Research article

Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses

  • Received: 18 November 2020 Accepted: 05 February 2021 Published: 22 February 2021
  • MSC : 26A33, 34A08, 34A12, 34A37, 60H10

  • The aim of this manuscript is to investigate the existence of mild solution of Hilfer fractional neutral stochastic differential equations (HFNSDEs) with non-instantaneous impluses. We establish a new criteria to guarantee the sufficient conditions for a class of HFNSDEs with non-instantaneous impluses of order $ 0 < \beta < 1 $ and type $ 0\leq \alpha \leq 1 $ is derived with the help of semigroup theory and fixed point approach, namely M$ \ddot{o} $nch fixed point theorem. Finally, a numerical example is provided to validate the theoretical results.

    Citation: Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai. Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses[J]. AIMS Mathematics, 2021, 6(5): 4474-4491. doi: 10.3934/math.2021265

    Related Papers:

  • The aim of this manuscript is to investigate the existence of mild solution of Hilfer fractional neutral stochastic differential equations (HFNSDEs) with non-instantaneous impluses. We establish a new criteria to guarantee the sufficient conditions for a class of HFNSDEs with non-instantaneous impluses of order $ 0 < \beta < 1 $ and type $ 0\leq \alpha \leq 1 $ is derived with the help of semigroup theory and fixed point approach, namely M$ \ddot{o} $nch fixed point theorem. Finally, a numerical example is provided to validate the theoretical results.



    加载中


    [1] H. M. Ahmed, M. M. El-borai, Hilfer fractional stochastic differential equations, Appl. Math. Comput., 331 (2018), 182–189.
    [2] H. M. Ahmed, M. M. El-borai, M. E. Ramadan, Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps, Adv. Differ. Equ., 82 (2019), 1–23.
    [3] H. M. Ahmed, A. Okasha, Nonlocal Hilfer fractional neutral integrodifferential equations, Int. J. Math. Anal., 12 (2018), 277–288. doi: 10.12988/ijma.2018.8320
    [4] H. M. Ahmed, J. R. Wang, Exact null controllability of Sobolev-Type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps, B. Iran. Math. Soc., 44 (2018), 673–690. doi: 10.1007/s41980-018-0043-8
    [5] A. Anguraj, P. Karthikeyan, M. Rivero, J. J. Trujillo, On new existence results for fractional integro-differential equations with impulsive and integral conditions, Comput. Math. Appl., 66 (2014), 2587–2594. doi: 10.1016/j.camwa.2013.01.034
    [6] A. Anguraj, K. Ramkumar, E. M. Elsayed, Existence, uniqueness and stability of impulsive stochastic partial neutral functional differential equations with infinite delays driven by a fractional Brownian motion, Discontinuity, Nonlinearity, and Complexity, 9 (2020), 327–337. doi: 10.5890/DNC.2020.06.012
    [7] A. Anguraj, K. Ravikumar, Existence and stability of impulsive stochastic partial neutral functional differential equations with infinite delays and Poisson jumps, Discontinuity, Nonlinearity, and Complexity, 9 (2020), 245–255. doi: 10.5890/DNC.2020.06.006
    [8] D. Applebaum, Levy process and stochastic calculus, Cambridge: Cambridge University Press, 2009.
    [9] J. Banas, K. Goebel, Measure of noncompactness in Banach space, New York: Mercel Dekker, 1980.
    [10] T. Caraballo, M. A. Diop, Neutral stochastic delay partial functional integrodifferential equations driven by a fractional Brownian motion, Front. Math. China, 8 (2013), 745–760. doi: 10.1007/s11464-013-0300-3
    [11] K. Dhanalakshmi, P. Balasubramaniam, Stability result of higher-order fractional neutral stochastic differential system with infinite delay driven by Poisson jumps and Rosenblatt process, Stoch. Anal. Appl., 38 (2019), 352–372.
    [12] G. R. Gautam, J. Dabas, Mild solutions for class of neutral fractional functional differential equations with not instantaneous impulses, J. Appl. Math. Comput., 259 (2016), 480–489.
    [13] H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354.
    [14] E. Hern$\acute{a}$ndez, D. O'Regan, On a new class of abstract impulsive differential equations, P. Am. Math. Soc., 141 (2013), 1641–1649.
    [15] E. Hern$\acute{a}$ndez, M. Pierri, D. O'Regan, On abstract differential equations with non instantaneous impulses, Topol. Method. Nonlinear Anal., 46 (2015), 1067–1088.
    [16] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000.
    [17] A. A. Kilbas, H. M. Trujillo, Theory and application of fractional differential equations, North-Holland: Elsevier Science, 2006.
    [18] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differntial equations, Singapore: Worlds Scientific, 1989.
    [19] J. Lv, X. Yang, A class of Hilfer fractional stochastic differential equations and optimal controls, Adv. Differ. Equ., 17 (2019), 1–17.
    [20] X. Mao, Stochastic differential equations and applications, Chichester: Elsevier, 1997.
    [21] K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, New York: John Wiley, 1993.
    [22] H. M$\ddot{o}nch$, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. Theor., 4 (1980), 985–999. doi: 10.1016/0362-546X(80)90010-3
    [23] B. Oksendal, Stochastic differential equations: An introduction with applications, Berlin, Heidelberg: Springer, 2003.
    [24] D. N. Pandey, S. Das, N. Sukavanam, Existence of solution for a second-order neutral differential equation with state dependent delay and non-instantanous impulses, IJNS, 18 (2014), 145–155.
    [25] I. Podlubny, Fractional differential equations, London: Academic Press, 1998.
    [26] G. D. Prato, J. Zabczyk, Stochastic equations in infinite dimenions, London: Cambridge University Press, 2014.
    [27] F. A. Rihen, C. Rajivganthi, P. Muthukumar, Fractional stochastic differential equations with Hilfer fractional derivative: Poisson jumps and optimal control, Discrete. Dyn. Net. Soc., 2017 (2017), 5394528.
    [28] J. Sabatier, O. P. Agrawal, J. A. Tenreiro Machado, Advances in fractional calculus, Netherlands: Springer, 1993.
    [29] D. Yang, J. R. Wang, Non-instantaneous impulsive fractional-order implicit differential equations with random effects, Stoch. Anal. Appl., 35 (2017), 719–741. doi: 10.1080/07362994.2017.1319771
    [30] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2322) PDF downloads(291) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog