The aim of this manuscript is to investigate the existence of mild solution of Hilfer fractional neutral stochastic differential equations (HFNSDEs) with non-instantaneous impluses. We establish a new criteria to guarantee the sufficient conditions for a class of HFNSDEs with non-instantaneous impluses of order $ 0 < \beta < 1 $ and type $ 0\leq \alpha \leq 1 $ is derived with the help of semigroup theory and fixed point approach, namely M$ \ddot{o} $nch fixed point theorem. Finally, a numerical example is provided to validate the theoretical results.
Citation: Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai. Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses[J]. AIMS Mathematics, 2021, 6(5): 4474-4491. doi: 10.3934/math.2021265
The aim of this manuscript is to investigate the existence of mild solution of Hilfer fractional neutral stochastic differential equations (HFNSDEs) with non-instantaneous impluses. We establish a new criteria to guarantee the sufficient conditions for a class of HFNSDEs with non-instantaneous impluses of order $ 0 < \beta < 1 $ and type $ 0\leq \alpha \leq 1 $ is derived with the help of semigroup theory and fixed point approach, namely M$ \ddot{o} $nch fixed point theorem. Finally, a numerical example is provided to validate the theoretical results.
[1] | H. M. Ahmed, M. M. El-borai, Hilfer fractional stochastic differential equations, Appl. Math. Comput., 331 (2018), 182–189. |
[2] | H. M. Ahmed, M. M. El-borai, M. E. Ramadan, Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps, Adv. Differ. Equ., 82 (2019), 1–23. |
[3] | H. M. Ahmed, A. Okasha, Nonlocal Hilfer fractional neutral integrodifferential equations, Int. J. Math. Anal., 12 (2018), 277–288. doi: 10.12988/ijma.2018.8320 |
[4] | H. M. Ahmed, J. R. Wang, Exact null controllability of Sobolev-Type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps, B. Iran. Math. Soc., 44 (2018), 673–690. doi: 10.1007/s41980-018-0043-8 |
[5] | A. Anguraj, P. Karthikeyan, M. Rivero, J. J. Trujillo, On new existence results for fractional integro-differential equations with impulsive and integral conditions, Comput. Math. Appl., 66 (2014), 2587–2594. doi: 10.1016/j.camwa.2013.01.034 |
[6] | A. Anguraj, K. Ramkumar, E. M. Elsayed, Existence, uniqueness and stability of impulsive stochastic partial neutral functional differential equations with infinite delays driven by a fractional Brownian motion, Discontinuity, Nonlinearity, and Complexity, 9 (2020), 327–337. doi: 10.5890/DNC.2020.06.012 |
[7] | A. Anguraj, K. Ravikumar, Existence and stability of impulsive stochastic partial neutral functional differential equations with infinite delays and Poisson jumps, Discontinuity, Nonlinearity, and Complexity, 9 (2020), 245–255. doi: 10.5890/DNC.2020.06.006 |
[8] | D. Applebaum, Levy process and stochastic calculus, Cambridge: Cambridge University Press, 2009. |
[9] | J. Banas, K. Goebel, Measure of noncompactness in Banach space, New York: Mercel Dekker, 1980. |
[10] | T. Caraballo, M. A. Diop, Neutral stochastic delay partial functional integrodifferential equations driven by a fractional Brownian motion, Front. Math. China, 8 (2013), 745–760. doi: 10.1007/s11464-013-0300-3 |
[11] | K. Dhanalakshmi, P. Balasubramaniam, Stability result of higher-order fractional neutral stochastic differential system with infinite delay driven by Poisson jumps and Rosenblatt process, Stoch. Anal. Appl., 38 (2019), 352–372. |
[12] | G. R. Gautam, J. Dabas, Mild solutions for class of neutral fractional functional differential equations with not instantaneous impulses, J. Appl. Math. Comput., 259 (2016), 480–489. |
[13] | H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. |
[14] | E. Hern$\acute{a}$ndez, D. O'Regan, On a new class of abstract impulsive differential equations, P. Am. Math. Soc., 141 (2013), 1641–1649. |
[15] | E. Hern$\acute{a}$ndez, M. Pierri, D. O'Regan, On abstract differential equations with non instantaneous impulses, Topol. Method. Nonlinear Anal., 46 (2015), 1067–1088. |
[16] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. |
[17] | A. A. Kilbas, H. M. Trujillo, Theory and application of fractional differential equations, North-Holland: Elsevier Science, 2006. |
[18] | V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differntial equations, Singapore: Worlds Scientific, 1989. |
[19] | J. Lv, X. Yang, A class of Hilfer fractional stochastic differential equations and optimal controls, Adv. Differ. Equ., 17 (2019), 1–17. |
[20] | X. Mao, Stochastic differential equations and applications, Chichester: Elsevier, 1997. |
[21] | K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, New York: John Wiley, 1993. |
[22] | H. M$\ddot{o}nch$, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. Theor., 4 (1980), 985–999. doi: 10.1016/0362-546X(80)90010-3 |
[23] | B. Oksendal, Stochastic differential equations: An introduction with applications, Berlin, Heidelberg: Springer, 2003. |
[24] | D. N. Pandey, S. Das, N. Sukavanam, Existence of solution for a second-order neutral differential equation with state dependent delay and non-instantanous impulses, IJNS, 18 (2014), 145–155. |
[25] | I. Podlubny, Fractional differential equations, London: Academic Press, 1998. |
[26] | G. D. Prato, J. Zabczyk, Stochastic equations in infinite dimenions, London: Cambridge University Press, 2014. |
[27] | F. A. Rihen, C. Rajivganthi, P. Muthukumar, Fractional stochastic differential equations with Hilfer fractional derivative: Poisson jumps and optimal control, Discrete. Dyn. Net. Soc., 2017 (2017), 5394528. |
[28] | J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado, Advances in fractional calculus, Netherlands: Springer, 1993. |
[29] | D. Yang, J. R. Wang, Non-instantaneous impulsive fractional-order implicit differential equations with random effects, Stoch. Anal. Appl., 35 (2017), 719–741. doi: 10.1080/07362994.2017.1319771 |
[30] | Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. |