We study measurable stationary solutions for the kinetic Kuramoto-Sakaguchi (in short K-S) equation with frustration and their stability analysis. In the presence of frustration, the total phase is not a conserved quantity anymore, but it is time-varying. Thus, we can not expect the genuinely stationary solutions for the K-S equation. To overcome this lack of conserved quantity, we introduce new variables whose total phase is conserved. In the transformed K-S equation in new variables, we derive all measurable stationary solution representing the incoherent state, complete and partial phase-locked states. We also provide several frameworks in which the complete phase-locked state is stable, whereas partial phase-locked state is semi-stable in the space of Radon measures. In particular, we show that the incoherent state is nonlinearly stable in a large frustration regime, whereas it can exhibit stable behavior or concentration phenomenon in a small frustration regime.
Citation: Seung-Yeal Ha, Hansol Park, Yinglong Zhang. Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration[J]. Networks and Heterogeneous Media, 2020, 15(3): 427-461. doi: 10.3934/nhm.2020026
We study measurable stationary solutions for the kinetic Kuramoto-Sakaguchi (in short K-S) equation with frustration and their stability analysis. In the presence of frustration, the total phase is not a conserved quantity anymore, but it is time-varying. Thus, we can not expect the genuinely stationary solutions for the K-S equation. To overcome this lack of conserved quantity, we introduce new variables whose total phase is conserved. In the transformed K-S equation in new variables, we derive all measurable stationary solution representing the incoherent state, complete and partial phase-locked states. We also provide several frameworks in which the complete phase-locked state is stable, whereas partial phase-locked state is semi-stable in the space of Radon measures. In particular, we show that the incoherent state is nonlinearly stable in a large frustration regime, whereas it can exhibit stable behavior or concentration phenomenon in a small frustration regime.