and coherence in a society.

There are many mechanisms of promotion of coherence in a society, for instance
the heterophilia, i.e., the tendency to bond more with those who are different rather
than those who are similar, as it has been pointed out in the recent work [19].
But also in homophilious societies more influenced by local similarities, global self-
organization can be expected as soon as enough initial coherence is reached. A
relatively simple, but also very instructive mathematical description of such a situ-
ation is given by the model by Cucker and Smale [10, 11], see also the generalizations
in [15], where consensus emergence is shown to be conditional to initial conditions
of coherence whenever the system is predominantly homophilious. However, it is
common experience that coherence in a homophilious society can be lost, leading
sometimes to dramatic consequences, questioning strongly the role and the effective-
ness of governments, which may be called to restore social stability. In the recent
work [3] the authors explored the conditions under which Cucker-Smale systems
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can be stabilized by means of centralized feedback controls, revealing a remarkable
fact: if the interactions in a social system are homophilious, hence in principle prone
to split consensus and lose coherence, parsimonious stabilization strategies are not
only unconditionally effective (i.e., the successful stabilization does not depend on
the initial conditions of the system), but also optimal in terms of leading in the
shortest time to global consensus, with the minimal amount of external interven-
tion. In other words, if, on the one side, the homophilious character of a society
plays against its coherence, on the other side, it plays at its advantage if we allow
for sparse external intervention. We refer to [22] for other controllability results of
multi-agent systems, where a graph-theoretic point of view is taken to consider the
modeling of the dynamics of an interacting group driven by a small group of fized
leaders, as a generalization of the seminal work of Tanner [23]. Let us stress that
our point of view is slightly different, as we do not fix the leaders and we allow the
possible exchange in time of them, although promoting instantaneously their small
number. The key concept which has to be firmly taken into account in this paper
is the promotion of sparse controls. As observed in [3, Section 6], the unconditional
sparse stabilization and global sparse controllability results can be easily adapted

to any system of the type
T=v
{ )

v =—L%x)v + u,
where the main state of the group of N agents is given by the N-uple = (1, ...,
xpy). Similarly for the consensus parameters v = (vy,...,vyx). The vector u =
(uq,...,un) represents the external controls.

The space of main states and the space of consensus parameters is (R?)" for both;
the matrix L%x) is the Laplacian’ of the N x N adjacency matrix
(a(||x; —mi||)/N)£Yj:1, where a € C'([0,+00)) is a nonincreasing, positive, and
bounded function. The Laplacian L%(x) is an N x N matrix acting on (R4, and
verifies L%(z)(v,...,v) = 0 for every v € RY.

Let us however stress that such results have more far reaching potential, as they
can address also situations which do not match the structure (1), such as the Cucker
and Dong model of cohesion and avoidance [9], where the system has actually the
form

{ 0 = (L (x) — L))z + u, @

where L%(x) and L/(x) are graph-Laplacians associated to competing avoidance
and cohesion forces respectively. We shall introduce this system in more detail
below. Similar models considering attraction, repulsion and other effects, such as
alignment or self-drive, appear in the recent literature and they seem effectively
describing realistic situations in nature of conditional pattern formation, see, e.g.,
some of the most related contributions [5, 7, 8, 12]. Under certain conditions on the
attraction and repulsion forces, if the total energy of the system (2), composed of
the sum of its kinetic and potential parts, is below a certain critical threshold, then
such systems are known to converge autonomously to the stable configuration of
keeping confined and collision avoiding in space, uniformly in time, see [9, Theorem

!Given a real N x N matrix A = (a;;);,; and v € (R¥)YN we denote by Av the action of A on
(RN by mapping v to (a;1v1 + -+ + a;NvN)i=1,... . N. Given a nonnegative symmetric N x N
matrix A = (a;j)s,j, the Laplacian L of A is defined by L = D — A, with D = diag(ds,...,dn)
and dy = z;vzl ag;j.
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2.1]. If the energy is above such a critical level, then the space coherence can be
lost. And this introduces us to the main scope of this paper. We show that in
the latter situation of lost self-organization, one can nevertheless steer the system
(2) to return to stable energy levels by feedback controls. These controls are taken
as the minimizers of a specific functional with /;-norm penalty and constraints, a
feature which, additionally to the stabilization effect, let us show that the optimal
strategy is necessarily sparse, i.e., the control acts on at most one agent at each
time. This is another remarkable example beside the one already presented in [3]
of how certain social systems are naturally prone to sparse stabilization, explain-
ing the effectiveness of parsimonious interventions of governments in societies. Let
us stress that, although here we follow a conceptually similar path as in [3], the
structural differences between the models (1) and (2) are such that, not only the
analysis in the present paper requires certain nontrivial a priori estimates for sta-
bility, collected below in Section 3, which were not necessary for (1), but also our
final result turns out to differ substantially. In particular, while the stabilization of
the Cucker and Smale model is unconditional, i.e., it does not depend on the initial
conditions, for the Cucker and Dong model our analysis guarantees stabilization
only within certain total energy levels, which is suggesting that also stabilization
can be conditional. However, our numerical experiments reported below suggest
that it is possible to exceed such a sufficient upper energy barrier to stabilization,
but it is unclear whether this is just a matter of fortunate choices of good initial
conditions or we can actually have a broader stabilization range than the one analyt-
ically derived. This leaves us still with the open question of whether such systems
are unconditionally sparse stabilizable. Let us stress that this present paper ad-
dresses exclusively feedback controls for the purpose of stabilization. However, we
mention that in [3] also the formulation of a finite horizon sparse optimal control
problem for the Cucker and Smale model was considered. To deal with the sparse
optimal control of a very large number of agents, in [14] mean-field sparse optimal
control problems have been introduced and analyzed in a rather general setting,
which includes both (1) and (2) as possible starting particle formulations.

The paper is organized as follows. In Section 2 we recall in more detail the
model of Cucker and Dong. In particular, we review the main result concerning
conditional convergence to stable configurations of cohesion and collision avoidance.
We conclude the section by introducing the natural form of a sparse feedback control
to be used to stabilize the system when it is above the critical energy threshold. In
Section 3 we analyze a sampling-and-hold strategy based on the introduced sparse
feedback control and we collect several a priori statements on the behavior of the
system subjected to such sampled control. In Section 4 we show that the sampled
sparse control will be able to steer the system to the stable total energy level,
provided that the initial total energy is below a certain upper threshold, and the
initial mean velocity of the system is non zero. In Section 5 we show that there exist
solutions of the controlled Cucker and Dong system as limits for the sampling time
going to zero and we characterize them in terms of certain variational principles
involving ¢ — ¢¢-norm penalties, describing the limit controls. The end of this
section is of utmost relevance, as it is a fundamental justification for the choice
of sparse controls. There we show that sparse controls are optimal in terms of
maximazing the rate of convergence to return to stable total energy levels. In other
words it is a mathematical confirmation that for certain social systems parsimonious
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controls can be mostly effective. We conclude with Section 6 which collects several
numerical experiments, illustrating in details our analytical findings.

2. Preliminaries.

2.1. The model. The Cucker-Dong model introduced and analyzed in [9] is given
by the following system of differential equations, where i = 1,..., N:

Zi?i (t) = v; (t)

N N
. 2 2
0:(t) = ~bi0wi(t) + Y a (s = a1°) (@ — @) + 3 f (s = 250 ) (@i — ).

=1 j=1
! i#i

(3)

This model describes the dynamics of N particles/agents with main state =
(z1,...,xzyN) and consensus parameters v = (vy,...,vy), which can be considered
space and velocity variables in group motion dynamics. The evolution is governed
by an attraction force, modeled by a function a : R — [0, 400), which is, for some
fixed constant H > 0 and 8 > 0, of the form

() = o
a(r) = ———=,

(1+7)P
though in general any Lipschitz-continuous, nonincreasing function with maximum
in a(0) will work. This force is counteracted by a repulsion determined by a locally
Lipschitz continuous or C'*, nonincreasing function f : (0, 00) — [0, 00). We request
that

+oo
/ f(r) dr < oo for every § > 0, (4)
5

+o00
/0 f(r) dr = +o0. (5)

A typical example of such a function is f(r) = r~? for every p > 1. The reason
of these requests will be clear after Remark 2. The uniformly continuous, bounded
functions b; : [0,00) — [0,A], ¢ = 1,..., N, where A > 0, are interpreted as a
friction which helps the system to stay confined.

T T T T T
2 -

FIGURE 1. Sum of the attraction and repulsion forces governed
by the function h(r) = f(r) — a(r) of the distance » > 0. The
parameters here are H = 50, 8 = 0.7, and p = 4.
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At first glance it may seem perhaps a bit cumbersome to consider a rather arbi-
trary splitting of the force into two terms governed by the functions a and f instead
of considering more naturally a unique function h(r) = f(r) — a(r) of the distance
r > 0, as depicted in Figure 1. However, as we shall clarify later, the interplay of
the polynomial decay of the function h to infinity and its singularity at 0 is funda-
mental in order to be able to characterize the confinement and collision avoidance
of the dynamics, and such a splitting, emphasizing the individual role of these two
properties, will turn out to be useful in our statements. As a matter of fact, several
forces in nature do have similar behavior, for instance the van der Waals forces
are governed by Lennard-Jones potentials for which h(r) = 7% — 2, for suitable
positive constants oy and o,. For such forces the polynomial decay corresponds
to the parameter § = 7, hence a rather fast decay, which is actually supercritical
(8 > 1) and it makes the confinement of the system conditional to the initial total
energy level (see Theorem 2.1 below).

It is easily seen how the above model can be rewritten as

T = v

v = —L(x)x — vb,
where (z,v) € (RH)Y x (RY)N and

L(x) == L%x) — L (x) (6)
is the difference between the Laplacians of the matrices [a (||:cl - wj||2)}f\79=1 and
[f (||:1:Z - a:j||2)]f\fj:1, respectively, and vb := [v;b;], for b = [by,...,bx]. Notice

that, in contrast to the Cucker-Smale system (1), now the Laplacians are acting on
the variable & and not anymore on the variable v, mixing the dynamics of the two
components of the state.

To quantify the behavior of the system we introduce a quantity called the total
energy which includes the kinetic and potential energies; for all (z,v) € (RN x
(RHN we define

N , 1 N o pllei—wg)? 1 M oo
E(z,v) = Z lvil|” + 3 Z / a(r)dr + 3 Z / . f(rydr. (7)
=1 i,j=1 0 i,j=1 las —a; |
i#£] 1#£j

If (x(t),v(t)) describes a trajectory in time, F(t) will stand for the total energy
function E(x(t),v(t)).

Remark 1. Every term appearing in the definition of E(x,v) is nonnegative (and
well-defined by (4)), and hence we are allowed to bound from above every term
appearing in the expression of E(z,v) (as ||jv;]|” or %f‘lo;iiij f(r)dr) by E(z,v)
itself.

The total energy E(t) = E(x(t),v(t)) is a Lyapunov functional for the system (3)
and, provided we are in presence of no friction at all (i.e., A = 0), it is a conserved

quantity. Since the proof of this result, already derived in [9], will be helpful later
on, we will report it in full details.

Proposition 1. For every t > 0, we have

d N
ZE() = ~2) " bilwil|*.
=1
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; — dE —
Hence, if A =0 then < = 0.

Proof. Let us compute

dE dn . = )
o = £Z||Uz‘|\ + > allle — 2 )1*) (@i — x5, v — vy)
=1

4,j=1

N
= > fllzi =25 l*) (@i — 25,00 — v)). (8)

4,j=1

The first term of the sum above is

g X N
dt > lwll? 23 (w5, v;)
i=1 i=1

N N
= =2) billvill* = > alll@i — x)l*) (@i — 2, v — v)
i=1 ij=1
N
+ 3 fllzi = @) (@i — @5, 0 — vy), (9)

ij=1

which, plugging (9) into (8), yields

N
dE
— = =2) biflv*
= > bl
So, if A =0 then b; =0 for every i = 1,... N, and thus ‘Z—’f = 0, as stated. O

If the attraction force at far distance is very strong (for § < 1), despite an
initial high level kinetic energy and repulsion potential energy, perhaps due to a
space compression of the group of particles, the dynamics is guaranteed to keep
confined and collision avoiding in space at all times. If the attraction force is instead
weak at far distance, i.e., # > 1 is supercritical, then confinement and collision
avoidance turn out to be properties of the dynamics at all times, only conditionally
to initial low levels of kinetic energy and repulsion potential energy, meaning that
the particles should not be initially too fast and too close to each other. This latter
condition is formulated in terms of a total energy critical threshold

¥:=(N-1) /OOO a(r)dr. (10)

This fundamental dichotomy of the dynamics has been characterized within the
following result from [9].

Theorem 2.1. Consider a population of N agents modeled by system (3) with
initial position satisfying ||x;(0) — x;(0)||> > 0 for all i # j and

+oo
E(0) < %/0 F(r)dr. (11)

Then there exists a unique solution (x(t),v(t)) of system (3) with initial state
(x(0),v(0)). Moreover if one of the two following hypotheses holds:

1. B<1;

2. f>1 and E(0) < 9.
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Then the population is cohesive and collision-avoiding, i.e., there exist two constants
By and by > 0 such that, for allt >0

bo < ||l&i(t) —x;(t)|| < By for all1 <i# j < N. (12)

Remark 2. In the case N = 1 we are dealing with a single agent with initial position
«(0) and initial speed v(0), so by definition E(0) = ||Jv(0)|°. Hence condition (11)
becomes

+o0o
o) <5 [ s

Since a single particle satisfies trivially condition (12) of Theorem 2.1, no matter
how its initial velocity is, and it is governed by a system like (3) for every § > 0,
then in order Theorem 2.1 to be valid for single agents we have to require that f

satisfies condition (5), that is
—+oo
/ flr) dr = oco.
0

Motivated by Theorem 2.1, we will call the consensus energy sublevel or consensus
region the set

C={weR|w<v}

We will say that the system (3) is in the consensus region at time t if E(t) € C.

Let us stress the fact that the word consensus must be intended here as a stable
cohesion and collision-avoiding dynamics, in the spirit of the conclusion of Theorem
2.1. This is in contrast with the common meaning of the word consensus in litera-
ture, which describes a situation where all the agents move according to the same
velocity vector. We point out that our definition of consensus does not imply this
particular feature, but it is rather intended to make a parallel between Theorem 2.1
and [10, Theorem 2], as already done by Cucker and Dong in [9].

It is an obvious corollary of Theorem 2.1 the fact that if system (3) is in the
consensus region at time 7', for some 7' > 0, then condition (12) is fulfilled for every
t>T.

This brings us eventually to the main scope of this paper. We shall investigate,
especially in the case where 8 > 1 and E(0) > ¢, if and under which conditions it
is possible to define a control, modeling an external policy maker, able to enforce
the system, initially not yet in the consensus region at ¢ = 0, to be in the consensus
region in finite time. Notice that requiring condition 8 > 1 means that the tendency
to a confinement is mainly a local property, i.e., the dynamics is homophilious, the
agents bond more with those who are closer rather than those who are far. Inspired
by the recent results in [3], stating that homophilious dynamics, despite being prone
to produce group splitting and lost confinement, are also very sensitive to parsimo-
nious controls, we shall seek specifically for our feedback control to be sparse, i.e.,
with at most one non-zero active component at every instant. We also prove that
this kind of controls are particularly easy to implement in numerical simulations
and enjoys optimality properties in terms of fastest convergence to consensus re-
gion, i.e., every other deterministic control satisfying condition (13) stated below
takes necessarily a larger time with respect to the sparse control to stabilize the
system within the consensus region (see Theorem 5.5).
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2.2. Introducing the control. The control for the system (3) shall be an external
field w : [0,4+00) — (R%)N such that each component is a measurable functions
which satisfies the /I — ¢4-norm constraint

N
S lhuste)] < 1 (13)

for every t > 0, for a given positive constant M. This bound models the limited
resources given to an external policy maker to influence instantaneously the dy-
namics. Thus, the time evolution of the state of each agent is given now by the
following system, where ¢ =1,..., N:

:fci (t) = v; (t)

N N
o (t) = ~bitwi(t)+ Y a (=) (@;—2)+ Y f (loi—a;)) (@i—a))+us,
= i
(14)
For this system we define again the total energy function £ and the threshold 9 as
in (7) and (10), respectively.

We should design the control to act until E(T) < 6 at some finite time 7', and
then it should be turned off. Since we start from E(0) > 6, then it is necessary that
our control forces the total energy to decrease, for instance by ensuring ‘Z—If < 0.
Hence, the following technical result helps us to identify accordingly the form of the
control. For now we assume that a Filippov solution of exists [13], later we shall
prove it.

Lemma 2.2. Suppose there exists a solution of the system (14) and let E be the
total energy function associated to it. Then, for every t > 0 we have

p N N
%E(t) = _ZZbi“'vi“Q+22<ui(t)avi(t)>' (15)

Proof. The identity (8) in the proof of Proposition 1 is still valid for a solution to
(14), while (9) changes as follows

g N N
dt MlwillP = =2 billvill> = Y alllz: — a)*) (@i — 25,00 — v))
i=1 i=1 ij=1
N N
+ Z Flll; — 2j]*) (@i — 2j, v — v;) + QZ (ui, vi),
i1 i=1

because of the control term. Inserting this expression into (8) we get

dE N N
= = =2 “billoil 2 (ui,vi).
i=1 =1
O

From expression (15), it is clear that the only way our control can act on E
in order to push it below the threshold is not anymore according to the mutual
distances of the agents or the main state variables &, but according to the velocities
v. We focus accordingly to the following family of controls.
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Definition 2.3. Let (z,v) € (R)Y x (RY)Y and 0 < e < %. We define the

sparse feedback control u(x,v) = [uy(x,v),...,un(z,v)]T € (RN associated to
(z,v) as

ui(x,v) = —eB(@, )7 1“ = i@, v)
0 if i # Uz, v)
where 7(x,v) is the minimum index such that

Vit | = max o]l
Whenever the point (x,v) is a point of a curve (z(t),v(t)) : [0, +00) — (RN x
RHYN ie. (z,v) = (x(t),v(t)) for some t € [0, +00), we will replace everywhere
u(z,v) = u(x(t), v(t)) with u(t).
The parameter € will help us to tune the control in order to ensure the conver-
gence to the consensus region. Moreover, whenever it is clear from the context, we
will omit the time (or the space) dependency of 7.

Remark 3. Definition 2.3 makes sense if ||vyy(t)|| # 0 for at least almost every
t > 0. Notice that, if the latter condition were not holding, then v;(¢) = 0 for all
i=1,...,N and for all ¢ > 0, hence v;(t) =0 foralli=1,...,N and for all ¢ > 0,
and the configuration of the system would be in a steady state and no control would
be needed.

Remark 4. Besides this latter observation on the well-posedness of Definition 2.3,
later we show that actually ||vy)(t)|| keeps bounded away from 0 in the interval of
time where we intend the control to act. In particular in the proof of Theorem 4.1
we prove that if the average speed at time 0 is nonzero, i.e., |[©(0)|| > 0, and E(0)
is not “too far” from the threshold (in a precise sense), then we have [Jvyy)(t)[| > 0
and E(t) < E(0) for all ¢ such that the control is needed. Hence, for the choice of u
as in Definition 2.3 with parameter ¢ < M_ e have the validity of the constraint

E(0)
(13).

3. Sample-controlled Cucker-Dong systems. The main goal of this section
is to introduce the basic notions of sampling solution and sampling control, and
investigate some properties of controlled Cucker-Dong systems associated with this
kind of control strategy. This will pave the way to an existence result for systems
modeled by (14) but associated to a class of controls containing properly the one
introduced in Definition 2.3.

3.1. Sampling solutions.

Definition 3.1. Let U C R™, f : R" x U — R" be continuous and locally Lipschitz
in & uniformly on a compact subset of R™ x U. Given a function w : R® — U, 7 > 0,
and xp € R™ we define the sampling solution associated to the sampling time T of
the differential system
T = f(.’l), u(a:)), :B(O) = To
as the piecewise C! function x : [0,7] — R™ solving, recursively for k > 0, the
equations
z = f(z,u(kr)), t € [k, (k+1)7]

using as initial value x(k7), the endpoint of the solution of the preceding interval,
and starting with x(0) = xo.
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As anticipated, in the following we focus on systems like (14) associated to the
piecewise constant controls with sampling time 7 > 0 given by
u;(t) = u(nr) for every ¢ € [nt, (n + 1)7]. (16)

where w is a control satisfying Definition 2.3.

We shall show that Cucker-Dong systems associated to these controls possess
several monotonicity properties, which will let us conclude that each of these systems
satisfying certain regularity conditions can be driven in the consensus region in finite
time.

3.2. Properties of controlled Cucker-Dong systems. Lemma 2.2, together
with (16), gives us the following crucial fact concerning the growth of the energy
function. Indeed, we can estimate from above the energy function inside every
interval [n7, (n 4+ 1)7] by a quadratic function on 7.

Lemma 3.2. For all 7 > 0, for all n > 0 and for all s,t such that nt < s <t <
(n+1)r,

VE®) < VE(s) +eE(nt)(t — 5) (17)

Proof. From (15), for all nT <t < (n+ 1)7 we get

E'(t) < 2 Z@-(t), vi(t))

(vi(nT), v(t))
[[va(nT)]]
2e E(n)|vz(t)]]
2eE(nT)\/ E(t)
from Cauchy-Schwarz inequality and the fact that ||v;(¢)|| < /E(¢) for all . Hence,

integrating between s and ¢, where nt < s < t < (n 4 1)1, we get the desired
inequality. 0

—2¢E(nT)

IA A

A useful corollary of the lemma above tells us that, if the energy does not increase
in the interval [0,n7], then the agents does not collide until ¢ = (n 4 1)7, i.e., we
are able to bound from below the mutual distances of the agents of system (14) on
the whole interval [0, (n + 1)7].

Corollary 1. There are sufficiently small 7o > 0 and w > 0 such that, for all T < 79
there exists dy > w satisfying

llei(t) — x;(t)|| > do for alli,j=1,...,N, and i # j. (18)

for all t € [0,7]. Moreover, if E is nonincreasing in [0,n7] (n > 0), then dy > w
can be chosen such that (18) is true for all t € [0, (n + 1)7].

Proof. Hypothesis (11) ensures us that there are sufficiently small 79 > 0 and w > 0
such that

E(0) < —[(+/E(0) + eE(0)79)? — E(0)] + % /OO flr)dr (19)
Take 7 < 79; then, from estimate (17) we have that, for all ¢ € [0, 7],
E(t) < VE(0) +cE(0)T, (20)
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so, plugging (20) into (19), we get
1 oo
E(t) < 7/ f(r)dr.
2 w

From the definition of E, it follows that, for all i, =1,..., N,

d dr;
/lic,i(t)_wj(tHQ f(?") r< L f(’l’) r

the thesis then follows from the fact that f is nonincreasing.

Now suppose that F is nonincreasing in [0,n7]. Using this fact and estimate
(17), we get that (20) holds for all ¢ € [0, (n+ 1)7], and from the same argument as
above, we obtain dy > w satisfying (18) for all ¢ € [0, (n + 1)7]. O

Corollary 2. If E is nonincreasing in [0,n7] (n > 0), then the function L(x(t))
defined in (6) is bounded from above for every t € [0, (n + 1)7].

Proof. Since the function a is bounded from above by a(0) and, by Corollary 1,
F(ll&i(t) — x;(t)]|*) is bounded from above by f(w?) for every ¢ € [0, (n+41)7], then
L(x(t)) is bounded from above in the whole interval [0, (n + 1)7]. O

The following lemma, again a corollary of Lemma 3.2, says that the mutual
distances of the agents grows at most quadratically in time.

Lemma 3.3. Fiz 7 > 0 and suppose that

[2:(0) — 2;(0)]| < Co/E(0) for all i # j,
for some Cy > 0. Then we get
lzi(t) —z; (@) < (vD(7)+ Co)v E(0) for all i # j (21)
for all t € [0, 7], where
T4 2.

D(r) =
(1) 50)
Moreover, for all k € N, if E is nonincreasing in [0, k7] then for all t € [kT, (k+1)7]
i) —x; (1) < ((k+1)7D(7) + Co)v/ E(0) for all i # j. (22)

Proof. The following inequalities follow easily from the equations in (14), the defi-
nition of the control, and the estimate (17): for all k7 < s <t < (k+1)7

o) =i < [ 101(0) ~ w00 + i) - 2,1
< [ Q@1+ o010 + fi(s) — 509

S

/\/ 0)d0 + la:(s) — 5(5)]

2/ (VE(s)+eE(nt)(0 — s))df + ||z:(s) — x;(s)]|
= 2VE(s)(t —s) +eE(nT)(t — 5)* + [|lzi(s) — x;(s)|,

which, taking s = k7, yields
l&:(t) —2; ()] < 2V E(kT)(t — k1) + eE(kT)(t — k1) + ||l2i(k7) — 5 (k7)|
E(kT)T + eE(kT)7% 4 |24 (kT) — x;(kT)| (23)

IN

IN

A
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Thus, if k = 0

[l (t) — 25 (1)]] 2V E(0)7 +eE(0)7* + ||2;(0) — a;(0)

(1(e E(O)T + 2) + C’o)\/ (0)r

(rD(7) + Co)/ E(0)T.

Now let us prove by induction on & that, if ¢ € [k, (k+1)7] then (22) holds assuming

that F is nonincreasing in [0, k7]. If £ = 0, then it follows from (21); so suppose
(22) holds for all j < k. Then from (23) we get,

[ (t) — ;@)

IN AN IA

< E(kT)T + eE(kT)7T? + ||@i(k7) — 25 (kT) ||
< 2\/E(0)T +eE(0)7* + (ktD(7) + Co)/E(0)
< ((k+1)7D(1)+ Co)\/E(0).

O

The last property of the systems under investigation is the fact that if at time
t = 0 the norm of the average velocity of the system, i.e., of the quantity

1 N
:N;vi(t)

is larger than a positive scalar 7, then the norm of ©(¢) is bounded from below by
1 until time ¢t = T*(n), defined below.

Lemma 3.4. Suppose that ||[0(0)|| > 0 and let  be a positive estimate from below
of [[B(0)], i-e., |©(0)|| > n > 0. Define the following auziliary time horizon:

[@)[* —»*
2/E(0) (AVE©) + %)

Furthermore, let e < E(O 5o fix T >0 andn < [T*(n)/7]. Then, if E is nonincreasing

T*(n) =

in [0,nT] we have
[o@)] = n, (24)
for every t € [0,nT].

Proof. Let us compute, for all ¢ € [k7, (k+1)7) with k < n, the derivative of ||v(¢)]|?.

dy
dt”v(t)ll = 2<v(t),v(t)>
o 3 al _ _ 2eE(kT) <’U’L(k7)(k7')7§(t)>
= - b0 w0 - A S
> 2oy O~ D o 1)

using the fact that [|vyy)(t)] > max{|v;(t)|],||D(t)||} for all ¢t and for all j =
1,...,N. Now we use again the inequality ||v;(t)|] < \/E(t), valid for all 7, to
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obtain
D > 2MmUMMmMW+£¥ﬂ
eE(kT)
o 2
> —2/E(0) [A\/E(0)+£A([O}
>

—2./E(0) [A\/W+ J\zﬂ

since E is nonincreasing in [0, k7] for all k£ < n and € < E(O) Furthermore, since
the last quantity is constant, by integrating between k7 and t we get

BOI* > -2VE {A\/ )+ ]tk7)+llv(k7)ll2~ (25)

for every ¢ € [k, (k + 1)7]. We will now prove by induction on k < n that

O > 2V pw o+ }+M@W. (26)

for every t € [k, (k + 1)7]. This is straightforward for & = 0, so suppose (26) holds
for k < n and let us prove it for k+ 1. From (25) and from the inductive hypothesis
we get

SO > ~2V/EO) |AVEO) + 5| (¢t~ k) + [0k
AVEQ) + % (t — kr)
—2/E(0) _A\/E(O) + % kT + |[o(0)?

\%
!
[\
5
=

- e
= —“2VE(0) |AVEQ©) + 5| ¢+ [BO)]*.
Hence, if t < nr < [T*(n)/7]T < T*(n), we get
[BOI* > n*.
O

Remark 5. We can get a larger interval of validity of (24) by using in the proof
above the upper bound ||v;()||* < E(t) — E,(t) instead of ||lv;(t)||> < E(t), where

n 1 f: e (£)—; (£)]1? Z )
Ep(t) =5 / a(r)dr + = / f(r)dr
252 s 0o, O
i#i
is the potential part of E(t). Then, given b, B > 0 such that b < ||x;(t) — x;(t)]|
B for every i # j and t > 0, we can estimate E,(t) from below by

Z/ r)dr+ - Z/f

i,j=1 i,j=1

1#] 7]

’<
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Thus, given b and B as above we get the finer estimate ||v;(t)||> < E(t) — S(b, B),
and if we replace ||v;(t)]|* < E(t) with it we get

[B0)]2 ~ 2 |
2/E(0) = S, B) (AVE(©) - S0, B) + &)

Moreover, with the choice b = 0 and B = 400 we get back T*(n,b, B) = T*(n),
since S(b, B) = 0.

T*(n,b, B) =

For the convenience of the reader, we now list all the highlighted properties
of controlled Cucker-Dong systems which will be useful in the proof of the main
theorem of the following section:

(1): linear growth estimate of 1/ E(t) (Lemma 3.2);

(2): the distance |z;(t) — ;(t)| can be estimated from below by a constant
dy > w (Corollary 1);

(3T): quadratic growth estimate from above of ||z;(t) — ;(t)|| (Lemma 3.3);
(4): if ||©(0)|| > n > 0 then there exists T' > 0 such that |[v(¢)]| > n for every
t <T (Lemma 3.4), provided that E is not increasing in [0, 7.

Each condition marked by a T holds in each starting interval [0, 7] and in every
interval [0, (n 4+ 1)7] provided that E is nonincreasing in [0, n7].

4. Piecewise-constant sparse controls are effective. In this section we will
prove that our sampling strategy is indeed able to steer Cucker-Dong systems into
the consensus region, provided they are not too unruly, from the properties listed
in the section above.

Since in what follows, ) will always be a fraction of |[©(0)|], i.e., n = % [lo(0)] for
some ¢q > 1, we will set

. (1 v(0)|? 1
7 =1 (L o)) - PO~ (1-%).
q 2,/E(0) (A,/E(O) + W) q
We can now present the main result of this section.

Theorem 4.1. Fiz M > 0. Let (zg,vo) € (RN x (RH)N be such that the following
hold:

(a): 0 < [lzo; — @o;|| < Cor/E(0) for all i # j,

(0): [[w(0)]| >0,
and suppose there exists a q > 1 satisfying
(0):

E(O)In (Eg))) < % 15(0)| 7" (q)-

Then there exist 79 > 0, w > 0 and € > 0 such that for every 7 < 7

! E(0) M
27*(q) (é [BO)I| — g, q)) ln( v ) =°=50) (27)

holds, where for the sake of brevity we have set

(7, q) = MAT*+ (M+AVE©)+(a(0)+ () (T* (g)+7)D(r) +Co) N/E(0)) 7.
(28)
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Moreover, the sampling solution of system (14) associated with the control w of
Definition 2.3 with control parameter € satisfying (27), the sampling time 7 < g
and initial datum (xo,vo) reaches the consensus region in finite time T*(q).

Proof. Let ¢ > 1 such that it satisfies condition (¢) of the statement, and take 7
and w sufficiently small to allow us to apply Corollary 1 and to satisfy the inequality

1 E(0) E(0)
SO = ) > gt (). (29)

Notice that the existence of such 7y and w follows from condition (¢). Furthermore,
(29) grants the existence of an € > 0 for which (27) is satisfied and implies that the
following inequalities are true:

é 15(0)| — u(70,q) + T*(g)D(m0) > 0, (30)

% 15(0)| - pu(r0,9) > 0. (31)

Moreover, all the above inequalities are satisfied if we substitute 79 by any 7 < 7.
Now, denote with (z(t),v(t)) the solution of (14) associated with the control w
with £ as in (27), the sampling time 7 < 7y and initial datum (zg,vg). As already
pointed out in the proof of Lemma 3.2, for every ¢ € [n7, (n + 1)7)
E/(t) < —QEE(’I’LT) <vf(n7—)a vf(t» ]
[vz(n7)]|

We define
(vi(nT), vi(t))
[va(nT) |l

¢(t) = E(nT)

)

and we study its derivative with respect to ¢t € [n7, (n + 1)7). Notice that if F is
nonincreasing in [0, n7] and if nT < T*(q), then

¢(nt) = E(nT)|ve(n7)|| = é [@(0)[| E(nT)

holds because we are under the hypothesis of Lemma 3.4 and we can use the estimate
(24). We have the following estimate from below

#18) — B BT 50)

[[vz(nT)]]
E(nt) N
= ot bz (t)(ve(n7) vﬁ)}—kga (||wb( )—x; (1) ) (ve(n7),@; (1) —2:(t))
3 n)||va 2
+ 371 (lett) = 2,01 {wror) ett) — 5(0) — =2 Hvil(ln;() | )l ]
N
> E(nt) | = bp(t)||va(t)]| — Za (Ha%( ) — :Ijj( )| ) ||;13]( ) — (1)
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>~ E(n7) | Allvs(t) |+Z( (0)+/ (l2e(t) ~a; (0)1)) 5 ()~ ()| +£ B (n7)

>—~E(nr) AF +Z( (0)+f (let) =2, DI )) ;) —e(t) | +=E(nr)

having used the Cauchy-Schwarz inequality and the fact that the damping functions
b; and the attraction force function a are bounded from above.
Now, for the sake of compact notation, set

di j(t) = |las(t) — a; ()]
By the mean value theorem, there exists &, € [n7,t] such that, using the estimate
(17) in Lemma 3.2, we get

¢(t) = ¢(n7) — TE(nT [A\/ (&n) + Z ) + fdr(€n)*))dz (6n) +6E(W)]

> E(n7) | ||lvp(n7)| — (AEE(W/T))T2—

A

EE (n7) + A/ E(nt ) + Z )+ f(dz;(6n) ))dﬁj(fn)> T]

N
> E(n7) [IW(HT)II — B(n)r? ( )+ Z ) + f(dzj(6n)%)) dr,j(fn)) T] ,

where we have estimated ¢ from above by % and, again for the sake of brevity,
we have set

_ AME(kT)
B(k) = Wﬂ
_ ME(kT)
for every k € N. So in the end we obtained the estimate
E'(t) < —2¢E(nr) {Ivr(w)ll ( +Z dz5(60)")) r,j(é“n)) T}

which is valid for all ¢ € [n7, (n + 1)7] where nT < T*(q).

Now, we will prove by induction on n that E is nonincreasing in [0, (n + 1)7],
where nT < T*(q). First of all, if n = 0 then & € [0, 7], and we can use Corollary
1 and Lemma 3.3 to bound d;, (&) from below by w and from above by (7D(7) +

Co)+/E(0). Moreover, since 7 < T*(g), we can bound ||vy(n7)| from below by
% |[o(0)]| by Lemma 3.4. So we get

E'(t) <~2¢5(0) E [(0)|-B(0)7 - (w<o>+<a<o>+f<w2>>(rD(r)+oo>N¢E<o>)r}

— _2:5(0) E 15O — u(ryq) +T* (q)D(T)]

<0,
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by (30).

Hence suppose that E is nonincreasing in [0,n7]| where (n — 1)7 < T*(q), and
let us prove that it is also true in [n7, (n + 1)7], if nT < T*(q). By the fact that
&, > n7 and by the inductive hypothesis, we can use the bounds from Corollary 1,
Lemma 3.3, and Lemma 3.4 as before to get

B(t) < —2¢5(0) g 15(0)]| - B(0)7
~ (+0) + (@(0) + F@)((n + 1) D(r) + Co)NVE)) ]
< “2:E(0) é 15(0)]| — B(0)2

= (7(0) + (a(0) + F@A)((T*(@) + 7)D(7) + Co)NVE(0) ) ]

< ~2:5(0) |1 I00)] - uir:0)
<0,
by condition (31). It is worth noticing that since F is nonincreasing in [0, n7] then
B(n) < B(0) and 4(n) < (0).

Hence, E is nonincreasing in [0, [T*(q)/7]7+1]. From this fact follows that for all
n such that nt < T*(q) and for all ¢t € [n1, (n + 1)7] we have E(t) < E(nr), which
gives us, together with Corollary 1, Lemma 3.3, and Lemma 3.4, the following;:

N

D)) = B(n)* = | (1) + (a(0) + f() Y dej(Ea) | 7

Jj=1

~2:E) | [9(0)] - 4, q>] . (32)

E'(t) < —2eE(nT)

<=

IN

By integrating between 0 and ¢ we obtain
E(t) < E(O)e*%[%HF(O)H*N(T’q)]t’

so if

1 (EWO
s E ||v<o>||—/ue<r,q>}1 ( v )

then E(t) < ¢ and thus the control steers the system into the consensus region in
finite time.

Now we have to ensure that the energy level goes below the threshold before
inequality (32) does not hold anymore; clearly, this happens if we impose that

\ 1 (B
T o st (57),
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and this is true if and only if

1 L (EO
e [;|v<o>||—u<nq>}1 ( v )

which holds because € was chosen to satisfy (27).
Moreover, condition (13) is also satisfied since, for all ¢t € [n7, (n + 1)7]

al eE(nT)
< eFE(0)
<M

which follows from (27) and the fact that F is decreasing in the whole time interval
of activity of the control. O

We now give a more operative reformulation of condition (c¢), which makes the
implementation of the control easier.

Proposition 2. Condition (c) of Theorem 4.1 is equivalent to the following request:
():
2V3 M (0)|°

9 T
> E(0) exp 9 E(0)\/E(0) (A E(OH%)

Moreover, if (¢') is satisfied, one can take
201 0)] |
3E(0)\/E(0) (A\/E(O) + %) In (%)

Proof. Remembering that

q:

() [P (0)I? 1
T (e ) U F)
we may rewrite condition (¢) of Theorem 4.1 as
E(0) M]w(0)[* -1
E(O)ln< { ) < 5 (P E) ( ; )

If we set

BO)V/EO) (AVEO + §) (E(O))
= — n R
M|w(0)[? v
we obtain from (33) the equivalent polynomial inequality in ¢

K¢ —q¢* < —1.

We now show that the request K < 29£ is equivalent to the existence of a ¢ > 0

such that K¢ — ¢> < —1 holds, and additionally one can choose ¢ > 1, as in

the statement of the proposition. If we study the derivative of the polynomial

7(q) = Kq* — ¢* we find that the stationary points of 7(q) are ¢ = 0 (which is a
2

local maximum) and § = 3% (which is a local minimum). Moreover, since the roots
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of m(q) are g =0 and ¢ = % then 7(q) < 0if and only if ¢ < % Hence, there exists
a g > 0 such that 7(¢q) < —1 if and only if 7(g) < —1. But

(@) = (Kq - 1)g°
- 4
T 27K
so we have 7(q) < —1 if and only if

K< QT\{g (34)

The bound (34) trivially implies that § > 1, and furthermore is equivalent to
NEPE MBO)* |
g 9 B(0)VE() (AV/EW) + 4)

From this, it follows that hypothesis (¢) of Theorem 4.1 holds if and only if (¢)
holds. O

Remark 6. Since we were under the hypothesis that the initial energy was above
the threshold, from condition (¢’) we get that our control is effective if

2V3 M|[w(0)|*
9 B(0)VE©) (AV/EW) + ¥)

which means that the threshold should not be too far away from the initial energy.

E(0)>9>E@0)exp | —

5. Existence of a solution for Cucker-Dong systems. In order to prove an
existence result for (14), as already claimed at the beginning of Section 3, we need
to enlarge the set of admissible controls we want to work with. Indeed the family
of sparse controls introduced in Definition 2.3 is too tight because, as the sampling
time goes to 0, we may lose the sparsity we have enforced on our controls, and we
may have to drop it to gain convergence for the sequence of controls.

5.1. Emnlarging the set of controls. In what follows, we fix a Cucker-Dong system
(14) satisfying conditions (a) — (¢) of Theorem 4.1, and we indicate with E(0) its
initial energy and with

[@(0)]]

Vg = :
I q

where ¢ is as in Proposition 2.

Each value of v, yields a partition of (R?)™ x (R4)Y into four disjoint sets:

Pi: = {(z,v) € R)Y x (R)Y | maxi<i<n [vi]| < g},

Pa: = {(z,v) € RYN x (RN | maxi<;<n ||vi]| =74 and Tk > 1 and iy, ..., ik
€ {1,...N} such that ||lv;, || =... = ||v | and ||v;, | > ||lv;]| for every j &
{i1,-- ik},

P3: = {(z,v) € (RY)N x (RN | maxi<;j<n ||vi]| >, and Jli € {1,... N} such
that [lvgl| > [|v;]| for every j # i},

Py = {(z,v) € RYN x (RN | maxi<;<n ||vi]| > v, and Tk > 1 and 4y, ..., ik
€ {1,...N} such that |lv;, || = ... = ||v; || and |lvi, || > |lv;]|| for every j &

{i1,.. -,k }},
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Definition 5.1. For every (z,v) € (R?)Y x (R?)Y we denote with U(z,v) C (RY)N
the set of all vectors u(x,v) = (ui(x,v),...,un(x,v)), whose vector entries are of
the form
—eiB(z, o) i [lui(d)] #0
, = o t
wwo) = it (1)) =0
where €; > 0 for every i =1,..., N, and
So e M
=IO
such that:
o if (x,v) € Py thene; =0 for every i =1,..., N;
o if (x,v) € Py then indicating with 41,...,4; the indexes such that ||v;, || =

.= |lvi || = 74 and ||v;, || > ||v;|| for every j & {i1,..., ik}, we have g; =0
for every j & {i1,...,ix};
e if (x,v) € P3 then, indicating with ¢ the only index such that |lv;|| > |Jv;]| for
every j # i, we have ¢; = W and €; = 0 for every j # i;
o if (z,v) € P4 then, indicating with iq,...,i; the indexes such that |v; | =
.= ||vi || and ||vg, || > ||v;| for every j & {i1,...,ix}, we have e; = 0 for

every j & {i1,...,ir} and E?:i Eip = %.

Remark 7. Forevery 0 <e < ( 5 and for every ¢ > 0, the control u(t) introduced

in Definition 2.3 associated to € belongs to U(x(t), v(t)) whenever t < T*(q), since
Lemma 3.4 guarantees max;<;<n ||v;(t)|| > 4 for every t € [0,T*(q)].

The set U(x,v) is closed and convex, and, moreover, has the following very
elegant alternative variational interpretation.

Proposition 3. For every (z,v) € (RN x (RHN and for every M > 0, set

N
M(x,v) ::M-E](;(:(’);J), K = {uE(Rd)NZHUiHSM(m,v)},

and let J : (RN — R be the functional defined by

N
T(u) = (v, ) + 74 Y |uill. (35)
i=1

Then

U(x,v) = argmin J (u).
ueK
Proof. Without loss of generality one can minimize (35) componentwise, i.e., con-
sidering the minimization of the function

wi = (v, u) + g [luil
for all 4 = 1,--- , N individually. If |lv;|| < 7, then, by Cauchy-Schwarz, we infer
that
(i, w;) + g ||us|| > 0, for all u € K,
and in particular the choice w; = 0 minimizes this component. Otherwise, if ||v;|| >

vq then, due to isotropy of the norm ||u;|| the minimal direction is the opposite to
v;, i.e., for u; = —aiﬁ, for some «; > 0, or, equivalently, there exists ¢; > 0
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such that «; = ¢; E(x, v). Hence, now the problem is how to allocate the weights ¢;
in order to keep w within K and simultaneously to minimize 7. Clearly, for u to
be in K, the choice of ¢; has to be such that Z{i:\lvi\lzvq} g < %. To conclude,
from a direct check of the individual cases depending on the partition P, (x,v),
¢=1,...,4, we can easily infer that U(x,v) is the set of minimizers of J over the

set K. O

Definition 5.2. A set-valued function F' from a topological space X to the subset
of a real vector space Y is said to be upper hemicontinuous at xo € X if and only
if for every continuous linear functional p : Y — R the function
x+— sup plu)
u€EF ()
is upper semicontinuous at zo € X. F' is called upper hemicontinuous if it is upper
hemicontinuous at every xg € X.

Proposition 4. The function U : (RN x (RH)N — (RN which associates to
every point (x,v) the set U(x,v) is upper hemicontinuous.

Proof. We have to prove that for every continuous linear functional p from (R%)V
to R, the function o : (R*)Y x (R¥)Y — R defined as follows
o: (z,v) — sup p(u)
ueU(xz,v)

is upper semicontinuous, i.e. for every (z,v) € (RY)Y x (RY)N and for every ¢ > 0
there exists a neighborhood A of (x,v) such that o(Z,v) < o(x,v) + € for all
(x,v) € N whenever o(x,v) > —oco, and (&, ) tends to —oo as (&,v) tends to
(z,v) whenever o(x,v) = —oco. First of all, notice that since U(x, v) is closed and
bounded, then it is compact and hence o(x,v) > —o0.

Hence fix a continuous linear functional p from (RY)Y to R, (z,v) € (R%)" and
e > 0. From Definition 5.1, an entry u; of w € U(x,v) is zero if and only if
lvj]l < max{vy,, max;<i<n ||v;||}, so if the latter condition holds, by the continuity
of ||| we can find a neighborhood N of (z,v) such that for every (z,v) € N we
have

1551 < {0, o 511}

Thus, since given any two vectors w,w € U(x,v), u; is zero if and only if w; is,
this implies that for every (z,v) € N and for every u € U(&, ), the component u;
is zero only if u; is zero for some u € U(x,v).
Moreover, if ||v;, ]| = ... = ||v;, || = max;<i<n [|v;] and for some (Z,v) € N
there exists 1 < h < k such that
b <, == |

max{’

for i, #ij,, forall s=1,...,k—hand r=1,...,h, Then u;;, =... :ﬁijh =0,
while u;, # 0 for every 1 <s <k —h, for all u € U(x,v).

These two facts together bring us to the conclusion that UN] = U(z,v), so for
every (z,v) € N, o(x,v) = o(x,v) < o(x,v) +¢, proving the upper semicontinuity
of o. O

PR

= max |,

Vi, Vi), Ve, i<i<N

Remark 8. The problem with the family of controls introduced in Definition 2.3
is that if we were to take U(x,v) = {u(z,v)} instead of the set in Definition 5.1,
where u is as in Definition 2.3, then U would not have been upper hemicontinuous.
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5.2. Existence of solutions for the differential inclusion. We are going to use
the following convergence result concerning hemicontinuous set-valued functions.

Theorem 5.3 ([2], Theorem 1 pag.60). Let F be a proper hemicontinuous map
from a Hausdorff locally convex space X to the closed convexr subsets of a Banach
space Y. Let I be an interval of R and (z,)nen and (Yn)nen be measurable functions
from I to X and Y respectively, satisfying

i. for almost every t € I and for every neighborhood N' of 0 in X x Y there exists
ng such that for every n > ng, y,(t) € F(z,(t)) + N;
. (Tn)nen converges almost everywhere to a function x: I — X;
i (Yn)nen € LY(I,Y) and converges weakly to y in L' (1,Y).

Then for almost every t € I
y(t) € F(x(t)).

Theorem 5.4. For every M > 0 and for every initial condition (xg,vg) € (R?)N x
(RHN | if system (14) satisfies conditions (a) — (c) of Theorem /.1 then there exist
q>1,171>0,w>0, and € > 0 such that
1 E(0 M
- ln( 1(9))§5< (36)
27 (q) (1 5(0)| = (7o, 9))

~ E(0)
holds, where p(7,q) is as in (28).
Moreover, for every t < T*(q) there exists a solution of

2(t) = 20 + / (9(2() + u(2(s)) ds, 2= (2,v), g(2) = (v,—L(z)z — vb)

associated with a control w such that u(t) € U(z(t)) for every t < T*(q). Here we
use the compact notation introduced in (6).

Proof. Apply Theorem 4.1 to get ¢ > 1, 79 > 0, w > 0, and & > 0 satisfying (36).
Notice that, if 7 < 79, then

1 < 1
T(0) = u(rea) ~ LI(0)] - o, )

which implies that e satisfies also (27) for every 7 > 7.

Hence, for every n > 1/7y, Theorem 4.1 guarantees the existence of a sampling
solution z, of system (14) associated with the feedback control u satisfying Defini-
tion 2.3, the sampling time 7 = 1/n and initial datum zg = (2o, vo). Setting uy, (t)
to be the (RN x (RY)N vector [0,...,0,u(z([nt]/n))]T, we have that

zn(t) = 2o +/0 (9(zn(s)) + un(s)) ds. (37)

By Corollary 2 the function L(x(t)) defined in (6) is bounded in the interval
[0,7*(q)], thus there is a constant « such that the following linear growth estimate
for g holds in [0, T*(q)]:

lg(2)[| < a(l[z]] +1).
Integrating (37) we get that

lzn(t)]] < Stellzoll +at M) —a - M
—_ a b
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is true in [0, 7% (q)], hence the sequence of piecewise C'* functions (z,)nen is point-
wise equibounded by the function

e(allzo| +a+ M) —a—M
a

O(t) =

for every t € [0,7*(q)]. Moreover, the sequence (z,)nen is also equicontinuous in
[0,T*(q)] since for every t,s € [0,T*(q)] such that ¢ < s,

20 () = za(s)]| < / (lg(zn (0Dl + M) db < (t = 5)(a(C(T™(q)) + 1) + M).

Thus an application of the Ascoli-Arzeld Theorem yields a subsequence which
we rename again as (z,)nen converging uniformly to a continuous function z :
[0, T*(q)] = (RH)N x (RN and, by the continuity of g, (9(2,))nen converges to
g(z). Concerning the sequence of controls (uy, ),en, since each u,, has norm bounded
by M, it is a uniformly integrable sequence; hence it satisfies the hypothesis of the
Dunford-Pettis Theorem (see, e.g., [1, Theorem 1.38]), which means that, up to
subsequences, it converges weakly in L! to a function w € L'([0,7*(q)]).

From Proposition 4, by taking FF = U, I = [0,7*(q)], (Zn)nen = (2Zn)nen,
(Yn)nen = (Up)nen, © = z and y = u, we are under the hypothesis of Theorem 5.3
and so we can conclude that u(t) € U(z(t)) for every t < T*(q) (since by Remark
7 we can guarantee u,(t) € U(z,(t)) only if ¢ < T*(q)). Since (wp)nen converges
weakly to w in L'([0,T*(q)]), in particular we have

¢ ¢
lim u,(s) ds :/ u(s) ds
0

n— oo 0

for every t < T*(q). Hence passing to the limit in (37) we conclude the proof. [

Corollary 3. For every M > 0 and every (z,v) € (RN x (RN define
F(z,v) = {(v,—L(x)x —vb+u) |u e U(x,v)}.

Then for every (xg,v) € (RHYN x (RHN if conditions (a) — (c) of Theorem 4.1 are
satisfied, the differential inclusion

(z,0) € Fz,v)
with initial condition (x(0),v(0)) = (g, vo) is well-posed as long as 0 <t < T*(q).

5.3. Decay rate estimate for sparse control strategy and instantaneous
optimality. Let us stress very much that in general the existence of a solution
associated to a sparse control as in Definition 2.3 does not follow from Corollary 3,
as we can say only that solutions exists within the class of feedback controls U(x, v),
which is much larger and contains nonsparse controls as well. Nevertheless, in what
follows, we do suppose there exists a solution to system (14) associated to the
control introduced in Definition 2.3 with ¢ = %, and we analyze what could be
the corresponding rate of convergence to the consensus region, compared with any
other solution within the class of feedback controls U(x,v).

Proposition 5. If ||5(0)|| > n > 0 then, for every 0 <t < T*(n),

B(t) < B(0)e ForM?,
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Proof. Before we start, notice that we can prove a continuous-time analogous of
Lemma 3.4 in the same way, thus obtaining the fact that if ||©(0)|] > 1 > 0 then
|[o(t)]] > n for every t < T*(n). Using Lemma 2.2 together with this fact we get

%E(t) <2 <5E(t)’1m)(tiu,wm(t)>

= —2¢E(t) vy (t)
—ME(t),

thus integrating between 0 and ¢ we get the desired estimate. O

The next result shows that this decay estimate is the best we can get among the
controls introduced in Definition 5.1.

Theorem 5.5. The feedback control of Definition 2.3 associated to the solution of
Theorem 4.1 is an instantaneous minimizer of

D(t,u) = %E(t)

over all possible feedback controls in U(x(t),v(t)).

Proof. We have already proven in Lemma 2.2 that

—E :—2Zb )|vi (%) H2+2Z u;(t

so in order to minimize D(¢, u) vv1th respect to u € U(az( ),v(t)) we have to work
on the second term. Now, since

N N
Z (ui(t),vi(t)) = —E(1) Z&' [lvi(t)

minimizing D(¢, ) is equivalent to solve
N N

maximize Zsi |lvi(¢)||, subject to Zs

i=1 i=1

< M

E(0)" (38)

By definition

IA

N N
Y eilloi®)l < o @)D e
1=1 i=1

B0) |z (®)]]

which means that the choice of the control made in Definition 2.3 is a maximizer of
(38). Moreover, the solution of the problem is unique whenever ||vz) ()| > [lv;(t)]

for all j # ©(t).

Let us briefly comment this last result. Its meaning is that, for the kind of systems
we are considering here, a feedback stabilization is most effective if all the attention
of the controller is focused on very few, actually in this case only one, agents at
each switching time. This also means that, despite the fact that the external policy
maker may have few resources at disposal and can allocate them at each time
only on very few key players in the system, it is possible to effectively stabilize the
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dynamics to return to energy levels where the dynamics keeps bounded and collision
avoiding. One of the most relevant differences with respect to [3] though is that for
the Cucker and Smale model the stabilization can be achieved unconditionally, i.e.,
independently of the initial conditions. For the Cucker and Dong model analyzed
in the present paper, a similar strategy yields only a conditional results, i.e., we
obtain stabilization conditionally to an initial energy level

¥ < E(0) < ¢,

for a constant ¢ > 1, as stated in condition (¢’) of Proposition 2. Our numerical
experiments, which follow below, suggest that it is possible to exceed such an upper
energy barrier, but it is unclear whether this is just a matter of fortunate choices of
good initial conditions or we can actually have a broader stabilization range than
the one analytically derived in the previous sections.

6. Numerical experiments. In this section we will report the results of signifi-
cant numerical simulations on Cucker-Dong systems in dimension d = 2 with and
without the use of our sparse control strategy outlined in Definition 2.3. Through-
out the section, we will keep fixed the number of agents (N = 8), the friction applied
(A =0, i.e. frictionless) and the form of the repulsive function (f(r) = r~?). We
restrict only to N = 8 simply for an easier visualization of the results. This means
that we will vary the shape of the function a (i.e., we will act on ), the slope of the
repulsion function (changing the value of p) and the maximum amount of strength

of the sparse control (the parameter M). The parameter ¢ is always set equal to
M

E(0)"

6.1. First case study: 5 = 1.1 and p = 2. Figure 2 displays the spatial evolution
and speeds of the agents of a Cucker-Dong system with 8 = 1.1 and p = 2:

Motion in the plane

2001

—— Agent 1
—— Agent 2
Agent 3
Agent 4
——Agent 5
Agent 6
Agent 7
Agent 8

150

100

50

_50 L L L I )
=50 0 50 100 150 200

Speeds in function of time
60

50 ——Agent 1
——Agent 2
40 Agent 3
Agent 4
——Agent 5
Agent 6
Agent 7
Agent 8

FIGURE 2. Space evolution and speeds of the uncontrolled system.
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Though we can not infer the divergence of the system from this finite time sim-
ulation, the portrayed situation seems far from going towards a flocking behavior.
The only agents which seem to flock are Agent 1, Agent 2, Agent 5 and Agent 6
(resp. black, blue, red and magenta trajectories), as it is also visible by the corre-
sponding speed graph, in which the speed of each agent is adjusted to the one of
the other agents.

Energy in function of time
2501

200+

— Total
150 Kinetic
|~ Adhesion
1001 // — Repulsion
[ —— Consensus

50

F1GURE 3. Energy profile of the uncontrolled system.

Figure 3 shows that the total energy E (the red line) is constant and far away
from the consensus threshold ¥ (black line). The increase in the distances between
particles is reflected in an increase in the adhesion potential energy (the one due to
a, see (7)) and in a decrease in the repulsive one (due to f).

If instead we apply our sparse control strategy with M = 35 on the same system
with the same initial conditions, the situation gets immediately far better from a
consensus point of view, as we can witness from Figure 4.

The spatial evolution graph shows a braid movement which resembles a pattern
near to flocking as it is commonly interpreted. The action of our control is evident
from the energy profile of the system, where the total energy is driven below the
threshold in a very short time. The fall of the total energy is mainly due to its kinetic
part (the green line), which is the only one directly affected by our control strategy.
The sharp decrease of the kinetic energy is also witnessed in the graph showing the
modulus of the speeds, where, after a quick, strong brake at the beginning, they
stabilize at a very low level.

6.2. Second case study: § = 1.02 and p = 1.1. The second case study takes
into account a system with a weaker communication rate than before (8 = 1.02)
and with a different form of the repulsive function (p = 1.1), and we apply on it
our control strategy with several values for M.

The top-left corner of Figure 5 is the uncontrolled system: it seems legitimate to
suppose that flocking is very unlikely to happen in the future, even because of its
energy profile graph (top-left corner of Figure 6), which witnesses an increase in the
adhesion potential energy, phenomenon associated to an increase in the distance
between particles, as already pointed out. To its right there is the spatial evolution
graph of the same system but with our sparse control strategy acting with parameter
M = 0.1, where the agents are starting to converge to consensus, as is also evident
in their energy profile.

The two bottom figures of Figure 5 display the action of controls with M = 1
and M = 10, respectively. It is clear how the situation goes better as M increases,
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Motion in the plane
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FIGURE 4. Profile of the controlled system.

which is due to the fact that the threshold is reached in shorter time (see bottom
graphs of Figure 6).

Figure 6 also clearly confirms the behavior of the decay rate of the energy as a
function of M, as predicted by our analytical result of Proposition 5: E(t) decreases
as e *Mt for a certain constant k > 0.

It is interesting to notice that convergence to the consensus region occurs even
if the hypothesis of Proposition 2 is not met, i.e., ¥ is very far away from E(0), as
it is likely to be a sub-optimal sufficient condition. Indeed, in all the case studies
above

— 3
F(0) exp 72\/5 M | (0)]| ~ F(0),

9 B(0)VE©) (AVEW) + ¥)

but, nonetheless, we were able to steer each system to consensus in finite time.
This is probably due to the fact that in all our numerical simulations we have

that the speed H'v;(t) (t)H > 0 for every t > 0, hence Lemma 3.4 is not necessary to

infer the effectiveness of our control. This could mean that neither condition (b)
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FIGURE 5. Spatial evolutions. From top-left corner to bottom-
right: M =0, M =0.1, M =1, M = 10.

nor condition (¢) is necessary for the proof of Theorem 4.1, and hence we would
have unconditional convergence for our sparse control strategy.
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