Citation: Linglong Du. Characteristic half space problem for the Broadwell model[J]. Networks and Heterogeneous Media, 2014, 9(1): 97-110. doi: 10.3934/nhm.2014.9.97
[1] | S.-J. Deng, W.-K. Wang and S.-H. Yu, Pointwise convergence to a Maxwellian for a Broadwellw model with a supersonic boundary, Netw. Heterog. Media, 2 (2007), 383-395. doi: 10.3934/nhm.2007.2.383 |
[2] | C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model in a half space problem, Netw. Heterog. Media, 1 (2006), 167-183. doi: 10.3934/nhm.2006.1.167 |
[3] | C.-Y. Lan, H.-E. Lin and S.-H. Yu, The Green's functions for the Broadwell model with a transonic boundary, J. Hyperbolic Differ. Equ., 5 (2008), 279-294. doi: 10.1142/S0219891608001489 |
[4] | T.-P. Liu, Pointwise convergence to shock waves for viscous conservarion laws, Commun. Pure Appl. Math., 50 (1997), 1113-1182. doi: 10.1002/(SICI)1097-0312(199711)50:11<1113::AID-CPA3>3.0.CO;2-D |
[5] | T.-P. Liu and S.-H. Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation, Commun. Pure Appl. Math., 60 (2007), 295-356. doi: 10.1002/cpa.20172 |
[6] | T.-P. Liu and S.-H. Yu, On boundary relation for some dissipative systems, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 245-267. |
[7] | Y. Sone, Kinetic Theory and Fluid Dynamics, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2002. doi: 10.1007/978-1-4612-0061-1 |