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1. Introduction

In recent years, the fractional calculus (FC) has enjoyed considerable importance in the field of
science and engineering, physics, fluids mechanics, biological, chemical, finance markets and
viscoelasticity. Moreover, FC is the more generalization of differentiation and integration. On the
otherhand, the theory and practical application of the fractional differential equations (FDEs) in the
field of science, finance and many other areas. The wide application of FDEs could be seen in the
monographs [16, 17, 21, 25, 28, 30] and the references therein [11, 15, 19].
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Hilfer [16] popularized a special kind of fractional derivative, which are includes both
Riemann-Liouville (R-L) derivative and Caputo fractional derivative as a special kind such as the
implication and application of Hilfer fractional derivative (HFD) implement in the theoretical
simulation of rouse model, relaxation and diffusion models for biophysical phenomena, dielectric
relaxation in glass forming materials, etc. Firstly, many researchers have been done in the field of
existence of Hilfer fraction evolution equation and non-local condition (see [1–4, 19]).

On the other hand, deterministic models often fluctuate due to environmental noise. Therefore to
have better performance in the models are widespread use. Therefore, it is necessary to move from
deterministic case to stochastic ones. Stochastic differential equations (SDEs) are crucial application
in many developement field of engineering and science . For other details on SDEs the authors can refer
to the books [8, 20, 23, 26] and the articles therein [6, 7, 11]. Impulsive fractional differential equations
(IFDEs) is an effective mathematical tool to model in both the physical and social sciences. There has
a significant development in impulsive theory especially in the area of IFDEs with fixed moments and
the references therein [5, 17, 18, 25, 30]. Although, all physical system which evolve with respect to
time are suffered by small abrupt changes in the form of impulses. These impulse can be specified into
two cases:
(i) Instantaneous impulsive differential equations (IIDEs).
(ii) Non-instantaneous impulsive differential equations (NIIDEs).

IIDEs: i.e., in the system, impulse occurs for a short time period which is negligible on comparing
with overall time period is instantaneous impulse. The second type NIIDEs i.e., impulsive disturbance
which starts at time and remains active on a finite time period is non-instantaneous impulsive. Inspite
of, the action of instantaneous impulsive phenomena seen as do not describe some certain dynamics of
evolution processes in pharmacotherapy. For example, high or low levels of glucose, one can prescribe
some intravenous drugs (insulin). The introduction of the drugs in the blood stream and the consequent
absorption for the body are gradual and continuous process. To this end, Hernandez and O’Regan
[14] introduce the NIIDEs. It also can be broadly used in medical science, mechanical engineer and
any other fields. For instance, bursting rhythm models in medicine, biological phenomena involving
thresholds, learning control model and biology. For more details on NIIDEs see [12,15,24,29]. To the
best of our knowledge, there are finite works by considering the existence of HFSDEs with impulsive
effect. Motivated by the above works HFNSDEs with non-instantaneous impluses, very recently, many
researchers have done in the excellent field of the existence of mild solutions for a class of HFSDEs in
Hilbert space see [1–4, 13, 19, 27].

Although, to the best of our knowledge the existence of HFNSDEs with non-instantaneous
impluses has not been examined yet. Many researchers express the existence results by the familiar
definitions of fractional derivatives defined by Caputo and R-L sense. HFD, it is universality of R-L
fractional derivative and Caputo fractional derivative. The proposed work on the existence of
HFNSDEs with non-instantaneous impluses is original to the literature and more general result than
the existing literature. Therefore, in this work we consider the following HFNSDEs with
non-instantaneous impluses to study the existence of mild solution:

D
α,β
0+ [u(t) − h(t, u(t))] = A [u(t) − h(t, u(t))] + f(t, u(t))

+

∫ s

0
g(τ, u(τ))dw(τ), t ∈ (si, ti+1] ⊂ J

′

:= (0, b], i = 0, 1, 2, · · · ,N

u(t) = Ii(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · ,N
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I
(1−γ)
0+ [u(0) − h(0, u(0))] = u0, γ = α + β − αβ. (1.1)

where u(·) ∈ X a real separable Hilbert space; its inner product and norm are defined as follows:
< ·, · >X, ‖·‖X. Here J := [0, b] and J

′

:= (0, b] denote the time intervals. The operators A : D(A) ⊂
X → X is the infinitesimal generator of a strongly continuous semigroup of a bounded linear operator
T(t), t ≥ 0 on X, for more details on semigroup operators refer [26]. Let Y be another separable Hilbert
space, with norm ‖·‖Y and inner product < ·, · >Y. The functions h, f and g defined later.

The primary contribution and advantage of this article can be foreground as follows:

(1) For the first time in literature, existence of solution of HFNSDEs with non-instantaneous impluses
is investigated.

(2) New set of sufficient conditions are established for the existence of mild solution of HFNSDEs
with non-instantaneous impluses in system (1.1). This work generalizes many results obtained
for fractional SDEs involving Caputo and R-L fractional derivatives.

(3) The property of Hausdorff measure of non compactness is adopted to prove the relatively compact
conditions.

(4) The aimed of our technique relies on Mönch fixed point theorem is effectively used to establish
the new results.

(5) The proposed theoretical results through a numerical example .

The manuscript is formulated listed as follows: we will present some basic definitions for fractional
operators and also the solution representation of HFNSDEs with non-instantaneous impluses will be
discussed in Section 2. In Section 3, by applying Mönch fixed point theorem and hypotheses, existence
of mild solution of system (1.1) is proved. We illustrate the effectiveness of the theoretical results
through a numerical example in Section 4. At last, conclusion is drawn in Section 5.

2. Preliminaries

This section contains basic preliminaries, and notations:
Let (Ω,=,P) be a complete probability space furnished with complete family of right continuous

increasing sub σ-algebras
{
=t, t ∈ J

}
satisfying =t ∈ =. The collection of all strongly measurable,

pth mean square integrable X-valued random variable, denoted by Lp(Ω,=,P,X) ≡ Lp(Ω,X) with a
Banach space equipped with norm

‖u(·)‖Lp(Ω,X) =
(
E ‖u(·,w)‖p

X

)1/p
.

Let L(Y,X) defined the space of all bounded linear operators from Y into X, whenever X = Y, and
denote by L(Y). Q ∈ L(Y) represents a non-negative self-adjoint operator. Let L0

2 = L2(Q
1
2Y,X) be

the space of all Hilbert-Schmidt operators from Q
1
2Y into X, ψ ∈ L0

2 is called a Q-Hilbert-Schmidt
operator. For a ∈ [0, b) and γ ∈ [0, 1], consider the weighted spaces of continuous functions

Cγ([a, b],Lp(Ω,X)) =
{
u ∈ C([a, b],Lp(Ω,X)) : (t − a)γu(t) ∈ C([a, b],Lp(Ω,X))

}
.

Now, define C([a, b],Lp(Ω,X)) is a Banach space with norm

E ‖u‖C([a,b],Lp(Ω,X)) = ( sup
t∈(a,b]

(t − a)γ ‖u(t)‖p).
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Let Jk = (sk, tk+1], J̄k = [sk, tk+1] (k = 0, 1, 2, · · · ,N), Ti = (ti, si], T̄i = [ti, si] (k = 1, 2, · · · ,N). Let
H = PC 1−γ(J,Lp(Ω,X)) =

{
u : (t − sk)1−γu ∈ Jk,Lp(Ω,X)), limt→s+

k
(t − sk)1−γu(t), u ∈ C(Ti,Lp(Ω,X))

}
and limt→t+i u(t) exist, k = 0, 1, 2, · · · ,N, i = 1, 2, · · · ,N, with

‖·‖H =
{
E ‖u(t)‖pPC 1−γ(J,Lp(Ω,X))

} 1
p

= max
{
( max
k=0,1,2,··· ,N

sup
t∈Jk

E
∥∥∥(t − sk)1−γu(t)

∥∥∥p
)

1
p , ( max

i=1,2,··· ,N
sup
t∈Ti

E ‖u(t)‖p)
1
p

}
.

Definition 2.1. [21] The Riemann-Liouville fractional integral operator of a function f : [0,+∞)→ R
with order β > 0 is

I
β
0+f(t) =

1
Γ(β)

∫ t

0

f(s)
(t − s)1−βds, t > a.

Remark:

(i) For α = 0 and 0 < β < 1, the Hilfer fractional derivative leads as Riemann-Liouville fractional
derivative:

D
α,β
0+ f(t) = I

1−β
0+

d
dt
I

(1−β)
0+ f(t) =L

D
β
0+f(t).

(ii) For α = 1 and 0 < β < 1, the Hilfer fractional derivative becomes as Caputo derivative:

D
1,β
0+ f(t) = I

1−β
0+

d
dt
f(t) =C

D
β
0+f(t).

Lemma 2.2. [13] The operators Sα,β and Pβ satisfies,

(i)
{
Pβ(t), t > 0

}
is continuous.

(ii) For any t > 0, Sα,β(t) and Pβ(t) are bounded and linear operators,∥∥∥Pβ(t)u
∥∥∥ ≤ MTtβ−1

Γ(β)
‖u‖ .∥∥∥Sα,β(t)u

∥∥∥ ≤ MTtγ−1

Γ(γ)
‖u‖ , γ = (1 − α)(1 − β).

(iii)
{
Pβ(t) : t > 0

}
and

{
Sα,β(t) : t > 0

}
are strongly continuous.

Lemma 2.3. [10] The Hausdorff measure of non compactness µ(·) defined on each bounded subset Λ

of the Banach space X is given by µ(Λ) = inf {ε > 0; Λ has a finite ε − net in X}. The following are
some important properties of µ(·). If X is a real Banach space and Λ,Ω ⊂ X are bounded, then the
following properties hold:

(i) Λ is precompact iff µ(Λ) = 0.
(ii) µ(Λ + Ω) ≤ µ(Λ) + µ(Ω), where Λ + Ω = {u + v; u ∈ Λ, v ∈ Ω}

(iii) If W ⊂ C(J;X) is bounded and equicontinuous, then t→ µ(W(t)) is continuous on J, and

µ(W) ≤ max
t∈J

µ(W(t)), µ(
∫ t

0
W(s)ds) ≤

∫ t

0
µ(W(s))ds, for all t ∈ J,

where ∫ t

0
W(s)ds =

{∫ t

0
u(s)ds : for all u ∈W, t ∈ J

}
.
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(iv) If {un}
∞
n=1 is a sequence of Bochner integrable functions from J into X with ‖un(t)‖ ≤ m̃(t) for a.e.

t ∈ J and ∀n ≥ 1, where m̃(t) ∈ L(J;R+), then the function ψ(t) = µ({un}
∞
n=1) ∈ L(J;R+) and

satisfies

µ(
{∫ t

0
un(s)ds : n ≥ 1

}
) ≤ 2

∫ t

0
ψ(s)ds.

Lemma 2.4. [9] Let F ⊂ X be bounded and equicontinuous. Then µ(Λ(t)) is continuous on [0, b], and
µ(Λ) = supt∈J µ(Λ(t)), where µ(Λ(t)) = {u(t) : u ∈ Λ}.

Lemma 2.5. [22] Suppose D is a closed convex subset of Banach space H, 0 ∈ D. If Φ : D → H
is continuous and of Mönch type, (i.e.) Φ satisfies the property: M ⊆ D, M is countable, M ⊂

co({0}
⋃

Φ(M))⇒M is compact, then Φ has a fixed point in D.

Lemma 2.6. [11] For any p ≥ 1 and for arbitrary L0
2-valued predictable process φ(·) such that

sup
s∈[0,t]
E

∥∥∥∥∥∫ s

0
φ(s)dw(s)

∥∥∥∥∥2p

X

≤ (p(2p − 1))p
(∫ t

0

[
E ‖φ(s)‖2p

L0
2

]
ds

)p

, t ∈ [0,+∞)

where cp = (p(2p − 1))p.

Definition 2.7. An X-valued =t-adopted stochastic process u(t) is called as mild solution of
NIHFNSDEs (1.1) if the following integral equation is verified

u(t) =



Sα,β(t)u0 + h(t, u(t)) +
∫ t

0
Pβ(t − s)f(s, u(s))ds

+
∫ t

0
Pβ(t − s)

[∫ s

0
g(τ, u(τ))dw(τ)

]
ds for t ∈ [0, t1],

Ii(t, u(t)), for t ∈ (ti, si],
Sα,β(t − si) [Ii(t, u(si))] + h(t, u(si)) +

∫ si

0
Pβ(si − s)f(s, u(s))ds

+
∫ si

0
Pβ(si − s)

[∫ s

0
g(τ, u(τ))dw(τ)

]
ds

+
∫ t

0
Pβ(t − s)f(s, u(s))ds +

∫ t

0
Pβ(t − s)

[∫ s

0
g(τ, u(τ))dw(τ)

]
ds,

for t ∈ (si, ti+1],

where

Sα,β(t) = I
α(1−β)
0+ Pβ(t),

P(t) = tβ−1(T)β(t),

Tβ(t) =

∫ ∞

0
βθψβ(θ)(T)(tβθ)dθ,

here ψβ(θ) =

∞∑
n=1

(−θn−1)
(n − 1)!Γ(1 − nβ)

, 0 < β < 1, θ ∈ (0,∞),

is Wright-type function which satisfies the following,∫ ∞

0
θξψβ(θ)dθ =

Γ(1 + ξ)
Γ(1 + βξ)

for θ ≥ 0.
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3. Main results

In order to prove the existence result, we impose the following hypotheses hold:

(H1) The function f : J × X→ X satisfies
(i) u→ f(t, u) is continuous for a.e t ∈ J and t→ f(t, u) is strongly measurable for each u ∈ X.
(ii) ∃ a function mf(t) ∈ L(J,R+) and non-decreasing continuous function Θ1 : [0,∞) → (0,∞)
s.t for any u ∈ X and each t ∈ J,

E ‖f(t, u(t))‖p ≤ mf(t)Θ1(‖u(t)‖pH).

(iii) ∃ a function Θ2 ∈ L(J,R+) and a constant f∗ > 0 with supt∈J Θ2(t) = f∗ s.t for any bounded
subset D ⊂ X,

µ(f(t, u)) ≤ Θ2(t)
[
sup
t∈J

µ(D(t))
]
.

(H2) The function g : J × X→ L0
2 satisfies

(i) u→ g(t, u) is continuous for a.e t ∈ J and t→ g(t, u) is strongly measurable for each u ∈ X.
(ii) ∃ a function mg(t) ∈ L(J,R+) and a continuous non-decreasing function Θ3 : [0,∞)→ (0,∞)
s.t for any u ∈ X and each t ∈ J ,

E ‖g(t, u(t))‖p
L0

2
≤ mg(t)Θ3(‖u(t)‖pH).

(iii) ∃ a function Θ4 ∈ L(J,R+) and a constant g∗ > 0 with supt∈J Θ4(t) = g∗ s.t for any bounded
subset D ⊂ X,

µ(g(t, u)) ≤ Θ4(t)
[
sup
t∈J

µ(D(t))
]
.

(H3) The functions Ii : (ti, si] × X → X, i = 1, 2, · · · ,N are continuous and satisfy the following
conditions:
(i) For r > 0, ∃ +ve functions ρi(r), i = 1, 2, · · · ,N dependent on r s.t

E ‖Ii(t, u(t))‖p
X
≤ ρi(r).

(ii) ∃ constants ρ̄i > 0 s.t for each bounded subset D ⊂ X,

µ(Ii(t,D)) ≤ ρ̄i sup
t∈(ti,si]

µ(D(t)), i = 1, 2, · · · ,N.

(H4) (i) The functions h : J × X→ X is continuous, and ∃ a mh > 0 s.t ∀ t ∈ J, u, v ∈ X

E ‖h(t, u(t)) − h(t, v(t))‖p ≤ mh(‖u − v‖pH),

E ‖h(t, u(t))‖p ≤ mh(1 + ‖u‖pH).

(ii) ∃ a function Θ5 ∈ L(J,R+) and a constant h∗ > 0 with supt∈J Θ5(t) = h∗ s.t for any bounded
subset D ⊂ X,

µ(h(t, u)) ≤ Θ5(t)
[
sup
t∈J

µ(D(t))
]
.
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(H6)

Λ∗ =

{
h
∗ + 2

[
MT

Γ(β)

]  tβ1
β

 (f∗ +
√

t1cpg
∗) + max

i=1,2,...,N
(ρ̄i)

+

[
MT

Γ(γ)

]
(ti+1 − si)p(1−γ)[ρ̄i] + h∗ + 4

[
MT

Γ(β)

] [
bβ

β

] (
f
∗ + cpg

∗
√

b
) }

< 1.

Theorem 3.1. If assumptions (H1)− (H6) holds. Then NIHFNSDEs of the Eq (1.1) has a mild solution
on J.

Proof: Define an operator Φ : H→ H as follows:

(Φx)(t) =



Sα,β(t)u0 + h(t, u(t)) +
∫ t

0
Pβ(t − s)f(s, u(s))ds

+
∫ t

0
Pβ(t − s)

[∫ s

0
g(τ, u(τ))dw(τ)

]
ds, for t ∈ [0, t1], i = 0.

Ii(t, u(t)), for t ∈ (ti, si], i ≥ 1.
Sα,β(t − si) [Ii(t, u(si))] + h(t, u(t)) +

∫ si

0
Pβ(si − s)f(s, u(s))ds

+
∫ si

0
Pβ(si − s)

[∫ s

0
g(τ, u(τ))dw(τ)

]
ds +

∫ t

0
Pβ(t − s)f(s, u(s))ds

+
∫ t

0
Pβ(t − s)

[∫ s

0
g(τ, u(τ))dw(τ)

]
ds, for t ∈ (si, ti+1], i ≥ 1.

By using Mönch fixed point theorem, we prove that Φ has a fixed point which is a mild solution of
(1.1). The proof is given in the following four steps.
Step 1: Φ maps bounded set into bounded set in H.
Indeed, it is sufficient to prove for any r > 0, ∃ a L > 0 s.t for each u ∈ Br =

{
u ∈ H, ‖u‖pH < r

}
, we

have ‖Φu‖pH ≤ L
For t ∈ [0, t1],

sup
t∈[0,t1]

tp(1−γ)
1 E ‖(Φu)(t)‖p ≤ 4p−1 sup

t∈[0,t1]
tp(1−γ)
1

{
E

∥∥∥Sα,β(t)u0

∥∥∥p
+ E ‖h(t, u(t))‖p

+ E

∥∥∥∥∥∥
∫ t

0
Pβ(t − s)f(s, u(s))ds

∥∥∥∥∥∥p

+ E

∥∥∥∥∥∥
∫ t

0
Pβ(t − s)[

∫ s

0
g(τ, x(τ))dw(τ)]ds

∥∥∥∥∥∥p }
≤ 4p−1

4∑
i=1

Gi. (3.1)

By Lemma 2.3, we get,

G1 = E
∥∥∥Sα,β(t)u0

∥∥∥p

≤

[ MT

Γ(γ)
tγ−1
1

]p

E ‖u0‖
p .

By using Lemma 2.3, and (H4), we have,

G2 = E ‖h(t, u(t))‖p
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≤ mh(1 + ‖u‖pH)
≤ mh(1 + r).

Using Hölder inequality, Lemma (H1)(ii) we get,

G3 = E

∥∥∥∥∥∥
∫ t

0
Pβ(t − s)f(s, u(s))ds

∥∥∥∥∥∥p

≤

[∫ t

0

(
MT

Γ(β)

)
(t − s)β−1ds

]p

E ‖f(s, u(s))‖p

≤

[
MT

Γ(β)

]p  tβ1
β

p−1 (∫ t

0
mf(s)Θ1(‖u(t)‖pH)ds

)

≤

[
MT

Γ(β)

]p  tβ1
β

p−1 (∫ t

0
mf(s)ds

)
Θ1(r).

By Lemma 2.3, and (H2)(ii) we have,

G4 = E

∥∥∥∥∥∥
∫ t

0
Pβ(t − s)[

∫ s

0
g(τ, u(τ))dw(τ)]ds

∥∥∥∥∥∥p

≤

[
MT

Γ(β)

]p

cp

∫ t

0
(t − s)β−1

(∫ s

0
E ‖g(τ, u(τ))‖p dτ

) 2
p

ds


p
2

≤

[
MT

Γ(β)

]p

cp

[∫ t

0
(t − s)β−1ds

] p
2
(∫ s

0
E ‖g(τ, u(τ))‖p ds

)

≤

[
MT

Γ(β)

]p

cp

 tβ1
β


p
2 (∫ t

0
mg(s)ds

)
Θ3(r).

From the above, (3.1) becomes,

sup
t∈[0,t1]

tp(1−γ)
1 E ‖(Φu)(t)‖p ≤ 4p−1 sup

t∈[0,t1]
tp(1−γ)
1

{[ MT

Γ(γ)
tγ−1
1

]p

E ‖u0‖
p + mh(1 + r)

+

[
MT

Γ(β)

]p  tβ1
β

p−1 (∫ t

0
mf(s)ds

)
Θ1(r)

+

[
MT

Γ(β)

]p

cp

 tβ1
β


p
2 (∫ t

0
mg(s)ds

)
Θ3(r)

}
:= L1.

Next, for any t ∈ (ti, si], i = 1, 2, · · · ,N,

sup
t∈[ti,si]

E ‖(Φu)(t)‖p ≤ sup
t∈[ti,si]

{
E ‖Ii(u(ti))‖p

}
≤ {ρi(r)}
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:= L2.

lly for any t ∈ (si, ti+1], i = 1, 2, · · · ,N one can estimate,

sup
t∈[si,ti+1]

(t − si)p(1−γ)E ‖(Φu)(t)‖p

≤ 6p−1 sup
t∈[si,ti+1]

(t − si)p(1−γ)
{
E

∥∥∥Sα,β(t − si)[Ii(si, u(si))]
∥∥∥p

+ E ‖h(t, u(t))‖p

+ E

∥∥∥∥∥∫ si

0
Pβ(si − s)f(s, u(s))ds

∥∥∥∥∥p

+ E

∥∥∥∥∥∫ si

0
Pβ(si − s)[

∫ s

0
g(τ, u(τ))dw(τ)]ds

∥∥∥∥∥p

+ E

∥∥∥∥∥∥
∫ t

0
Pβ(t − s)f(s, u(s))ds

∥∥∥∥∥∥p

+ E

∥∥∥∥∥∥
∫ t

0
Pβ(t − s)

[∫ s

0
g(τ, u(τ))dw(τ)

]
ds

∥∥∥∥∥∥p }
≤ 6p−1 sup

t∈[si,ti+1]
(t − si)p(1−γ)

{ [
MT

Γ(γ)

]p

[(t − si)p(1−γ)]ρi(r) + mh(1 + r)

+

[
MT

Γ(β)

]p

spβ−1
i

(∫ si

0
mf(s)ds

)
Θ1(r)

+

[
MT

Γ(β)

]p

cpspβ−1
i

(∫ si

0
mg(s)ds

)
Θ3(r)

+

[
MT

Γ(β)

]p

tpβ−1
(∫ t

0
mf(s)ds

)
Θ1(r)

+

[
MT

Γ(β)

]p

cptpβ−1
(∫ t

0
mg(s)ds

)
Θ3(r)

}
≤ 6p−1bp(1−γ)

{[ MT

Γ(γ)

]p

bp(γ−1)ρi(r) + mh(1 + r)

+ 2
[ MT

Γ(β)

]p (
bpβ−1(

∫ b

0
mf(s)ds)Θ1(r) + cpbpβ−1(

∫ b

0
mg(s)ds)Θ3(r)

) }
:= L3.

Let L = max {L1,L2,L3} then for each u ∈ Br, we have ‖(Φu)(t)‖pH ≤ L.
Step 2: Φ is continuous on Br.
Let {un(t)}∞n=1 ⊂ Br with tn → u, (n → ∞) in Br. Therefore, the continuous functions are h, f and g ∀
ε > 0, ∃ N s.t for each n ∈ N,

E ‖h(s, un(s)) − h(s, u(s))‖p < ε,
E ‖f(s, un(s)) − f(s, u(s))‖p < ε,
E ‖g(s, un(s)) − g(s, u(s))‖p < ε.

For each t ∈ J, we get

E ‖f(s, un(s)) − f(s, u(s))‖p ≤ 3p−1mf(t)Θ1(r),

E

∥∥∥∥∥∫ s

0
[g(τ, un(τ)) − g(τ, u(τ))]dw(τ)

∥∥∥∥∥p

≤ 3p−1cp

(∫ s

0
mg(t)Θ3(r)dr

)
.
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From (H1) − (H5) and dominated convergence theorem, for t ∈ [0, t1]

sup
t∈J

tp(1−γ)E ‖(Φun)(t) − (Φu)(t)‖p

≤ 3p−1 sup
t∈[0,t1]

tp(1−γ)
1

{
E ‖h(s, un(s)) − h(s, u(s))‖p

+ E

∥∥∥∥∥∥
∫ t

0
Pβ(t − s)[f(s, un(s)) − f(s, u(s))]ds

∥∥∥∥∥∥p

+ E

∥∥∥∥∥∥
∫ t

0
Pβ(t − s)[

∫ s

0
[g(τ, un(τ)) − g(τ, u(τ))]dw(τ)]ds

∥∥∥∥∥∥p }
→ 0 as n→ ∞.

Next, for any t ∈ (ti, si], i = 1, 2, · · · ,N,

sup
t∈J

tp(1−γ)E ‖(Φun)(t) − (Φu)(t)‖p ≤ sup
t∈Ti

E ‖Ii(t, un(t)) − Ii(t, u(t))‖p

→ 0 as n→ ∞.

For any t ∈ (si, ti+1], i = 1, 2, · · · ,N,

sup
t∈J

tp(1−γ)E ‖(Φun)(t) − (Φu)(t)‖p

≤ 6p−1 sup
t∈Jk

(t − si)p(1−γ)
{∥∥∥Sα,β(t − si)

{
Ii(si, un(si)) − Ii(si, u(si))

}∥∥∥p

+ ‖h(t, un(t)) − h(t, u(t))‖p

+

∥∥∥∥∥∫ si

0
Pβ(si − s)[f(t, un(s)) − f(t, u(s))]ds

∥∥∥∥∥p

+

∥∥∥∥∥∫ si

0
Pβ(si − s)[

∫ s

0
[g(τ, un(τ)) − g(τ, u(τ))]dw(τ)]ds

∥∥∥∥∥p

+

∥∥∥∥∥∥
∫ t

0
Pβ(t − s)[f(t, un(s)) − f(t, u(s))]ds

∥∥∥∥∥∥p

+

∥∥∥∥∥∥
∫ t

0
Pβ(t − s)[

∫ s

0
[g(τ, un(τ)) − g(τ, u(τ))]dw(τ)]ds

∥∥∥∥∥∥p }
→ 0 as n→ ∞.

Then,
sup
t∈J

tp(1−γ)E ‖(Φun)(t) − (Φu)(t)‖p → 0 as n→ ∞.

Thus Φ is continuous.
Step 3: Φ maps bounded sets into equicontinuous sets of Br.
Let 0 < τ1 < τ2 < t1. For each u ∈ Br,

sup
t∈[0,t1]

tp(1−γ)
1 ‖(Φu)(τ2) − (Φu)(τ1)‖p
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≤ 4p−1 sup
t∈[0,t1]

tp(1−γ)
1

{
E

∥∥∥[Sα,β(τ2) − Sα,β(τ1)]u0

∥∥∥p

+ E ‖h(τ2, u(τ2)) − h(τ1, u(τ1))‖p

+ E

∥∥∥∥∥∫ τ1

0
[Pβ(τ2 − s) − Pβ(τ1 − s)]f(s, u(s))ds

∥∥∥∥∥p

+ E

∥∥∥∥∥∥
∫ τ2

τ1

Pβ(τ2 − s)f(s, u(s))ds

∥∥∥∥∥∥p

+ E

∥∥∥∥∥∫ τ1

0
[Pβ(τ2 − s) − Pβ(τ1 − s)][

∫ s

0
g(τ, u(τ))dw(τ)]ds

∥∥∥∥∥p

+ E

∥∥∥∥∥∥
∫ τ2

τ1

Pβ(τ2 − s)[
∫ s

0
g(τ, u(τ))dw(τ)]ds

∥∥∥∥∥∥p }
.

For any τ1, τ2 ∈ (ti, si], τ1 < τ2, i = 1, 2, · · · ,N,

E ‖(Φu)(τ2) − (Φu)(τ1)‖p = sup
t∈Ti

[E ‖Ii(τ2, u(τ2)) − Ii(τ1, u(τ1))‖p]

= sup
t∈Ti

E ‖Ii(τ2, u(τ2)) − Ii(τ1, u(τ1))‖p .

lly for any τ1, τ2 ∈ (si, ti+1], τ1 < τ2, i = 1, 2, · · · ,N,

sup
t∈Jk

(t − si)p(1−γ)E ‖(Φu)(τ2) − (Φu)(τ1)‖p

≤ 6p−1 sup
t∈Jk

(t − si)p(1−γ)
{
E

∥∥∥[Sα,β(τ2 − si) − Sα,β(τ1 − si)] × [Ii(si, u(si))]
∥∥∥p

+ E ‖h(τ2, u(τ2)) − h(τ1, u(τ1))‖p

+ E

∥∥∥∥∥∫ τ1

0
[Pβ(τ2 − s) − Pβ(τ1 − s)]f(s, u(s))ds

∥∥∥∥∥p

+ E

∥∥∥∥∥∥
∫ τ2

τ1

Pβ(τ2 − s)f(s, u(s))ds

∥∥∥∥∥∥p

+ E

∥∥∥∥∥∫ τ1

0
[Pβ(τ2 − s) − Pβ(τ1 − s)][

∫ s

0
g(τ, u(τ))dw(τ)]ds

∥∥∥∥∥p

+ E

∥∥∥∥∥∥
∫ τ2

τ1

Pβ(τ2 − s)[
∫ s

0
g(τ, u(τ))dw(τ)]ds

∥∥∥∥∥∥p }
.

Right hand side of the above inequalities tends to zero as τ2 → τ1, since the definitions of Sα,β(·), Pβ(·)
imply the continuity, one can see that ‖(Φu)(t2) − (Φu)(t1)‖2H tends to zero independently of u ∈ Br as
τ2 → τ1, for ε sufficiently small. Further, Φu, u ∈ Br is equicontinuous. Thus, Φ maps Br into a family
of equicontinuous.
Step 4: Mönch conditions holds. Let us consider an arbitrary bounded subset D ⊂ Br which is
countable and D ⊂ co({0} ∪ Φ(D)). We prove that µ(D) = 0, where µ(·) is Hausdorff measure of non
compactness. Without loss of generality we assume that D = {un}

∞
n=1, from Step 3 it is easy to verify

that D is bounded and equicontinuous.
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Now, Define

Φ(D) =



h(t, u(t)) +
∫ t

0
Pβ(t − s)f(s, u(s))ds

+
∫ t

0
Pβ(t − s)

[∫ s

0
g(τ, u(τ))dw(τ)

]
ds, for t ∈ [0, t1], i = 0.

Ii(t, u(t)), for t ∈ (ti, si], i ≥ 1.
Sα,β(t − si) [Ii(t, u(si))] + h(t, u(t)) +

∫ si

0
Pβ(si − s)f(s, u(s))ds

+
∫ si

0
Pβ(si − s)

[∫ τ

0
g(s, u(s))dw(s)

]
ds

+
∫ t

0
Pβ(t − s)f(s, u(s))ds

+
∫ t

0
Pβ(t − s)

[∫ τ

0
g(s, u(s))dw(s)

]
ds, for t ∈ (si, ti+1], i ≥ 1.

Let Φ(D) = Φ1(D) + Φ2(D) + Φ3(D).
First, we estimate Φ1(D), for t ∈ [0, t1], we get,
Let

{Φ1(D(t))} =

{
h(t, u(t)) +

∫ t

0
Pβ(t − s)f(s, u(s))ds

+

∫ t

0
Pβ(t − s)

[∫ s

0
g(τ, u(τ))dw(τ)

]
ds

}
≤ Φ11(D(t)) + Φ12(D(t)) + Φ13(D(t)).

By assumptions (H4)(ii), the estimate of Φ11(D(t)) can be derived as

µ [{Φ11(D(t))}] ≤ µ [h(t,D(t))]
≤ Θ5(t)

[
sup

t∈[0,t1]
µ(D(t))

]
.

By assumptions (H1)(iii), the estimate of Φ12(D(t)), we have

µ [{Φ12(D(t))}] ≤ µ

[∫ t

0
Pβ(t − s)f(s,D(s))ds

]
≤ 2

[
MT

Γ(β)

]  tβ1
β

 Θ2(t)
[

sup
t∈[0,t1]

µ(D(t))
]
.

lly, by assumptions (H2)(iii), the estimate of Φ13(D(t)), we have

µ [{Φ13(D(t))}] ≤ µ

[∫ t

0
Pβ(t − s)

[∫ s

0
g(τ,D(τ))dw(τ)

]
ds

]

≤ µ

∫ t

0
Pβ(t − s)

(∫ s

0
g(τ,D(τ))dw(τ)

]2 1
2

ds


≤ 2

[
MT

Γ(β)

]
cp

 tβ1
β

 √t1Θ4(t)
[

sup
t∈[0,t1]

µ(D(t))
]
.

By using the above estimates, becomes

{Φ1(D(t))} =

{
h
∗ + 2

[
MT

Γ(β)

]  tβ1
β

 (f∗ +
√

t1cpg
∗)}µ(D(t))
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≤ Λ∗1µ(D(t)),

where

Λ∗1 =

{
h
∗ + 2

[
MT

Γ(β)

]  tβ1
β

 (f∗ +
√

t1cpg
∗)}

For t ∈ (ti, si], i = 1, 2, · · · ,N, we have

µ [{Φ2(D(t))}] ≤ µ [I(t,D(t))]
≤ ρ̄iµ(D(t))
≤ Λ∗2µ(D(t)).

where Λ∗2 = ρ̄i

For t ∈ (si, ti+1], i = 1, 2, · · · ,N, we have

µ [{Φ3(D(t))}] ≤ µ
{
Sα,β(t − si)[I(si, u(si))] + h(t, u(t)) +

∫ si

0
Pβ(si − s)f(s, u(s))ds

+

∫ si

0
Pβ(si − s)

[∫ s

0
g(τ, u(τ))dw(τ)

]
ds +

∫ t

0
Pβ(t − s)f(s, u(s))ds

+

∫ t

0
Pβ(t − s)

[∫ s

0
g(τ, u(τ))dw(τ)

]
ds

}
≤ Φ31(D(t)) + Φ32(D(t)) + Φ33(D(t)) + Φ34(D(t)) + Φ35(D(t)) + Φ36(D(t)).

By assumptions (H3)(ii), the estimate of Φ31(D(t)) can be derived as

µ [{Φ31(D(t))}] ≤ µ
[
Sα,β(t − si)[I(si, u(si))]

]
≤ µ

[
Sα,β(t − si)[I(si,D(si))]

]
≤

[
MT

Γ(γ)

]
(t − si)(1−γ)[ρ̄i] sup

t∈(si,ti+1]
µ(D(t)).

By assumptions (H4)(ii), the estimate of Φ32(D(t)) can be derived as

µ [{Φ32(D(t))}] ≤ µ [h(t, u(t))]
≤ µ [h(t,D(t))]
≤ Θ5(t) sup

t∈(si,ti+1]
µ(D(t)).

By assumptions (H1)(iii), the estimate of Φ33(D(t)) can be derived as

µ [{Φ33(D(t))}] ≤ µ

[∫ si

0
Pβ(t − si)f(s, u(s))ds

]
≤ 2

[
MT

Γ(β)

]
(si)β

β
Θ2(t)

[
sup

t∈(si,ti+1]
µ(D(t))

]
.

lly by assumptions (H2)(iii), the estimate of Φ34(D(t)) can be derived as

µ [{Φ34(D(t))}] ≤ µ

[∫ si

0
Pβ(t − si)

[∫ s

0
g(τ, u(τ))dw(τ)

]
ds

]
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≤ µ

∫ si

0
Pβ(t − s)

(∫ s

0
g(τ,D(τ))dw(τ)

]2 1
2

ds


≤ 2

[
MT

Γ(β)

]
cp

sβi
β

 √siΘ5(t)
[

sup
t∈(si,ti+1]

µ(D(t))
]
.

By assumptions (H1)(iii), the estimate of Φ35(D(t)) can be derived as

µ [{Φ35(D(t))}] ≤ µ

[∫ t

0
Pβ(t − s)f(s, u(s))ds

]
≤ 2

[
MT

Γ(β)

]
(t)β

β
Θ2(t)

[
sup

t∈[si,ti+1]
µ(D(t))

]
.

Similarly by assumptions (H2)(iii), the estimate of Φ36(D(t)) can be derived as

µ [{Φ36(D(t))}] ≤ µ

[∫ t

0
Pβ(t − s)

[∫ s

0
g(τ, u(τ))dw(τ)

]
ds

]

≤ µ

∫ t

0
Pβ(t − s)

(∫ s

0
g(τ,D(τ))dw(τ)

]2 1
2

ds


≤ 2

[
MT

Γ(β)

]
cp

(
tβ

β

)
√

t1Θ5(t)
[

sup
t∈[si,ti+1]

µ(D(t))
]
.

By using the above estimates, becomes

µ [{Φ3(D(t))}] ≤
{ [

MT

Γ(γ)

]
(ti+1 − si)p(1−γ)[ρ̄i] + h∗

+ 4
[

MT

Γ(β)

] [
bβ

β

] (
f
∗ + cpg

∗
√

b
) }
µ(D(t))

≤ Λ∗3µ(D(t)).

where

Λ∗3 =

{ [
MT

Γ(γ)

]
(ti+1 − si)p(1−γ)[ρ̄i] + h∗ + 4

[
MT

Γ(β)

] [
bβ

β

] (
f
∗ + cpg

∗
√

b
) }
.

{Φ(D(t))} = µ [Φ1(D) + Φ2(D) + Φ3(D)]
≤

[
Λ∗1 + Λ∗2 + Λ∗3

]
µ(D(t))

≤ Λ∗µ(D(t)).

where Λ∗ is a constant given in (H5), and Λ∗ ∈ (0, 1).
By using Lemma 2.3, we have

µ(D) ≤ µ(co({0} ∪ Φ({D})))
= µ(Φ(D))
≤ Λ∗µ(D),

which implies that µ(D) = 0, D is relatively compact set. Therefore, by Lemma 2.5, Φ has a fixed point
in D. Thus, the NIHFNSDEs of the system (1.1) has a fixed point on J, which is a mild solutions.
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4. An example

Consider the following partial NIHFNSDEs, system of the form

D
1
2 ,

1
8

0+

[
u(t, ζ) −

sin(u(t, ζ))
40

]
=

∂2

∂u2

[
u(t, ζ) −

sin(u(t, ζ))
40

]
+

e−t

1 + e−t sin(u(t, ζ))

+ e−t sin tdw(t), t ∈ (0, 1/3] ∪ (2/3, 1],

u(t, ζ) =
cos t|u(t, ζ)|
25 + |u(t, ζ)|

, t ∈ (1/3, 2/3],

u(t, 0) = u(t, 1) = 0, t ∈ [0, 1],
I

(1−γ)
0+ [u(0) − h(0, u(0))] = u0, (4.1)

where D
1
2 ,

1
8 is the Hilfer fractional derivative of order 1/2 and degree 1/8. Take the Hilbert space X =

Y = Lp([0, 1]) and the operators A : D(A) ⊂ X→ X and defined by A = ∂2

∂u2 with D(A) =
{
u ∈ X : u, u

′

are absolutely continuous, u
′′

∈ X, u(0) = 0
}
. Thus A can be written as Au =

∑∞
n=1 n2 < u, un > un,

u ∈ D(A) where un(s) =

√
2
π

sin ns, n = 1, 2, · · · , is an orthogonal set of eigenvectors of A. Moreover,

for u ∈ X, we have u =
∑∞

n=1
1

1+n2 < u, un > un, Au =
∑∞

n=1
n2

1+n2 < u, un > un.
It is known that A is self adjoint and infinitesimal generator of an analytic semigroup {T(t) : t ≥ 0}

in X which is given by

T(t)u =

∞∑
n=1

e−n2t < u, un >, u ∈ X.

Therefore, ‖T(t)‖ ≤ e−1 < 1 = M, t ≥ 0.
Now, D is any bounded subset Br in X. Define

f(t, u(t))(ζ) = f(t, u(t, ζ)) =
e−t

1 + e−t sin(u(t, ζ)),

g(t, u(t))(ζ) = g(t, u(t, ζ)) = e−t sin t,

h(t, u(t))(ζ) = h(t, u(t, ζ)) =
sin(u(t, ζ))

40
,

µ(f(t,D)) = µ(f(t,D(t, ζ))) ≤ Θ2(t)
[
sup
t∈J

µ(D(t))
]
,

µ

(∫ t

0
g(s,D)ds

)
= µ

(∫ t

0
g(s,D(t, ζ))ds

)
≤ Θ4(t)

[
sup
t∈J

µ(D(t))
]
,

µ(h(t,D)) = µ(f(t,D(t, ζ))) ≤ Θ5(t)
[
sup
t∈J

µ(D(t))
]
,

and t, u ∈ (ti, si] × X, i = 1, 2, · · · ,N, one can estimate,

E ‖Ii(t, u)‖p =
cos t|u(t, ζ)|
25 + |u(t, ζ)|

E ‖u(s)‖p

and for any bounded subset D ⊂ X, t ∈ (ti, si], i = 1, 2, · · · ,N, we get

µ(Ii(t, u))p ≤ ρ̄i sup
t∈(ti,si]

µ(D(t)).

with the above system (4.1) can be formulated in the abstract form of (1.1), since, the functions f, g, h
and I are uniformly bounded. It is easy to verify that conditions of Theorem 3.1. holds, partial
NIHFNSDEs, admits a mild solution.
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5. Conclusions

The aim of this manuscript is to investigate the existence of mild solution of non-instantaneous
impulsive neutral Hilfer fractional stochastic differential equation (NIHFNSDEs). We establish a new
criteria to guarantee the sufficient conditions for a class of NIHFNSDEs of order 0 < β < 1 and type
0 ≤ α ≤ 1 is derived with the help of fractional calculus, stochastic theory, fixed point theorem and
semigroup theory. Mönch fixed point theorem is adopted to prove the existence of solution. In addition,
a numerical example is provided to validate the theoretical result. Further, this result could be extended
to investigate the optimal controllability of NIHFNSDEs in future.
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