Citation: Gunhild A. Reigstad. Numerical network models and entropy principles for isothermal junction flow[J]. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65
[1] | M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56. doi: 10.3934/nhm.2006.1.41 |
[2] | M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314. doi: 10.3934/nhm.2006.1.295 |
[3] | M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Toward a mathematical analysis for drift-flux multiphase flow models in networks, SIAM J. Sci. Comput., 31 (2010), 4633-4653. doi: 10.1137/080722138 |
[4] | M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Coupling drift-flux models with unequal sonic speeds, Math. Comput. Appl., 15 (2010), 574-584. |
[5] | J. Brouwer, I. Gasser and M. Herty, Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks, Multiscale Model. Simul., 9 (2011), 601-623. doi: 10.1137/100813580 |
[6] | G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886. doi: 10.1137/S0036141004402683 |
[7] | R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511. doi: 10.3934/nhm.2006.1.495 |
[8] | R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471. doi: 10.1137/060665841 |
[9] | R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622. doi: 10.1137/070690298 |
[10] | R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction, J. Hyperbol. Differ. Eq., 5 (2008), 547-568. doi: 10.1142/S0219891608001593 |
[11] | C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edition, Springer-Verlag, 2010. doi: 10.1007/978-3-642-04048-1 |
[12] | M. Garavello, A review of conservation laws on networks, Netw. Heterog. Media, 5 (2010), 565-581. doi: 10.3934/nhm.2010.5.565 |
[13] | M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612. doi: 10.1137/070688535 |
[14] | M. Herty and M. Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, Netw. Heterog. Media, 56 (2008), 485-506. doi: 10.1002/fld.1531 |
[15] | H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017. doi: 10.1137/S0036141093243289 |
[16] | S. W. Hong and C. Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, Int. J. Numer. Meth. Fluids, 65 (2011), 707-742. doi: 10.1002/fld.2212 |
[17] | T. Kiuchi, An implicit method for transient gas flows in pipe networks, Int. J. Heat and Fluid Flow, 15 (1994), 378-383. doi: 10.1016/0142-727X(94)90051-5 |
[18] | R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, 6th edition, Cambridge University Press, 2007. doi: 10.1017/CBO9780511791253 |
[19] | A. Osiadacz, Simulation of transient gas flows in networks, Int. J. Numer. Meth. Fluids, 4 (1984), 13-24. doi: 10.1002/fld.1650040103 |
[20] | R. J. Pearson, M. D. Bassett, P. Batten and D. E. Winterbone, Two-dimensional simulation of wave propagation in a three-pipe junction, J. Eng. Gas Turbines Power, 122 (2000), 549-555. doi: 10.1115/1.1290589 |
[21] | J. Pérez-García, E. Sanmiguel-Rojas, J. Hernández-Grau and A. Viedma, Numerical and experimental investigations on internal compressible flow at T-type junctions, Experimental Thermal and Fluid Science, 31 (2006), 61-74. |
[22] | G. A. Reigstad, T. Flåtten, N. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, Submitted, (2013). Preprint available from: http://www.math.ntnu.no/conservation/2013/007.html. |
[23] | P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, 43 (1981), 357-372. doi: 10.1016/0021-9991(81)90128-5 |
[24] | E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edition, Springer-Verlag, 2009. doi: 10.1007/b79761 |